THEORETICAL AND APPLIED MECHANICS
Volume 44 (2017) Issue 2, 169-180 https://doi.org/10.2298 / TAM170512008K

THE ROUTH THEOREM FOR MECHANICAL
SYSTEMS WITH UNKNOWN FIRST INTEGRALS

Alexander V. Karapetyan and Alexander S. Kuleshov

ABsTRACT. In this paper we discuss problems of stability of stationary mo-
tions of conservative and dissipative mechanical systems with first integrals.
General results are illustrated by the problem of motion of a rotationally sym-
metric rigid body on a perfectly rough plane.

Application of the Routh—Salvadori theorem and its generalizations [1-4] for
investigation of stability of stationary motions of mechanical systems with first
integrals Uy = ¢g,U; = c1,...,Ux = ¢ is reduced to study the type of stationary
value of Uy (here Uy can be also a nonincreasing along system trajectories function)
for fixed values of Uy, ..., Ug. The effective method of such investigation is proposed
in [5]. This method does not take into account equations of motion of the considered
system however it is supposed that all first integrals are known explicitly. On the
other hand using results by I. M. Mindlin and G. K. Pozharitskii [6] it is possible
to distinguish the systems [7] for which the stability analysis does not require the
explicit form of all first integrals U; = ¢1,...,Ur = ¢, except Uy = cp.

Let equations of motion of a mechanical system have the following form (here
T means transposition):

d 0K 0K ow ow
Rl Bl B g — T
(1) i aq) 9¢ TC17 3q ap’
p=T4q.
Here

q:(q1>"'7qm)T7 p:(p17"'7pk)Tu W:W(qap)7

1, . .
K =34"A(q)q, Vg #0,
= I‘(qa )7 G = G(qa Q7p)7 GT =—-G.
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We will assume that the positive definite (m x m) matrix A(q) and the scalar
function W(q, p) are two times differentiable functions of their arguments. Sim-
ilarly, the (m x m) matrix G(q,q,p) and (k x m) matrix I'(g,p) are (one time)
differentiable functions of their arguments.

In particular, equations (1) can describe the motion of mechanical systems
with quasicyclic coordinates (in this case g and ¢ are position variables and ve-
locities respectively and p are generalized impulses or quasivelocities of quasicyclic
coordinates).

Obviously, equations (1) possess the generalized energy integral

(2) UO(q7q7p) :K+WZCO

If the matrix I' = I'(q,p) is zero-matrix, then equations (1) coincide with
equations of conservative mechanical systems with cyclic coordinates described in
Routh variables [1] and possess k cyclic integrals

(3) Ulzplzcl,...7Uk:pk:Ck.

In this case sets of stationary points of the energy integral (2) on fixed levels
of first integrals (3) correspond to the stationary motions of the form
(4) a=4’, g¢=0, p=p
where p° are arbitrary constants and q° are constants determined from the following
equations
ow
5 — =0.
5) e

Stationary motions (4) form the family Sy of dimension more or equal than the
number of cyclic coordinates. For such (I' = 0) systems the Routh theorem can be
formulated as follows [1, 2].

THEOREM 1. If the function W (the amended potential) has a strict mini-
mum at the point (q°,p°) for the fized values of integrals (3), then corresponding
stationary motion (4) is stable.

Note that conditions of Theorem 1 are trivially fulfilled if all the eigenvalues of
the matrix (92W /9g?) are positive at (q°, p°).

In the general case (I' # 0) system (1) also has the stationary motions (4), but
in this case ¢° and p° are determined from the equations
© DIV (D0 gay

Dq Dq  0q op

Generally speaking these equations do not coincide with equations (5). Obvi-
ously, as in the case I' = 0 stationary motions (4) form a family of dimension more
or equal than the number of quasicyclic coordinates because for the determination
of k + m unknown constants ¢° and p® we have k equations (6). Again we will
denote this family by Sy.

The following theorem provides the sufficient conditions for stability of these
motions [7].
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THEOREM 2. If all the eigenvalues of the matriz
D*wW
@) (5r)
q

are positive at (q°,p°) and in some neighborhood of this point the conditions

D’Yozi D"Yaj ..
8 = , (g =1,....mya=1,...,k
(®) e = e )
are fulfilled (here voi = Yai(@,p) — elements of the matrix T,ao = 1,... )k, i =
1,...,m) then stationary motion (4) of the system (1) is stable.

