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Dedicated to the memory of Aleksandar Bakša

Abstract. In this paper, the anisotropic linear damage mechanics is pre-
sented starting from the principle of strain equivalence. The authors have
previously derived damage tensor components in terms of elastic parameters
of undamaged (virgin) material in closed form solution. Here, making use of
this paper, we derived elasticity tensor as a function of damage tensor also in
closed form. The procedure we present here was applied for several crystal
classes which are subjected to hexagonal, orthotropic, tetragonal, cubic and
isotropic damage. As an example isotropic system is considered in order to
present some possibility to evaluate its damage parameters.

1. Introduction

In continuum damage mechanics, usually a phenomenological approach is
adopted. In this approach, the most important concept is that of the Representative
Volume Element (RVE). The discontinuous and discrete elements of damage are
not considered within the RVE; rather their combined effects are lumped together
through the use of a macroscopic internal variable. In this way, the formulation
may be derived consistently using sound mechanical and thermodynamic principles.

In most of the existing damage theories, the damaged elastic strain-stress (or
stress-strain) response is formulated by using the notion of effective stress (strain)
and the hypothesis of strain (stress) equivalence or stress-energy (strain-energy)
equivalence [2,3,8–10,13].

The damage variable (or tensor), based on the effective stress concept, repre-
sents average material degradation which reflects the various types of damage at the
micro-scale level like nucleation and growth of voids, cracks, cavities, micro-cracks,
and other microscopic defects.

In order to make the paper self-sufficient we present the main ideas of the
principles of strain equivalence used by [3].
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Let 𝜎 be the second-rank Cauchy stress tensor and �̃� be the corresponding
effective stress tensor. The effective stress tensor �̃� is the stress applied to a ficti-
tious state of the material which is totaly undamaged, i.e., all damage in this state
has been removed. This fictitious state is assumed to be mechanically equivalent
to the actual damage state of the material.

The effective stress �̃� is the stress tensor to be applied to a virgin representative
volume element in order to obtain the same elastic strain tensor, 𝜀𝑒, produced by
applying the actual stress tensor 𝜎, to the damage volume element. Because the
same elastic strain is considered in both damaged and undamaged materials, that
strain is considered to be the equivalent strain.

By definition, often called the principle of strain equivalence, the actual stress
and effective stress satisfy the equations:

𝜎𝑖𝑗 = C𝑖𝑗𝑘𝑙𝜀
𝑒
𝑘𝑙,(1.1)

�̃�𝑖𝑗 = E𝑖𝑗𝑘𝑙𝜀
𝑒
𝑘𝑙,(1.2)

where
E𝑖𝑗𝑘𝑙 is elastic modulus tensor of the virgin material,
C𝑖𝑗𝑘𝑙 is elasticity tensor of the damaged material.

In the virgin state, even in the most general case of anisotropy, there are only
21 independent elements of the fourth-order elastic modulus tensor E as a result of
general symmetry requirements

(1.3) E𝑖𝑗𝑘𝑙 = E𝑗𝑖𝑘𝑙 = E𝑖𝑗𝑙𝑘 = E𝑘𝑙𝑖𝑗 ,

where the first three result from the symmetry of the stress and strain tensors and
the last one from the existence of a strain energy function. The symmetry of E in
equation (1.3), applied to C as well, and dictates a maximum of 21 independent
elements.

Following [1] it can be shown that

(1.4) 𝜎𝑖𝑗 = R𝑖𝑗𝑘𝑙�̃�𝑘𝑙,

where the fourth-order tensor R possesses symmetry in successive pairs of indices.
It can be shown that R can be written in the form

(1.5) R = I− D,
where I is the unit tensor, for the set of tensors with the symmetry of R, given by

(1.6) I𝑖𝑗𝑘𝑙 = 1
2 (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘).

The fourth-order tensor D is known as damage tensor.
From equations (1.1)–(1.5) [1] it is obtained

(1.7) C = E− DE,
or

(1.8) C𝑖𝑗𝑘𝑙 = E𝑖𝑗𝑘𝑙 − D𝑖𝑗𝑝𝑞E𝑝𝑞𝑘𝑙.

We note that
D𝑖𝑗𝑘𝑙 = D𝑗𝑖𝑘𝑙 = D𝑖𝑗𝑙𝑘
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and, in general, D𝑖𝑗𝑘𝑙 ̸= D𝑘𝑙𝑖𝑗 , i.e., the fourth-order tensor D does not possess the
major symmetry and therefore not the full symmetry of the elastic modulus tensors
E and C. Thus, the damage tensor D has at most 36 components.

But, the symmetries in the elements of C and E imply the following 15 con-
straint equations on the elements of D

(1.9) D𝑖𝑗𝑝𝑞E𝑝𝑞𝑘𝑙 − D𝑘𝑙𝑝𝑞E𝑝𝑞𝑖𝑗 = 0.

Therefore, tensor D can not possess more than 21 independent components.
Obviously, the number of independent elements of tensor D and their values

are determined by the value of tensors E and C. We investigate that assuming that
E is always given, and considering equation (1.8) as a linear equation with respect
to C and D. Then, in order to determine, or equivalently to find the solution of
(1.7), one of them has to be known.

First. Assume that we want to find C for given D. Then D cannot be given
arbitrarily in order to find C since we assume that C possesses major symmetry.
In that case D must satisfy conditions equation (1.9), or

(1.10) DE = ED𝑇 .

Second. We consider that E, C are given and we want to find tensor D. Since
E is positive definite there is always E−1 such that EE−1 = I. Thus

(1.11) D = I− CE−1.

Proposition 1.1. Damage tensor D, given by equation (1.11), always satisfies
the constraint equation (1.10).

Starting with isotropic E [1]

(1.12) E = 𝜆I⊗ I+ 2𝜇I

and general C, considered damage tensor for the special case of the hypothesis of
elastic strain equivalence. Here and further 𝜆 and 𝜇 are Lamés constants, and I is
identity tensor of second order, i.e.,

I = n𝑖 ⊗ n𝑖.

