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Abstract. The note is concerned with the problem of determining the com-
pletely unstable linear non-conservative undamped (circulatory) dynamical
systems. Several conditions that provide the complete instability for such
systems are derived using the direct method of Lyapunov and the concept of
controllability. The conditions are expressed directly via the matrices describ-
ing the dynamical system.

1. Introduction

Non-conservative undamped linear systems (circulatory systems) with 𝑛 de-
grees of freedom are mostly expressed in the form

(1.1) 𝑞 +𝐾𝑞 + 𝑃𝑞 = 0, 𝑞 ∈ R𝑛,

where dot denotes time differentiation and the real 𝑛 × 𝑛 matrices 𝐾 = 𝐾𝑇 and
𝑃 = −𝑃𝑇 correspond to potential (conservative) and non-conservative positional
(circulatory) forces, respectively (see [1,2]. The skew-symmetric matrix 𝑃 is called
the circulatory matrix and 𝐾 is the stiffness matrix, so 𝑞𝑇𝐾𝑞/2 is the potential
energy of the system. Such systems are important mathematical models in various
areas of mechanics, physics and engineering (see [3]).

As equation (1.1) is linear, “stability of the system” is determined by the sta-
bility of its equilibrium state (𝑞, 𝑞) = (0, 0). For many years, it has been well
known that circulatory forces −𝑃𝑞 can destabilize a stable equilibrium of purely
potential (conservative) system, and that they can stabilize an unstable poten-
tial system [2,4]. Various results concerning the stability problem for circulatory
systems can be found in [2–12].
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The degree of instability of the system (1.1), denoted by 𝑢, is the number of
roots (counted with multiplicities) of the characteristic polynomial

(1.2) Δ(𝜆) = det(𝜆2𝐼 +𝐾 + 𝑃 ),

in the open right complex half-plane. Here 𝐼 is the identity matrix. This definition is
in accordance with the definition of the degree of instability for arbitrary dynamical
system proposed by Kozlov [13], which is a natural generalization of the Poincare
degree of instability for conservative systems (see [1,2]). It is clear that 0 6 𝑢 6 𝑛,
since the roots of (1.2) are located symmetrically with respect to the imaginary
axis in the complex plane (Δ(𝜆) = Δ(−𝜆)). If 𝑢 = 𝑛 (i.e., the polynomial (1.2)
has no roots on the imaginary axis), the system is said to be completely unstable.
Clearly, in this case the matrix (𝐾 + 𝑃 ) must be non-singular and, consequently,
the equilibrium position 𝑞 = 0 is necessarily isolated.

The purpose of this note is to obtain conditions that ensure complete instability
of the systems under consideration. A useful criterion in this direction (Theorem
3.1) is derived in Section 3. The derivation is based on the inertia theory for
Lyapunov matrix equation. This theory is presented briefly in Section 2. In Section
4, it is shown that Theorem 3.1 generates a number of the conditions for complete
instability expressed directly through the matrices 𝐾 and 𝑃 .

2. A brief overview of the inertia theory for Lyapunov equation

The inertia of a 𝑚×𝑚 real matrix 𝐴, denoted by In(𝐴), is defined as the triplet
(𝜋(𝐴), 𝜈(𝐴), 𝛿(𝐴)), where 𝜋(𝐴), 𝜈(𝐴), and 𝛿(𝐴) are, respectively, the number of
eigenvalues of 𝐴 with positive, negative, and zero real parts, counting multiplicities.
Note that 𝜋(𝐴) + 𝜈(𝐴) + 𝛿(𝐴) = 𝑚.

First, we recall a result of Lyapunov [14]: If for any positive definite symmetric
matrix 𝑊 (𝑊 > 0) there is a negative definite symmetric matrix 𝑉 (𝑉 < 0) satisfying

(2.1) 𝐴𝑉 + 𝑉 𝐴𝑇 = 𝑊,

then In(𝐴) = (0,𝑚, 0). The matrix equation (2.1) is called Lyapunov equation.
This classical result is a special case of the inertia theorem of Ostrowski and Schnei-
der [15]: If for any 𝑊 = 𝑊𝑇 > 0 there is a symmetric matrix 𝑉 satisfying (2.1),
then In(𝐴) = In(𝑉 ) and 𝛿(𝐴) = 𝛿(𝑉 ) = 0.