PrOOF. Note that under conditions (8) the system k x m partial differential
equations

Ip

9 — =T

©) e

with respect to k& unknown functions p(q) is completely integrable in some neigh-
borhood Os of the point (g%, p®) (here § > 0 is a small constant). Therefore in this
neighborhood there is exists the family of solutions of the system (9) of the form

(10) p=F(q,c),

depending on k arbitrary constants ¢ = (ci,...,cx)". Equations (10) are solvable
with respect to these constants. Therefore system (1), in addition to the energy
integral, possesses k first integrals of the form

(11) Ul(qap):Clv"'7Uk(q7p):Ck
and according to the definition of these integrals we have
Ui(q,F(q,c))=c¢;, i=1,...,k.

Note that under condition (8) the matrix (7) is symmetric. If all the eigenvalues
of this matrix are positive at the point (q°, p°), then the function W(q, F(q,c))
takes a strict minimum at ¢ = ¢°, c=c® = U(q°, p°), U = (Uy, ... Uy). Therefore
function W(q, p) and integral (2) (since K > 0 Vg # 0) takes a strict minimum for
the fixed values of integrals (11) on unperturbed motion and this motion is stable
according to the Routh theorem [1,2]. O

Obviously both in the case I' = 0 and in the case I'" # 0 the following theorem
is valid.

THEOREM 3. If

(5ar) <0

at the point (q°,p°) then stationary motion (4) is unstable.

REMARK 1. Application of Theorem 2 for the investigation of stability of sta-
tionary motions (4) of the system (1) is connected with the investigation of eigen-
values of matrix (7) and requires the knowledge of function W(q,p) and matrix
I'(q,p) only; the explicit form of first integrals (11) (and also matrices A(q) and
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G = G(q,q,p)) is not required. Note also that condition (6) for search the sta-
tionary values of integral (2) on fixed levels of integrals (11) does not require the
knowledge of explicit form of these integrals. Moreover, equations (6) determine
stationary motions (4) of system (1) even in the case, when these integrals are
absent (i.e., when equations (8) are failed).

REMARK 2. Conditions (8) are trivially fulfilled if I' = 0 (in this case we can
write explicit form (3) of integrals (11)) or when for I' # 0 we have dimg = 1 (in
this case, generally speaking, it is not possible to write the explicit form of integrals

(11)).

REMARK 3. For the fixed values of constants p° both equations (5) and equa-
tions (6) (with respect to g) can have not only one solution g° but, generally
speaking, other solutions q', g2, .... These solutions also depend on the constants
p, so the stationary motions q'(p),q*(p),... form the families S;,Ss,.... Thus
the set S of all stationary motions of the systems represents the union of families
S0,51,52, .. ..

If the considered mechanical system is subjected to (except the potential forces)
dissipative forces Q@ = Q(q, q) corresponding to the position variables g, then its
equations of motion can be written as follows

i(fLK) _IK Gy W W
(12) dt \ dq

—+G

dq +&q dq Oop
p=T4q.

In this case according to the definition of dissipative forces we have

LKW =@ ) <0 Qa.0)=0

and, instead of the generalized energy integral (2), the system (12) possesses a
nonincreasing along system trajectories function

U= K+ W < ¢p.

+Q,

Obviously, Theorems 1 and 2 are again valid for the stationary motions (4)
of the system (12) and (g%, p°) are again satisfied to equations (5) (for T' = 0) or
equations (6) (for I' # 0). Moreover, if

(13) (@Q@-q)#0, Vqg#0

then the following theorems are valid.

THEOREM 4. If for T' =0 function W takes a local strict minimum at (q°, p°)
for fized values p° = c¥ of integrals (3), this point is isolated from other stationary
points of W (if these points exist at all), then the corresponding to these parameters
q°, p° stationary motion (4) of the system (12) is stable and under condition (13)
every perturbed motion sufficiently close to the unperturbed tends asymptotically
as t — +oo to some stationary motion (4) of the family Sy; in particular, if the
constants p° = c° of integrals (3) remain unperturbed, then the unperturbed motion
is asymptotically stable.
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THEOREM 5. If for T = 0 function W takes a stationary value at (q°,p°), that
is not even nonstrict minimum for fized values p° = c° of integrals (3), this point is
isolated from other stationary points of W (if these points exist at all), then under
condition (13) the stationary motion corresponding to q = q°, p = p° is unstable.