In this case, the following proposition holds

Proposition 1.2. The corresponding isotropy groups of tensors C and D are
the same [6].

The proofs of these propositions are given in [7].

Remark 1.1. It is important to point out that Proposition 1.2 can be stated
in a more general form when isotropic group gE ⊂ 𝒪(3), and gC, gD ⊂ gE. In
application, it is more restrictive since only gE = 𝒪(3) contains all g, all isotropic
groups g of crystals.
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2. Elasticity tensor of damage

This work is practically a continuation of work [7] to which we refer.
The anisotropic linear damage mechanics is presented starting from the prin-

ciple of strain equivalence. In the above paper, the damage tensor components are
derived in terms of elastic parameters of undamaged (virgin) material in closed form
solution. Here, making use of the results of the same paper, we derived elasticity
tensor as a function of damage tensor also in closed form. The procedure is applied
for several symmetries that are important for applications. Here we assumed that
undamaged material is isotropic, i.e., tensor E is given by (1.12). Then, from (1.7)
we have

C = E− 𝜆DI⊗ I− 2𝜇D,

and from (1.10)

(2.1) 𝜆(DI⊗ I)𝑎 + 2𝜇D𝑎 = 0

From the last two expressions we obtain that

(2.2) C = E− 𝜆(DI⊗ I)𝑠 − 2𝜇D𝑠.

Here 𝑎 and 𝑠 represent skew-symmetric and symmetric part of tensors of fourth
order, respectively.

The basic ideas are given below. Notations, mathematical preliminaries and
basic terms are contained in [7].

To simplify notation we shell denote by 𝑑 the parameters of damage tensor D.
The values of parameters, and their numbers, depend on crystal classes we inves-
tigate. Likewise elasticity damage tensor will be denoted by C and its coefficient
by 𝜆. By the same reason, the values of coefficients, and their numbers, depend on
crystal classes.

It is very important to note that the tensor of elasticity of damaged material
can be determined in two ways. In both cases, we use the resulting expressions for
damage tensors. The approaches are algebraically one and generally simple.

The logical question is: Are the expressions of anisotropic elasticity damage
tensor the same when we derived it making use of these two approaches?

In the first case, using the expression the parameters of damage tensor, given
as a functions of coefficients of corresponding elasticity damage tensor, we find the
expressions of coefficients of elasticity damage tensor as functions of parameters of
damage tensor. In the second case, we use the expression (1.7) or (1.8) to derive
elasticity damage tensor. We shall call the second approach direct one. For some
crystal classes we shall simultaneously apply both of them. The purpose to do this
is twofold:

a) to compare these approaches and
b) to show that our results are consistent.

We shall start with hexagonal crystal class.

2.1. Hexagonal elasticity damage tensor. a) First approach
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We consider the expression

2𝜇D𝑖𝑗𝑘𝑙 =
[︁𝜆(3𝜆1 + 2𝜆2 + 𝜆4)

3𝜆+ 3𝜇
− 𝜆1

]︁
𝛿𝑖𝑗𝛿𝑘𝑙(2.3)

+ (𝜇− 𝜆2)(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)− 𝜆3 𝑛3𝑖𝑛3𝑗𝑛3𝑘𝑛3𝑙

− 𝜆4(𝑛3𝑖𝑛3𝑗𝛿𝑘𝑙 + 𝑛3𝑘𝑛3𝑙𝛿𝑖𝑗)− 𝜆5(𝑛3𝑖𝑛3𝑘𝛿𝑗𝑙 + 𝑛3𝑗𝑛3𝑙𝛿𝑖𝑘

+ 𝑛3𝑖𝑛3𝑙𝛿𝑗𝑘 + 𝑛3𝑗𝑛3𝑘𝛿𝑖𝑙) +
𝜆(𝜆3 + 3𝜆4 + 4𝜆5)

3𝜆+ 2𝜇
𝑛3𝑖𝑛3𝑗𝛿𝑘𝑙.

which is derived under the known assumption

C𝑖𝑗𝑘𝑙 = 𝜆1𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜆2(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) + 𝜆3𝑛3𝑖𝑛3𝑗𝑛3𝑘𝑛3𝑙 + 𝜆4(𝑛3𝑖𝑛3𝑗𝛿𝑘𝑙

+ 𝑛3𝑘𝑛3𝑙𝛿𝑖𝑗) + 𝜆5(𝑛3𝑖𝑛3𝑘𝛿𝑗𝑙 + 𝑛3𝑗𝑛3𝑙𝛿𝑖𝑘 + 𝑛3𝑖𝑛3𝑙𝛿𝑗𝑘 + 𝑛3𝑗𝑛3𝑘𝛿𝑖𝑙),

(see [7, equations 30 and 32]).
Making use of the following notations

(2.4)

2𝜇𝑑1 =
𝜆(3𝜆1 + 2𝜆2 + 𝜆4)

3𝜆+ 3𝜇
− 𝜆1,

2𝜇𝑑2 = 𝜇− 𝜆2

2𝜇𝑑3 = −𝜆3

2𝜇𝑑4 = −𝜆4

2𝜇𝑑5 = −𝜆5

2𝜇𝑑6 = −𝜆(𝑑3 + 3𝑑4 + 4𝑑5)

3𝜆+ 2𝜇

we obtain

(2.5)

𝜆1 = −(3𝜆+ 2𝜇)𝑑1 + 𝜆(1− 2𝑑2 − 𝑑4) = 𝜆(1− 3𝑑1 − 2𝑑2 − 𝑑4)− 2𝜇𝑑1

𝜆2 = (1− 2𝑑2)𝜇

𝜆3 = −2𝜇𝑑3

𝜆4 = −2𝜇𝑑4

𝜆5 = −2𝜇𝑑5.