In the more general case when the matrix 𝑊 is positive semi-definite (> 0),
the triplets In(𝐴) and In(𝑉 ) do not generally coincide with each other. A useful
result for this case involves the concept of controllability of the matrix pair (𝐴,𝑊 ).

Let 𝐵 be a 𝑚 × 𝑝 matrix. The controllability matrix 𝐶(𝐴 | 𝐵) of 𝐴 and 𝐵 is
defined as the 𝑚×𝑚𝑝 matrix

𝐶(𝐴 | 𝐵) = (𝐵,𝐴𝐵,𝐴2𝐵, . . . , 𝐴𝑚−1𝐵).

The pair (𝐴,𝐵) is called controllable, if rank𝐶(𝐴 | 𝐵) = 𝑚.
The following result proved by Chen [16] plays an important role in forthcoming

considerations.
Theorem 2.1. Let 𝑉 be a symmetric matrix. If the matrix 𝑊 given by (2.1)

has the property 𝑊 > 0 and the pair (𝐴,𝑊 ) is controllable, then 𝛿(𝐴) = 𝛿(𝑉 ) = 0
and In(𝐴) = In(𝑉 ).
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3. The main result

Equation (1.1) is equivalent to the first order equation

�̇� = 𝐴𝑥,

with 𝑥 ∈ R𝑛{𝑞} × R𝑛{𝑞} and

(3.1) 𝐴 =

(︂
0 𝐼

𝐴 0

)︂
,

where 𝐼 is the identity matrix of order 𝑛 and 𝐴 = −(𝐾 + 𝑃 ). The eigenvalues of
𝐴 are the roots of characteristic polynomial (1.2) and, consequently, 𝑢 = 𝜋(𝐴).

Let

(3.2) 𝑉 =

(︂
0 𝑀

𝑀𝑇 0

)︂
, 𝑀 ∈ R𝑛×𝑛.

Lemma 3.1. 𝜋(𝑉 ) = 𝜈(𝑉 ) = rank𝑀 .

Proof. Let 𝜆 be a non-zero eigenvalue of 𝑉 . Then there exists a non-zero
vector 𝑣 =

(︀
𝑣1
𝑣2

)︀
, 𝑣𝑖 ∈ R𝑛, such that 𝑉 𝑣 = 𝜆𝑣, or 𝑀𝑣2 = 𝜆𝑣1 and 𝑀𝑇 𝑣1 = 𝜆𝑣2. The

last two equations yield (𝑀𝑇𝑀)𝑣2 = 𝜆2𝑣2, and the result follows from 𝑀𝑇𝑀 > 0
and rank𝑀𝑇𝑀 = rank𝑀 . �

Note that the matrix 𝑉 is non-singular if and only if 𝑀 is non-singular, and
then 𝜋(𝑉 ) = 𝜈(𝑉 ) = 𝑛.

Now we put (3.1) and (3.2) in (2.1). Then we get

(3.3) 𝑊 = 𝐴𝑉 + 𝑉 𝐴𝑇 =

(︂
𝑊1 0
0 𝑊2

)︂
,

where 𝑊1 = 𝑀 +𝑀𝑇 and 𝑊2 = 𝐴𝑀 +𝑀𝑇𝐴𝑇 .

Lemma 3.2. The pair (𝐴,𝑊 ) is controllable, if and only if

rank(𝐴𝐶(𝐴 | 𝑊1), 𝐶(𝐴 | 𝑊2)) = 𝑛.

Proof. Because of the given block structure of (3.1) and (3.3), it is not dif-
ficult to see that the controllability matrix 𝐶(𝐴 | 𝑊 ) can be transformed by the
application of elementary column and row operations to the form:(︂

𝐶(𝐴 | 𝑊1) 𝐶(𝐴 | 𝑊2) 0 0

0 0 𝐴𝐶(𝐴 | 𝑊1) 𝐶(𝐴 | 𝑊2)

)︂
.