Note that the first condition of Theorem 4 [Theorem 5| are trivially fulfilled
if all the eigenvalues of the matrix (9°W /dg?) are positive at (g°, p°) [the matrix
(0°W /9q?) has negative eigenvalues at (g°, p°)|.

THEOREM 6. If all the eigenvalues of the matriz (7) are positive at (q°,p)
and in some neighborhood of this point the conditions (8) are fulfilled, then the
stationary motion (4) of the system (12) is stable and under condition (13) every
perturbed motion sufficiently close to the unperturbed tends asymptotically as t —
+00 to some stationary motion (4) of the family So; in particular, if variables p
remain unperturbed, then the unperturbed motion is asymptotically stable.

THEOREM 7. If the matriz (7) has a negative eigenvalues at (q°,p°) and in
some neighborhood of this point the conditions (8) are fulfilled, then under condition
(13) the stationary motion (4) of the system (12) is unstable.

Theorems 4-7 follow from the results discussed in [3,4,7]

EXAMPLE 1. Let us consider the problem of motion of a rotationally symmetric
rigid body on a fixed perfectly rough horizontal plane. Suppose that the center of
mass G of the body is situated on the symmetry axis G(, and moments of inertia
about principal axes of inertia G¢ and Gn perpendicular to G( are equal to each
other. The body moves in presence of the homogeneous gravity field. Denote by
M the contact point of the body with the supporting plane.

Let Oxyz be the fixed coordinate frame with the origin in the supporting plane
Oxy and the Oz axis directed upwards. Denote the angle between the symmetry
axis of the body and the vertical by 6, the angle between the meridian M of the
body and a certain fixed meridian plane by 8 and the angle between the horizontal
tangent M@ of the meridian M ( and the Ox axis by «. The position of the body
is completely determined by the angles a, 5 and 6 and the z and y coordinates of
the point M.

Let us specify now the position of the coordinate system G&n¢. Suppose that
the G¢ axis is always situated in the plane of vertical meridian M while the Gn
axis is perpendicular to this plane (Figure 1). In this case the coordinate system
GE¢n¢ moves both in the space and in the body. Denote the components of velocity
v of the center of mass G in the coordinate system G&n¢ by ve, vy, ve and the
components of the angular velocity vector w of the body and the angular velocity
Q of the trihedron G{n¢ by we, wy, we and Q¢, €,), Q¢ respectively. Then we have
the following obvious equation for the component w,:

Wy == =
Let m be the mass of the body, A; be its moment of inertia about axes G¢
and G7, and A3 be its moment of inertia about the symmetry axis. Note that the
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distance GQ of the center of mass over the plane Oxy is a function of angle 0, i.e.,
GQ = f(0) |8]. Denote by &, n, ¢ the coordinates of the point of contact M of the
body with the supporting plane in the coordinate system G&n¢. Then 1 = 0 and

(14) E=—f(0)sind — f'(0)cosd, ¢=—f(0)cosf+ f()sinb,

where ()" is a derivative of function f(f) with respect to 6 [8]. Thus we can
completely characterizes the shape of the moving body using the function f(6).
Since the G( axis is fixed in the body, then Q¢ = we, ) = w, = —60. The
plane G&( is alw%rs vertical, i.e., the projection of the angular velocity €2 of the

axes GEn¢ on M() equals to zero, therefore {2¢ = Q¢ cotf. Since the body moves
without sliding then

ve —0C =0, vy +wE—we(=0, v+0=0
and for three unknown functions 8, we and w, we have closed system of equations [8]
(A +me? +m¢?)i = —mgf'(0) — (Aswe — Ajwe cot O)we+