From relation (2.4)6 it is obvious that 𝑑6 is not an independent parameter. There-
fore, damage tensor D𝑖𝑗𝑘𝑙 has five independent parameters as elasticity tensor C𝑖𝑗𝑘𝑙,
as it should be [4]. This relation a consequence of conditions in [7, equation 15].

b) Second approach. Expression (2.3) (see also [1]) suggests that tensor D is
given by

D𝑖𝑗𝑘𝑙 = 𝑑1𝛿𝑖𝑗𝛿𝑘𝑙 + 𝑑2(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) + 𝑑3𝑛3𝑖𝑛3𝑗𝑛3𝑘𝑛3𝑙(2.6)
+ 𝑑4(𝑛3𝑖𝑛3𝑗𝛿𝑘𝑙 + 𝑛3𝑘𝑛3𝑙𝛿𝑖𝑗)

+ 𝑑5(𝑛3𝑖𝑛3𝑘𝛿𝑗𝑙 + 𝑛3𝑗𝑛3𝑙𝛿𝑖𝑘 + 𝑛3𝑖𝑛3𝑙𝛿𝑗𝑘 + 𝑛3𝑗𝑛3𝑘𝛿𝑖𝑙)

+ 𝑑6𝑛3𝑖𝑛3𝑗𝛿𝑘𝑙.

In order to determine tensor C, we have to use (1.8), i.e.,

C𝑖𝑗𝑘𝑙 = E𝑖𝑗𝑘𝑙 − D𝑖𝑗𝑝𝑞E𝑝𝑞𝑘𝑙.
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Having in mind that

(2.7) E𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)

we have that

C𝑖𝑗𝑘𝑙 = E𝑖𝑗𝑘𝑙 − D𝑖𝑗𝑝𝑞E𝑝𝑞𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)− 𝜆D𝑖𝑗𝑝𝑝𝛿𝑘𝑙 − 2𝜇D𝑖𝑗𝑘𝑙

Further, from (2.6) and

D𝑖𝑗𝑝𝑝 = (3𝑑1 + 2𝑑2 + 𝑑4)𝛿𝑖𝑗 + (𝑑3 + 3𝑑4 + 4𝑑5 + 3𝑑6)𝑛3𝑖𝑛3𝑗 ,

we obtain, taking into account the symmetric parts of D𝑖𝑗𝑝𝑝𝛿𝑘𝑙 and D𝑖𝑗𝑘𝑙,

C𝑖𝑗𝑘𝑙 = [𝜆(1− 3𝑑1 − 2𝑑2 − 𝑑4)− 2𝜇]𝛿𝑖𝑗𝛿𝑘𝑙

+ 𝜇(1− 2𝑑2)(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)

− [𝜆(𝑑3 + 3𝑑4 + 4𝑑5 + 3𝑑6) + 2𝜇𝑑6]𝑛3𝑖𝑛3𝑗𝛿𝑘𝑙

− 2𝜇𝑑3 𝑛3𝑖𝑛3𝑗𝑛3𝑘𝑛3𝑙 − 2𝜇𝑑4(𝑛3𝑖𝑛3𝑗𝛿𝑘𝑙 + 𝑛3𝑘𝑛3𝑙𝛿𝑖𝑗)

− 2𝜇𝑑5(𝑛3𝑖𝑛3𝑘𝛿𝑗𝑙 + 𝑛3𝑗𝑛3𝑙𝛿𝑖𝑘 + 𝑛3𝑖𝑛3𝑙𝛿𝑗𝑘 + 𝑛3𝑗𝑛3𝑘𝛿𝑖𝑙).

Now, obviously the coefficients of elasticity damage tensor, for hexagonal class,
are given by

𝜆1 = 𝜆(1− 3𝑑1 − 2𝑑2 − 𝑑4)− 2𝜇𝑑1

𝜆2 = 𝜇(1− 2𝑑2)

𝜆3 = −2𝜇𝑑3

𝜆4 = −2𝜇𝑑4

𝜆5 = −2𝜇𝑑5,

and
𝜆(𝑑3 + 3𝑑4 + 4𝑑5 + 3𝑑6) + 2𝜇𝑑6 = 0

which are identical with (2.5) and (2.4)6 given in implicit form.
Comparing these two approaches we conclude that they are consistent, but in

b) approach we have obtained the coefficients of elasticity tensor directly. This is
the reason why we call b) approach direct one. Having in mind that these two
approaches are consistent in general, further on we shall apply the direct approach
to other crystal classes investigate here.

2.2. Orthotropic damage. In this case, from [7, equation 41], can be written
in a simple form

D𝑖𝑗𝑘𝑙 = 𝑑1𝛿𝑖𝑗𝛿𝑘𝑙 + 𝑑2(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) + 𝑑3𝑛1𝑖𝑛1𝑗𝑛1𝑘𝑛1𝑙+(2.8)
+ 𝑑4𝑛2𝑖𝑛2𝑗𝑛2𝑘𝑛2𝑙 + 𝑑5(𝑛1𝑖𝑛1𝑗𝛿𝑘𝑙 + 𝑛1𝑘𝑛1𝑙𝛿𝑖𝑗)

+ 𝑑6(𝑛2𝑖𝑛2𝑗𝛿𝑘𝑙 + 𝑛2𝑘𝑛2𝑙𝛿𝑖𝑗) + 𝑑7(𝑛1𝑖𝑛1𝑗𝑛2𝑘𝑛2𝑙 + 𝑛1𝑘𝑛1𝑙𝑛2𝑖𝑛2𝑗)

+ 𝑑8(𝑛1𝑖𝑛1𝑘𝛿𝑗𝑙 + 𝑛1𝑖𝑛1𝑙𝛿𝑗𝑘 + 𝑛1𝑗𝑛1𝑘𝛿𝑖𝑙 + 𝑛1𝑗𝑛1𝑙𝛿𝑖𝑘)