Obviously, the pair (𝐴,𝑊 ) is controllable (i.e., rank𝐶(𝐴 | 𝑊 ) = 2𝑛) if and
only if rank(𝐶(𝐴 | 𝑊1), 𝐶(𝐴 | 𝑊2)) = 𝑛 and rank(𝐴𝐶(𝐴 | 𝑊1), 𝐶(𝐴 | 𝑊2)) = 𝑛,
since the reduction of a matrix by elementary operations does not change its rank.
Now, according to the Cayley–Hamilton theorem (see [14]), the matrix 𝐴𝑛𝑊1 can
be represented by a linear combination of the matrices 𝑊1, 𝐴𝑊1, . . . , 𝐴

𝑛−1𝑊1, and
consequently

rank(𝐶(𝐴 | 𝑊1), 𝐴
𝑛𝑊1, 𝐶(𝐴 | 𝑊2)) = rank(𝐶(𝐴 | 𝑊1), 𝐶(𝐴 | 𝑊2)).



184 BULATOVIĆ

Also, it is easy to see that

(𝐶(𝐴 | 𝑊1)𝐴
𝑛𝑊1, 𝐶(𝐴 | 𝑊2)) = (𝑊1, 𝐴𝐶(𝐴 | 𝑊1), 𝐶(𝐴 | 𝑊2)),

and hence

rank(𝐶(𝐴 | 𝑊1), 𝐶(𝐴 | 𝑊2) > rank𝐴𝐶(𝐴 | 𝑊1), 𝐶(𝐴 | 𝑊2)),

and the result readily follows. �

Remark 3.1. If either rank𝐴𝐶(𝐴 | 𝑊1) = 𝑛 or rank𝐶(𝐴 | 𝑊2) = 𝑛, then
rank𝐶(𝐴 | 𝑊 ) = 2𝑛.

Theorem 3.1. Let 𝑀 ∈ R𝑛×𝑛 and let 𝐴 = −(𝐾 + 𝑃 ). The system (1.1) is
completely unstable if the following three conditions hold:

(a) 𝑊1 = 𝑀 +𝑀𝑇 > 0,
(b) 𝑊2 = 𝐴𝑀 +𝑀𝑇𝐴𝑇 > 0,
(c) rank(𝐴𝐶(𝐴 | 𝑊1), 𝐶(𝐴 | 𝑊2)) = 𝑛.

Proof. Suppose that the conditions (a) and (b), and (c) are fulfilled. Then,
in view of Lemma 3.2, the matrices 𝐴, 𝑉 and 𝑊 given by (3.1), (3.2) and (3.3),
respectively, satisfy the conditions of Theorem 2.1, and hence 𝜋(𝐴) = 𝜋(𝑉 ), 𝜈(𝐴) =
𝜈(𝑉 ), and 𝛿(𝐴) = 𝛿(𝑉 ) = 0. Finally, according to Lemma 3.1, 𝜋(𝑉 ) = 𝜈(𝑉 ) = 𝑛,
because 𝛿(𝑉 ) = 0. �

Remark 3.2. Obviously, this theorem implicitly requires that the matrix 𝑀
must be non-singular.

Remark 3.3. The controllability condition (c) of Theorem 3.1 is redundant if
𝑊2 > 0. It is also redundant if 𝐴 is non-singular and 𝑊1 > 0.

Theorem 3.1 has some interesting consequences, which we present in the fol-
lowing section.

4. Some completely unstable systems

Assuming 𝑃 = 0 in equation (1.1) we get the conservative system: 𝑞+𝐾𝑞 = 0.
It is well known, and easily verified, that this system is completely unstable if
and only if 𝐾 < 0. The following assertion shows that a completely unstable
conservative system remains completely unstable after the introduction of arbitrary
non-conservative positional forces.

Proposition 4.1. If det(𝐾 + 𝑃 ) ̸= 0 and 𝐾 6 0, then the system (1.1) is
completely unstable.

In particular, if 𝐾 = 0 (purely non-conservative system) and det𝑃 ̸= 0 (then
𝑛 is necessarily even), the system (1.1) is completely unstable.

Proof. Let 𝑀 be the identity matrix. Then 𝑊1 = 2𝐼 and 𝑊2 = −2𝐾 > 0,
because 𝐾 6 0, i.e., the conditions (a) and (b) of Theorem 3.1 are satisfied. Also,
by virtue of Remark 3.3, the condition (c) of Theorem 3.1 is satisfied, and the
proposition follows. �
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Example 4.1. Let

𝐾 =

⎛⎝−3 2 2
2 −3 −3
2 −3 −3

⎞⎠ , 𝑃 =

⎛⎝ 0 1 −2
−1 0 3
2 −3 0

⎞⎠ .