+ mwe (€ cot O + &) (weC — we€) — mb* (&€ + ¢¢'),
. cosf  AgmC(E+ )\ 5 As(Az +mE +mE'()
(15) we=(-Grgm )+ TR
A + ¢ . AsC — A€
e = 1mf(§ C)w59+m£( SCA 15)
A=A1A3 + Alme + AngQ

wgé,

wcé,

If we introduce the following notations

W¢ = p1, W¢ = P2, K = %(Al +m€2 +m<2)927

A12 A32 @

W = 71?14'7172"‘ 5 (p1¢ — p2£)® + mgf,

_( cosf  Asm((E+() As(As + mg? + me'()
N=(-Gag - a o )mt A b2,
A / Azl — A€
_ 1m5(§+<>pl+ms< scA &

I’y
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then the system (15) can be rewritten in the form

ﬁ@g_ﬁﬂél_éﬁ_pﬁi
a\od) 00 96 'op opy’
p1=T10, p2 = T2

Thus, the system (15), describing motion of a heavy rigid rotationally symmet-
ric body on a perfectly rough horizontal plane has a form of the system (1). Since
in this case we have only one position variable 6 and 'y # 0, I's # 0, then all the
conditions of Theorem 2 are valid for the system (15). Stationary motions of the

body of the form (4)

(16) 9:907 9207 D1 :pcl)v D2 :pg
are determined from the equation

DW oW ow ow
_— F —_— F —_ = 0.
Do 00 T lop T 2op,

and form a two-dimensional family.
In the explicit form equation (17) may be written as follows

(17)

mgf' 4+ Dpips — Cp? cot § = 0,

C=a - "5 p=ay- Ty
cosf sin 0
Analysis of the sign of expression
DWW
Do?

on the stationary motion (16) provides the sufficient condition of stability of this

motion with respect to €, 8, p; and p, in the form

C
(18) mgf” + (ng — 2Cpq cot 9)F1 — O/pf cot 6 + gp% + D/plpg + DpT's > 0.

sin?
It is possible to prove [7], when the condition (18) is not valid, the stationary
motion (16) is unstable.
According to Theorem 5 the obtained results retain their validity when the
considered system is subjected to the dissipative force Q(Q,é), corresponding to
the position variable 6. Moreover if the condition

Q0,0)0 <0, V0#0

is valid then under condition (18) the stationary motions (16) are asymptotically
stable with respect to variables

0, P =mgf + Dpips — C cotp?.

EXAMPLE 2. Let us consider a particular case of the previous example, when
the rotationally symmetric body, moving on a fixed perfectly rough plane, is a
circular disk of a radius a [9-12]. Let m be the mass of a disk, A; = kma? and
As = 2kma?® are its moments of inertia. In a case of a homogeneous disk we have
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k =1/4 and in a case of a hoop we have k = 1/2. Then GQ = asin  and according
to (14) we get
f = —a, C =0.
System (15) will take the form
(k+1)af = —gcos b + kawg cot§ — (2k + 1)awewe,
(19) cos . we
= (- o), w=
e = ( e S YT k)

If we denote again wg = p1 and we = po, then the stationary motions (16) of a
disk are determined from the equation
(20) kap? cot @ — (2k + 1)ap1ps — gcosf = 0.

Note that in the considered problem system (19) can be solved with respect to
we = p1 and w¢ = pa. The corresponding solution has the form:

sin 6

0 0
P = sin@(ch(a +1,8+1,2;sin? 5) — CQF(a +1,8+1,2;cos? 5))

(21) = sin f(crv; — cova),

0 0
P2 = ch(a, 8,1;sin’ 5) + CQF(a,ﬁ, 1; cos? 5) = ciuq + Cous.

Here ¢; and ¢y are arbitrary constants and F(«, 3,1; z) is the Gauss hyperge-
ometric function with the parameters o and 3 satisfying the equation

2 —s+ 0.

2%k +1

Substituting expressions (21) for p; and py to equation (20) and introducing the
dimensionless constants x; = ¢;\/a/g, i = 1,2 we rewrite (20) in the dimensionless
form

2
(22) Z a; jxiz; —cost =0,
i,j=1

aij = aj; = ((k+1/2)((=1)ujv; + (=1) uv;) + (=1)" kv;vj cos 0) sin 6.

In the space of 1, 2 and 0 equation (22) defines a surface. Figures 2 to 5 show
cross sections of this surface by the planes xo = lzy for different [ and k = 1/4 as
in the case of a homogeneous disk. Note that the similar cross sections have been
constructed in [9].