+ 𝑑9(𝑛2𝑖𝑛2𝑘𝛿𝑗𝑙 + 𝑛2𝑖𝑛2𝑙𝛿𝑗𝑘 + 𝑛2𝑗𝑛2𝑘𝛿𝑖𝑙 + 𝑛2𝑗𝑛2𝑙𝛿𝑖𝑘)

+ 𝑑10𝑛1𝑖𝑛1𝑗𝛿𝑘𝑙 + 𝑑11𝑛2𝑖𝑛2𝑗𝛿𝑘𝑙,

which is more convenient for the calculation.
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In the same way, as for the hexagonal system, tensor C can be determined
from (2.2). Making use of (2.7) and (2.8), after simple, but lengthy calculation, we
obtained:

C𝑖𝑗𝑘𝑙 = [𝜆(1− 3𝑑1 − 2𝑑2 − 𝑑5 − 𝑑6)− 2𝜇𝑑1]𝛿𝑖𝑗𝛿𝑘𝑙

+ 𝜇(1− 2𝑑2)(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)− 2𝜇𝑑3𝑛1𝑖𝑛1𝑗𝑛1𝑘𝑛1𝑙

− 2𝜇𝑑4𝑛2𝑖𝑛2𝑗𝑛2𝑘𝑛2𝑙 − 2𝜇𝑑5(𝑛1𝑖𝑛1𝑗𝛿𝑘𝑙 + 𝑛1𝑘𝑛1𝑙𝛿𝑖𝑗)

− 2𝜇𝑑6(𝑛2𝑖𝑛2𝑗𝛿𝑘𝑙 + 𝑛2𝑘𝑛2𝑙𝛿𝑖𝑗)− 2𝜇𝑑7(𝑛1𝑖𝑛1𝑗𝑛2𝑘𝑛2𝑙 + 𝑛1𝑘𝑛1𝑙𝑛2𝑖𝑛2𝑗)

− 2𝜇𝑑8(𝑛1𝑖𝑛1𝑘𝛿𝑗𝑙 + 𝑛1𝑖𝑛1𝑙𝛿𝑗𝑘 + 𝑛1𝑗𝑛1𝑘𝛿𝑖𝑙 + 𝑛1𝑗𝑛1𝑙𝛿𝑖𝑘)

− 2𝜇𝑑9(𝑛2𝑖𝑛2𝑘𝛿𝑗𝑙 + 𝑛2𝑖𝑛2𝑙𝛿𝑗𝑘 + 𝑛2𝑗𝑛2𝑘𝛿𝑖𝑙 + 𝑛2𝑗𝑛2𝑙𝛿𝑖𝑘).

From this expression it is obvious that coefficients of elasticity tensor are:

𝜆1 = 𝜆(1− 3𝑑1 − 2𝑑2 − 𝑑5 − 𝑑6)− 2𝜇𝑑1,

𝜆2 = 𝜇(1− 2𝑑2), 𝜆3 = −2𝜇𝑑3, 𝜆4 = −2𝜇𝑑4, 𝜆5 = −2𝜇𝑑5,

𝜆6 = −2𝜇𝑑6, 𝜆7 = −2𝜇𝑑7, 𝜆8 = −2𝜇𝑑8, 𝜆9 = −2𝜇𝑑9.

In order to complete our calculation, next we consider (2.1). Then the following
relations are obtained:

𝜆(𝑑3 + 3𝑑5 + 𝑑7 + 4𝑑8) + (3𝜆+ 2𝜇)𝑑10 = 0,

𝜆(𝑑4 + 3𝑑6 + 𝑑7 + 4𝑑9) + (3𝜆+ 2𝜇)𝑑11 = 0,

which represent compatibility conditions which have to be satisfied by damage
tensor D.

2.3. Tetragonal system. This system is defined by class 4, 4̄, 4/𝑚, and crys-
tallographic directions n𝑖, 𝑖 = 1, 2, 3, are orthonormal. One of them (say) n3 is
a four-fold axis of rotation. Then n1 → n2 and n2 → −n1. Invariance of these
changes results in the following form of D given in Voigt notation

D =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐷1111 𝐷1122 𝐷1133 0 0 0
𝐷1122 𝐷1111 𝐷1133 0 0 0
𝐷3311 𝐷3311 𝐷3333 0 0 0
0 0 0 𝐷2323 0 0
0 0 0 0 𝐷2323 0
0 0 0 0 0 𝐷1212

⎞⎟⎟⎟⎟⎟⎟⎠
For further calculation we shell write damage tensor in explicit form, which is not
given in our paper (see [7]), in more detail. Then

D𝑖𝑗𝑘𝑙 = 𝑑1(𝑛1𝑖𝑛1𝑗𝑛1𝑘𝑛1𝑙 + 𝑛2𝑖𝑛2𝑗𝑛2𝑘𝑛2𝑙) + 𝑑2 𝑛3𝑖𝑛3𝑗𝑛3𝑘𝑛3𝑙(2.9)
+ 𝑑3(𝑛1𝑖𝑛1𝑗𝑛2𝑘𝑛2𝑙 + 𝑛2𝑖𝑛2𝑗𝑛1𝑘𝑛1𝑙)

+ 𝑑4(𝑛1𝑖𝑛1𝑗𝑛3𝑘𝑛3𝑙+𝑛2𝑖𝑛2𝑗𝑛3𝑘𝑛3𝑙)+𝑑5(𝑛3𝑖𝑛3𝑗𝑛1𝑘𝑛1𝑙+𝑛3𝑖𝑛3𝑗𝑛2𝑘𝑛2𝑙)

+ 𝑑6(𝑛2𝑖𝑛3𝑗𝑛2𝑘𝑛3𝑙 + 𝑛3𝑖𝑛2𝑗𝑛2𝑘𝑛3𝑙 + 𝑛2𝑖𝑛3𝑗𝑛3𝑘𝑛2𝑙 + 𝑛3𝑖𝑛2𝑗𝑛3𝑘𝑛2𝑙

+ 𝑛1𝑖𝑛3𝑗𝑛1𝑘𝑛3𝑙 + 𝑛3𝑖𝑛1𝑗𝑛1𝑘𝑛3𝑙 + 𝑛1𝑖𝑛3𝑗𝑛3𝑘𝑛1𝑙 + 𝑛3𝑖𝑛1𝑗𝑛3𝑘𝑛1𝑙)