For this system, det(𝐾+𝑃 ) ̸= 0 and 𝐾 is negative semi-definite, and hence complete
instability follows from Proposition 4.1. The direct way to verify the validity of
this result is to form the characteristic equation and obtain the eigenvalues of the
system. Doing so results in 𝜆1,2 = ±1.126, 𝜆3,4 = ±1.732, 𝜆5,6 = ±2.175, which is
in agreement with the prediction of Proposition 4.1.

Now assuming that 𝑀 = 𝑃 we get 𝑊1 = 𝑀 + 𝑀𝑇 = 0 and 𝑊2 = 𝐴𝑀 +
𝑀𝑇𝐴𝑇 = −2𝑃 2+𝑃𝐾−𝐾𝑃 . Then the following proposition is a direct consequence
of Theorem 3.1.

Proposition 4.2. The system (1.1) is completely unstable if the conditions

(4.1) 𝑊2 = −2𝑃 2 + 𝑃𝐾 −𝐾𝑃 > 0,

and

(4.2) rank𝐶((𝐾 + 𝑃 ) | 𝑊2) = 𝑛

are satisfied.

Obviously, the condition (4.2) is redundant when the matrix 𝑊2 in (4.1) is
positive definite. We note also that, in view of Remark 3.2, the conditions (4.1)
and (4.2) imply det𝑃 ̸= 0, and, in particular, 𝑛 is even and 𝑃 2 < 0, since 𝑃 is a
𝑛× 𝑛 skew-symmetric matrix.

Example 4.2. Consider the two degrees of freedom system and, without loss
of generality, we assume that

(4.3) 𝐾 =

(︂
𝑘1 0
0 𝑘2

)︂
and 𝑃 = 𝑝

(︂
0 1

−1, 0

)︂
, 𝑝 ̸= 0.

For this system, we have

𝑊2 = −2𝑃 2 + 𝑃𝐾 −𝐾𝑃 = 𝑝

(︂
2𝑝 𝑘2 − 𝑘1

𝑘2 − 𝑘1 2𝑝

)︂
,

and the condition (4.1) requires 𝑑 = 4𝑝2 − (𝑘2 − 𝑘1)
2 > 0. If 𝑑 > 0 (i. e., 𝑊2 is

positive definite), then rank𝐶((𝐾 + 𝑃 ) | 𝑊2) = 2. However, in the case 𝑑 = 0,
it is not difficult to see that rank𝐶((𝐾 + 𝑃 ) | 𝑊2) = 1. Thus, according to
Proposition 4.2, the system (1.1), (4.3) is completely unstable if 2|𝑝| > |𝑘2 − 𝑘1|,
which coincides with the necessary and sufficient condition of flutter instability for
this system [8,12].

Corollary 4.1. If 𝐾𝑃 = 𝑃𝐾, the system (1.1) is completely unstable if and
only if either det𝑃 ̸= 0 or the restriction of the potential energy 𝑞𝑇𝐾𝑞/2 on the
subspace Ker𝑃 is negative definite.
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Proof. Let det𝑃 ̸= 0. Then −𝑃 2 = 𝑃𝑇𝑃 > 0 and, in view of Proposition
4.2, the system is completely unstable. Now we suppose that rank𝑃 = 𝑟 < 𝑛
(clearly, 𝑟 is necessarily even). Let 𝑄 denotes an orthogonal matrix whose the
last 𝑛 − 𝑟 columns are a basis of the subspace Ker𝑃 . Then 𝑄 transforms 𝑃 into
block-diagonal form

(4.4) 𝑄𝑇𝑃𝑄 =

(︂
𝑃 0
0 0

)︂
,

where 𝑃 ∈ R𝑟×𝑟 and det𝑃 ̸= 0. From 𝐾𝑃 = 𝑃𝐾 we get

(4.5) 𝑄𝑇𝐾𝑄 =

(︂
�̂� 0

0 �̃�

)︂
,

where �̂� ∈ R𝑟×𝑟 and �̃� ∈ R(𝑛−𝑟)×(𝑛−𝑟). Putting 𝑞 = 𝑄𝑥, 𝑥 ∈ R𝑟{𝑦} × R𝑛−𝑟{𝑧},
premultiplying by 𝑄𝑇 , and using (4.4) and (4.5), the equation (1.1) is immediately
reduced to the two decoupled equations

(4.6) 𝑦 + �̂�𝑦 + 𝑃𝑦 = 0, 𝑦 ∈ R𝑟,

and

(4.7) 𝑧 + �̃�𝑧 = 0, 𝑧 ∈ R𝑛−𝑟.