It is easy to see that for each fixed 0 equation (22) defines a second order curve.
By analyzing its invariants we proved that for § # 7/2 this curve is a hyperbola
and for @ = 7/2 it is a pair of straight lines. These straight lines are defined by
the equations r1 = x5 and x1 = —x2 and correspond to the two single parametric
subfamilies of stationary motions of a disk of the form

. 1
(23) 6=—, 0=0, py=2u.c;=9Q, p =0; u*=F<a,ﬂ,1;§)

oSN ol

. 1
24) 6="T, 6=0, pi=2v.ci=w, po=0; v*:F(a—e—l,ﬂ—l-l,Q;f).

2
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These subfamilies correspond to uniform rolling of a vertically placed disk along
a straight line (23) and to uniform rotation of a disk about its vertical diameter
(24). The stationary motion (23) is stable [unstable| for

while the stationary motion (24) is stable [unstable| for

(for more details see [9,

2 2 _ g 2 2
@ >QO_2a(2k+1) [ < .
g
Wrrug =y W<wl

-

Condition (18) for stability of stationary motions of a disk can be written in

the dimensionless form

(25)

as follows

2
Z bijxixj —sinf 2 0,

i,5=1

bji = 2(2k + Vuguj + (3k 4+ 1/2)((—=1) ujv; + (—1)7u;v;) cos O+

+ (=1)"((k + 1) sin® 6 + 3k cos® 0)vv;.

For each fixed 6 the boundary of region of stability is also a second order curve.
By analyzing its invariants we proved that for k > 1/v/3 — 1/2 this curve is an
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ellipse with the origin at 1 = 0, x2 = 0. The stable region is outside this ellipse
and the unstable region is within it.

X2

Xy
/
0,1 1
| |
0,2

Il |
-0, 0,2 0 04x 03 -02 -0, 0,1 02 03 x
—0,05 - L

—0.1
/_
0,15 N -
FiGURE 6. The hyper- FiGURE 7. The hyper-
bola and the ellipse for bola and the ellipse for
0=m/3. 0=m/2.

Thus we can give a geometric interpretation for conditions of existence and
stability of stationary motions of a disk [11,12]|. Obviously, the stationary motions
of a disk corresponding to the points of the hyperbola lying outside the ellipse are
stable (Figures 6 and 7). If for a fixed § = 6, the hyperbola and the ellipse do not
intersect then the stationary motions corresponding to 8y are stable independently
of 1 and x5 (Figures 6 and 7).

Conditions of existence (22) and stability (25) of stationary motions (16) of a
disk have been analyzed in [11,12]. In particular, it was shown [11,12] that the
stationary motions (16) of a disk are stable (independently of x; and z3) for any 6
satisfying the condition

2(2k + 1) [4k +3— 62k + 1)(k + 1)]
(2k +3)% + 3(2k + 1)2

In particular, for a homogeneous disk (k = 1/4) we have

25 — 95

38
For a hoop (k = 1/2) we have

5—3v2
cos? > % ~0.108, 6, ~ 1.2356.

cos? 0 > cos? 6, =

cos? 6 > ~0.102, 6, ~1.2457

For other values of § stationary motions (16) will be stable if the absolute value
of x1 exceeds a certain critical value. The explicit expression of this critical value
is very complicated and we omit it here. The results obtained in [11,12] are in
completely agreement with bifurcation diagrams presented in [9,10] and here.
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PYTOBA TEOPEMA 3A MEXAHNYKE CUCTEME
CA HEIIOBHATUM ITPBUM MHTETPAJINMA

PE3UME. V¥ oBoMm pajy pa3maTpamMo pobjeme CTabUITHOCTU CTAIlmOHAPHOT
KpeTarha KOH3€PBaTUBHUX U JINCUIIATUBHUX MEXAHUIKUX CHCTEMa Ca IIPBUM HHTE-
rpajuma. ONIITH Pe3yJITaTu Cy UIYCTPOBAHH IPOOJIEMOM KOTpJhbarba 6e3 KiIn3armba
TEMKOr POTAIMOHO CHMETPUYHOI KPYTOI TeJa 110 XOPU3OHTAJIHO] PABHU.
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