+ 𝑑7(𝑛1𝑖𝑛2𝑗𝑛1𝑘𝑛2𝑙 + 𝑛2𝑖𝑛1𝑗𝑛1𝑘𝑛2𝑙 + 𝑛1𝑖𝑛2𝑗𝑛2𝑘𝑛1𝑙 + 𝑛2𝑖𝑛1𝑗𝑛2𝑘𝑛1𝑙)
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where
𝑑1 = D1111, 𝑑2 = D3333, 𝑑3 = D1122, 𝑑4 = D1133,

𝑑5 = D3311, 𝑑6 = D2323, 𝑑7 = D1212

In this case we have to calculate (2.1) and (2.2) for D, given by (2.9). It is easy
to see that

(DI)𝑖𝑗𝑝𝑝 = (𝑑1 + 𝑑3 + 𝑑4)(𝑛1𝑖𝑛1𝑗 + 𝑛2𝑖𝑛2𝑗) + (𝑑2 + 2𝑑5)𝑛3𝑖𝑛3𝑗 ,

and from this

(DI⊗ I)𝑖𝑗𝑘𝑙 = (𝑑1 + 𝑑3 + 𝑑4)× (𝑛1𝑖𝑛1𝑗𝑛1𝑘𝑛1𝑙 + 𝑛1𝑖𝑛1𝑗𝑛2𝑘𝑛2𝑙(2.10)
+ 𝑛1𝑖𝑛1𝑗𝑛3𝑘𝑛3𝑙 + 𝑛2𝑖𝑛2𝑗𝑛1𝑘𝑛1𝑙

+ 𝑛2𝑖𝑛2𝑗𝑛2𝑘𝑛2𝑙 + 𝑛2𝑖𝑛2𝑗𝑛3𝑘𝑛3𝑙)

+ (𝑑2 + 2𝑑5)(𝑛3𝑖𝑛3𝑗𝑛1𝑘𝑛1𝑙 + 𝑛3𝑖𝑛3𝑗𝑛2𝑘𝑛2𝑙 + 𝑛3𝑖𝑛3𝑗𝑛3𝑘𝑛3𝑙).

After simple calculation we find that

𝜆(DI⊗ I)𝑎𝑖𝑗𝑘𝑙 =
1
2𝜆(𝑑1 + 𝑑3 + 𝑑4 − 𝑑2 − 2𝑑5)(2.11)
× (𝑛1𝑖𝑛1𝑗𝑛3𝑘𝑛3𝑙 + 𝑛2𝑖𝑛2𝑗𝑛3𝑘𝑛3𝑙

− 𝑛3𝑖𝑛3𝑗𝑛1𝑘𝑛1𝑙 − 𝑛3𝑖𝑛3𝑗𝑛2𝑘𝑛2𝑙)

and

2𝜇D𝑎
𝑖𝑗𝑘𝑙 =

1
22𝜇(𝑑4 − 𝑑5)× (𝑛1𝑖𝑛1𝑗𝑛3𝑘𝑛3𝑙 + 𝑛2𝑖𝑛2𝑗𝑛3𝑘𝑛3𝑙(2.12)

− 𝑛3𝑖𝑛3𝑗𝑛1𝑘𝑛1𝑙 − 𝑛3𝑖𝑛3𝑗𝑛2𝑘𝑛2𝑙).

Therefore, from (2.11), (2.12) and (2.1), i.e.,

𝜆(DI⊗ I)𝑎 + 2𝜇D𝑎 = 0,

it follows that

(2.13) 2(𝜆+ 𝜇)𝑑5 = 𝜆(𝑑1 + 𝑑3 − 𝑑2) + (𝜆+ 2𝜇)𝑑4.

Hence, the number of independent parameters of tensor D is six.
Next we calculate

(2.14) C = E− 𝜆(DI⊗ I)𝑠 − 2𝜇D𝑠,

or, in componential form,

C𝑖𝑗𝑘𝑙 = E𝑖𝑗𝑘𝑙 − 𝜆(DI⊗ I)𝑠𝑖𝑗𝑘𝑙 − 2𝜇D𝑠
𝑖𝑗𝑘𝑙.

Now, from (2.10) and (2.9), we find that

𝜆(DI⊗ I)𝑠𝑖𝑗𝑘𝑙 = 𝜆(𝑑1 + 𝑑3 + 𝑑4)(𝑛1𝑖𝑛1𝑗𝑛1𝑘𝑛1𝑙 + 𝑛1𝑖𝑛1𝑗𝑛2𝑘𝑛2𝑙 + 𝑛2𝑖𝑛2𝑗𝑛1𝑘𝑛1𝑙+

+ 𝑛2𝑖𝑛2𝑗𝑛2𝑘𝑛2𝑙) + 𝜆(𝑑2 + 2𝑑5)𝑛3𝑖𝑛3𝑗𝑛3𝑘𝑛3𝑙+

+ 𝜆(𝑑1 + 𝑑3 + 𝑑4 + 𝑑2 + 2𝑑5)× (𝑛1𝑖𝑛1𝑗𝑛3𝑘𝑛3𝑙 + 𝑛2𝑖𝑛2𝑗𝑛3𝑘𝑛3𝑙),

and

2𝜇D𝑠
𝑖𝑗𝑘𝑙 = 2𝜇𝑑1(𝑛1𝑖𝑛1𝑗𝑛1𝑘𝑛1𝑙 + 𝑛2𝑖𝑛2𝑗𝑛2𝑘𝑛2𝑙) + 2𝜇𝑑2 𝑛3𝑖𝑛3𝑗𝑛3𝑘𝑛3𝑙

+ 2𝜇𝑑3(𝑛1𝑖𝑛1𝑗𝑛2𝑘𝑛2𝑙 + 𝑛2𝑖𝑛2𝑗𝑛1𝑘𝑛1𝑙)