Then, in view of Proposition 4.2, the subsystem described by (4.6) is completely
unstable, because �̂�𝑃 = 𝑃�̂� and det𝑃 ̸= 0. On the other hand, the conserva-
tive subsystem (4.7) is completely unstable if and only if �̃� < 0, i.e., 𝑧𝑇 �̃�𝑧 =
𝑞𝑇𝐾𝑞 |Ker𝑃< 0. �

Preserving only the hypothesis 𝐾𝑃 = 𝑃𝐾, according to the above proof, it
is clear that the degree of instability is not less than the rank of 𝑃 . In the case
𝐾 = 𝑘𝐼, 𝑘 ∈ R, this conclusion is consistent with a classical result of Merkin [2]
(also, see [3, 10] and the example in [17]), which states that the introduction of
arbitrary circulatory forces into a stable conservative system with equal frequencies
destroys the stability.

The next proposition supplements a result given in [9]. Also, it shows that the
introduction sufficiently large non-degenerate circulatory forces (det𝑃 ̸= 0) in a
stable conservative system of even degree of freedom destroys stability and makes
the system completely unstable.

Proposition 4.3. If 𝐾 > 0 and 𝑃 2 + 𝐾2 < 0, then the system (1.1) is
completely unstable.

Proof. Let 𝑀 = 𝐾 + 𝑃 . Then, under the hypotheses of this proposition, we
have 𝑊1 = 2𝐾 > 0 and 𝑊2 = −2𝑃 2 − 2𝐾2 > 0, and the conditions (a) and (b) of
Theorem 3.1 are satisfied. Also, by Remark 3.3 the condition (c) of this theorem
is satisfied. �

The above propositions provide simple sufficient conditions for the complete
instability directly in terms of the system matrices 𝐾 and 𝑃 . In order to obtain
weaker conditions of the same type, it seems that when choosing the matrix 𝑀
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in Theorem 3.1 one or more undetermined scalar parameters must be introduced.
This expectation is illustrated by the following assertion.

Proposition 4.4. The system (1.1) is completely unstable if there exists a
non-negative number 𝛼 such that

𝑃𝐾 −𝐾𝑃 − 2𝑃 2 − 𝛼𝐾 > 0.

Proof. Let 𝑀 = 𝛼
2 𝐼 + 𝑃 , 𝛼 > 0. Then 𝑊1 = 𝛼𝐼 > 0 and, consequently, the

conditions of Theorem 3.1 are satisfied when 𝑊2 = 𝑃𝐾−𝐾𝑃 −2𝑃 2−𝛼𝐾 > 0. �

Example 4.3. We return to Example 4.2 and we choose 𝑘1 = 1, 𝑘2 = −6 and
𝑝 = 3. In this case the first three propositions tell us nothing, since 2|𝑝| < |𝑘2 − 𝑘1|
and 𝐾 is indefinite. However, the matrix

𝑃𝐾 −𝐾𝑃 − 2𝑃 2 − 𝛼𝐾 =

(︂
18− 𝛼 −21
−21 18 + 6𝛼

)︂
is positive definite for 1.44 < 𝛼 < 13.56, and hence complete instability follows
from Proposition 4.4.
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О ПОТПУНОJ НЕСТАБИЛНОСТИ ЛИНЕАРНИХ
НЕКОНЗЕРВАТИВНИХ НЕПРИГУШЕНИХ СИСТЕМА

Резиме. Разматра се проблем одређивања потпуно нестабилних линеар-
них неконзервативних (циркулаторних) динамичких система. Помоћу Љапу-
новљевог директног метода изведено jе неколико услова коjи обезбеђуjу пот-
пуну нестабилност разматраних система. Ови услови су изражени директно
преко описних матрица система.
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