+ 2𝜇(𝑑4 + 𝑑5)(𝑛1𝑖𝑛1𝑗𝑛3𝑘𝑛3𝑙 + 𝑛2𝑖𝑛2𝑗𝑛3𝑘𝑛3𝑙)
𝑠
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+ 2𝜇𝑑6(𝑛2𝑖𝑛3𝑗𝑛2𝑘𝑛3𝑙 + 𝑛3𝑖𝑛2𝑗𝑛2𝑘𝑛3𝑙 + 𝑛2𝑖𝑛3𝑗𝑛3𝑘𝑛2𝑙 + 𝑛3𝑖𝑛2𝑗𝑛3𝑘𝑛2𝑙

+ 𝑛1𝑖𝑛3𝑗𝑛1𝑘𝑛3𝑙 + 𝑛3𝑖𝑛1𝑗𝑛1𝑘𝑛3𝑙 + 𝑛1𝑖𝑛3𝑗𝑛3𝑘𝑛1𝑙 + 𝑛3𝑖𝑛1𝑗𝑛3𝑘𝑛1𝑙)

+ 2𝜇𝑑7(𝑛1𝑖𝑛2𝑗𝑛1𝑘𝑛2𝑙 + 𝑛2𝑖𝑛1𝑗𝑛1𝑘𝑛2𝑙 + 𝑛1𝑖𝑛2𝑗𝑛2𝑘𝑛1𝑙 + 𝑛2𝑖𝑛1𝑗𝑛2𝑘𝑛1𝑙).

Substituting these relations and

E𝑖𝑗𝑘𝑙 = (𝜆+ 2𝜇)(𝑛1𝑖𝑛1𝑗𝑛1𝑘𝑛1𝑙 + 𝑛2𝑖𝑛2𝑗𝑛2𝑘𝑛2𝑙) + (𝜆+ 2𝜇)(𝑛3𝑖𝑛3𝑗𝑛3𝑘𝑛3𝑙)

+ 𝜆(𝑛1𝑖𝑛1𝑗𝑛2𝑘𝑛2𝑙 + 𝑛2𝑖𝑛2𝑗𝑛1𝑘𝑛1𝑙) + 2𝜆(𝑛1𝑖𝑛1𝑗𝑛3𝑘𝑛3𝑙 + 𝑛3𝑖𝑛3𝑗𝑛2𝑘𝑛2𝑙)
𝑠

+ 𝜇(𝑛2𝑖𝑛3𝑗𝑛2𝑘𝑛3𝑙 + 𝑛3𝑖𝑛2𝑗𝑛2𝑘𝑛3𝑙 + 𝑛2𝑖𝑛3𝑗𝑛3𝑘𝑛2𝑙 + 𝑛3𝑖𝑛2𝑗𝑛3𝑘𝑛2𝑙

+ 𝑛1𝑖𝑛3𝑗𝑛1𝑘𝑛3𝑙 + 𝑛3𝑖𝑛1𝑗𝑛1𝑘𝑛3𝑙 + 𝑛1𝑖𝑛3𝑗𝑛3𝑘𝑛1𝑙 + 𝑛3𝑖𝑛1𝑗𝑛3𝑘𝑛1𝑙)

+ 𝜇(𝑛1𝑖𝑛2𝑗𝑛1𝑘𝑛2𝑙 + 𝑛2𝑖𝑛1𝑗𝑛1𝑘𝑛2𝑙 + 𝑛1𝑖𝑛2𝑗𝑛2𝑘𝑛1𝑙 + 𝑛2𝑖𝑛1𝑗𝑛2𝑘𝑛1𝑙)

in (2.14), we obtain

C𝑖𝑗𝑘𝑙 = E𝑖𝑗𝑘𝑙 − [𝜆(𝑑1 + 𝑑3 + 𝑑4) + 2𝜇𝑑1](𝑛1𝑖𝑛1𝑗𝑛1𝑘𝑛1𝑙 + 𝑛2𝑖𝑛2𝑗𝑛2𝑘𝑛2𝑙)

− [𝜆(𝑑2 + 2𝑑5) + 2𝜇𝑑2](𝑛3𝑖𝑛3𝑗𝑛3𝑘𝑛3𝑙)− [𝜆(𝑑1 + 𝑑3 + 𝑑4) + 2𝜇𝑑3]

× (𝑛1𝑖𝑛1𝑗𝑛2𝑘𝑛2𝑙 + 𝑛2𝑖𝑛2𝑗𝑛1𝑘𝑛1𝑙)

− [𝜆(𝑑1 + 𝑑3 + 𝑑4 + 𝑑2 + 2𝑑5) + 2𝜇(𝑑4 + 𝑑5)]

× (𝑛1𝑖𝑛1𝑗𝑛3𝑘𝑛3𝑙 + 𝑛2𝑖𝑛2𝑗𝑛3𝑘𝑛3𝑙)
𝑠

− 2𝜇𝑑6(𝑛2𝑖𝑛3𝑗𝑛2𝑘𝑛3𝑙 + 𝑛3𝑖𝑛2𝑗𝑛2𝑘𝑛3𝑙 + 𝑛2𝑖𝑛3𝑗𝑛3𝑘𝑛2𝑙 + 𝑛3𝑖𝑛2𝑗𝑛3𝑘𝑛2𝑙

+ 𝑛1𝑖𝑛3𝑗𝑛1𝑘𝑛3𝑙 + 𝑛3𝑖𝑛1𝑗𝑛1𝑘𝑛3𝑙 + 𝑛1𝑖𝑛3𝑗𝑛3𝑘𝑛1𝑙 + 𝑛3𝑖𝑛1𝑗𝑛3𝑘𝑛1𝑙)

− 2𝜇𝑑7(𝑛1𝑖𝑛2𝑗𝑛1𝑘𝑛2𝑙 + 𝑛2𝑖𝑛1𝑗𝑛1𝑘𝑛2𝑙 + 𝑛1𝑖𝑛2𝑗𝑛2𝑘𝑛1𝑙 + 𝑛2𝑖𝑛1𝑗𝑛2𝑘𝑛1𝑙).

After some calculation we obtain

C𝑖𝑗𝑘𝑙 = [𝜆+ 2𝜇− 𝜆(𝑑3 + 𝑑4)− (𝜆+ 2𝜇)𝑑1]× (𝑛1𝑖𝑛1𝑗𝑛1𝑘𝑛1𝑙 + 𝑛2𝑖𝑛2𝑗𝑛2𝑘𝑛2𝑙)

+ [𝜆+ 2𝜇− (𝜆+ 2𝜇)𝑑2 − 2𝜆𝑑5](𝑛3𝑖𝑛3𝑗𝑛3𝑘𝑛3𝑙)

+ [𝜆− (𝜆+ 2𝜇)𝑑3 − 𝜆(𝑑1 + 𝑑4)]× (𝑛1𝑖𝑛1𝑗𝑛2𝑘𝑛2𝑙 + 𝑛2𝑖𝑛2𝑗𝑛1𝑘𝑛1𝑙)

+ [𝜆− 𝜆(𝑑1 + 𝑑3)− (𝜆+ 2𝜇)𝑑4]× (𝑛1𝑖𝑛1𝑗𝑛3𝑘𝑛3𝑙 + 𝑛3𝑖𝑛3𝑗𝑛2𝑘𝑛2𝑙)

+ 𝜇(1− 2𝑑6)(𝑛2𝑖𝑛3𝑗𝑛2𝑘𝑛3𝑙 + 𝑛3𝑖𝑛2𝑗𝑛2𝑘𝑛3𝑙 + 𝑛2𝑖𝑛3𝑗𝑛3𝑘𝑛2𝑙 + 𝑛3𝑖𝑛2𝑗𝑛3𝑘𝑛2𝑙

+ 𝑛1𝑖𝑛3𝑗𝑛1𝑘𝑛3𝑙 + 𝑛3𝑖𝑛1𝑗𝑛1𝑘𝑛3𝑙 + 𝑛1𝑖𝑛3𝑗𝑛3𝑘𝑛1𝑙 + 𝑛3𝑖𝑛1𝑗𝑛3𝑘𝑛1𝑙)

+ 𝜇(1− 2𝑑7)(𝑛1𝑖𝑛2𝑗𝑛1𝑘𝑛2𝑙 + 𝑛2𝑖𝑛1𝑗𝑛1𝑘𝑛2𝑙 + 𝑛1𝑖𝑛2𝑗𝑛2𝑘𝑛1𝑙 + 𝑛2𝑖𝑛1𝑗𝑛2𝑘𝑛1𝑙).

From the last expression we obtain the values 𝜆 of elastic coefficients of elasticity
damage tensor in the following forms:

𝜆1 = (𝜆+ 2𝜇)− 𝜆(𝑑1 + 𝑑3 + 𝑑4)− 2𝜇𝑑1, 𝜆2 = 𝜆− 𝜆(𝑑1 + 𝑑3 + 𝑑4)− 2𝜇𝑑3,

𝜆3 = (𝜆+ 2𝜇)− 𝜆(𝑑2 + 2𝑑5)− 2𝜇𝑑2, 𝜆4 = 𝜆− 𝜆(𝑑1 + 𝑑3)− (𝜆+ 2𝜇)𝑑4,

𝜆5 = 𝜇(1− 2𝑑6), 𝜆6 = 𝜇(1− 2𝑑7).

Note that in the further calculation we have to use compatibility condition
(2.13) in 𝜆3.
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Finally, we write tensor C in the Voigt notation⎛⎜⎜⎜⎜⎜⎜⎝
𝜆1 𝜆2 𝜆4 0 0 0
𝜆2 𝜆1 𝜆4 0 0 0
𝜆4 𝜆4 𝜆3 0 0 0
0 0 0 𝜆5 0 0
0 0 0 0 𝜆5 0
0 0 0 0 0 𝜆6

⎞⎟⎟⎟⎟⎟⎟⎠ .

2.4. Cubic damage. In this case, (see [7, equation 35]), we have

D𝑖𝑗𝑘𝑙 = 𝑑1𝛿𝑖𝑗𝛿𝑘𝑙 + 𝑑2(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)

+ 𝑑3(𝑛1𝑖𝑛1𝑗𝑛1𝑘𝑛1𝑙 + 𝑛2𝑖𝑛2𝑗𝑛2𝑘𝑛2𝑙 + 𝑛3𝑖𝑛3𝑗𝑛3𝑘𝑛3𝑙).

In the same way as before we obtain

C𝑖𝑗𝑘𝑙 = E𝑖𝑗𝑘𝑙 − 𝜆D𝑖𝑗𝑝𝑝𝛿𝑘𝑙 − 2𝜇D𝑖𝑗𝑘𝑙

= [𝜆(1− 3𝑑1 − 2𝑑2 − 3𝑑3)− 2𝜇𝑑1]𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(1− 2𝑑2)(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)

− 2𝜇𝑑3(𝑛1𝑖𝑛1𝑗𝑛1𝑘𝑛1𝑙 + 𝑛2𝑖𝑛2𝑗𝑛2𝑘𝑛2𝑙 + 𝑛3𝑖𝑛3𝑗𝑛3𝑘𝑛3𝑙),

so that

𝜆1 = 𝜆(1− 3𝑑1 − 2𝑑2 − 3𝑑3)− 2𝜇𝑑1, 𝜆2 = 𝜇(1− 2𝑑2), 𝜆3 = −2𝜇𝑑3.

Notice that compatibility conditions (1.9) are here satisfied identically.

2.5. Isotropic damage. This is the simplest case and it is obtained from
cubic damage when we take 𝑑3 = 0. Then

C𝑖𝑗𝑘𝑙 = 𝜆1𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜆2(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘),

where

(2.15) 𝜆1 = 𝜆(1− 3𝑑1 − 2𝑑2)− 2𝜇𝑑1, 𝜆2 = 𝜇(1− 2𝑑2).

3. An evaluation of damage parameters for isotropic damage

There remains also the quantitative evaluation of damage parameters from
actual tests. This is an endeavor that can be done by the present work by means of
the physically meaningful damage parameters that are given in terms of the basic
elements of D.

We shall demonstrate it for isotropic systems. It is known (see [11, p. 550, eq.
8.4.10]), for other crystal systems see [12] that the velocities of wave propagation
for isotropic elastic material (undamage material) have the following expressions

𝑣𝐿 =
(︁𝜆+ 2𝜇

𝜚

)︁1/2

, - longitudinal velocity

𝑣𝑇 =
(︁𝜇
𝜚

)︁1/2

, - transversal velocity.

We now apply it to isotropic damage materials. In this case the corresponding
quantities are

𝜆 → 𝜆1 = 𝜆(1− 3 𝑑1 − 2 𝑑2)− 2𝜇𝑑1 = 𝜚𝑑 (𝑣
2
𝑑𝐿 − 2𝑣2𝑑𝑇 ),
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𝜇 → 𝜆2 = 𝜇(1− 2 𝑑2) = 𝜚𝑑 𝑣
2
𝑑𝑇 .

Also, we denoted by subindex 𝑑 the corresponding density and velocities of
isotropic damaged materials, i.e.,

𝜚 → 𝜚𝑑, 𝑣𝐿 → 𝑣𝑑𝐿, 𝑣𝑇 → 𝑣𝑑𝑇 .

Then
𝜆1 = 𝜚𝑑(𝑣

2
𝑑𝐿 − 2𝑣2𝑑𝑇 ), 𝜆2 = 𝜚𝑑 𝑣

2
𝑑𝑇 ,

and hence

𝑑1 =
𝜚𝑑

3𝜆+ 2𝜇

(︁
𝑣2𝑑𝐿 − 𝜆+ 2𝜇

𝜇
𝑣2𝑑𝑇

)︁
, 𝑑2 =

1

2

(︁
1− 𝜚𝑑

𝜇
𝑣2𝑑𝑇

)︁
.

In principle, the same approach can be applied to the other crystal classes.
It is also possible to estimate values of damage parameters 𝑑1 and 𝑑2 making

use of the expression for Poasson’s ratio 𝜈 in classical linear elasticity, i.e.,

𝜈 =
𝜆

2(𝜆+ 𝜇)

(see [11, p. 294, eq. 6.2.41]). Then

−1 < 𝜈 < 1/2.

As the above, identifying the corresponding quantities for linear isotropic dam-
age materials, we have

𝜈 → 𝜈𝑑 =
𝜆1

2(𝜆1 + 𝜆2)
,

and
−1 < 𝜈𝑑 =

𝜆1

2(𝜆1 + 𝜆2)
< 1/2.

Further,
𝜆1 + 𝜆2 = 𝜆− (3𝜆+ 2𝜇)𝑑1 − 2𝜆 𝑑2.

The above inequality is satisfied when

2𝜆1 < 2(𝜆1 + 𝜆2) ⇒ 𝜆2 > 0,

𝜆2 = 𝜇(1− 2𝑑2) > 0 ⇒ 𝑑2 < 1
2

and

−2(𝜆1 + 𝜆2) < 𝜆1 ⇒ 3𝜆1 + 2𝜆2 > 0,

3𝜆1 + 2𝜆3 = 3𝜆(1− 3𝑑1 − 2𝑑2) + 2𝜇(1− 3𝑑1 − 22) > 0,

3𝑑1 + 2𝑑2 < 1.

The graph of these two inequalities

𝑑2 < 1
2 , 3𝑑1 + 2𝑑2 < 1

is given in Fig. 1.
In Fig. 1 the region of possible values of parameters 𝑑1 and 𝑑2 is given, i.e.,

0 6 𝑑1 < 1/3,

0 < 𝑑2 < 1/2.
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Figure 1.

4. Discussion

Let us assume that homogeneous isotropic (virgin) material is subjected to an
isotropic damage such that Lame’s coefficients of damage and virgin materials are
proportional, i.e.,

𝜆1 = 𝑘𝜆, 𝜆2 = 𝑘𝜇,

where 𝑘 ̸= 0 is the coefficient of proportionality. But from (2.15) we have

𝜆1 = 𝑘𝜆 = 𝜆(1− 3𝑑1 − 2𝑑2)− 2𝜇𝑑1 = 𝜆(1− 2𝑑2)− (3𝜆+ 2𝜇) 𝑑1,

𝜆2 = 𝑘𝜇 = 𝜇(1− 2𝑑2),

which are satisfied when 𝑑1 = 0 and 𝑑2 = (1−𝑘)/2. We may go further to estimate
possible values of 𝑘 having in mind that 0 < 𝑑2 6 1/2. Then it follows that
0 6 𝑘 < 1.

Therefore, we conclude that we need only one damage parameter to explain
such particular kind of damage. An example of such damage can be illustrated by
homogeneous elastic ball which preserves its shape after isotropic elastic damage.
This suggests a correlation damage parameter 𝑑2 with the change in the volume of
material damage.

More generally, we may state the following

Proposition 4.1.

𝑑1 = 0 if and only if
𝜆1

𝜆2
=

𝜆

𝜇
.

The proof is straightforward.
At this point, concerning the number of damage parameters we need to ex-

plain isotropic damage of isotropic virgin material, in general, it is worth to refer
to [5, chapter 12.5] (A Model with Two Damage Quantities. The Unilateral Phe-
nomenon) (see p.(321)) where he wrote: “... When damage is produced, microcracks
appear in the zones where extensions exist. When changing the sign of the prin-
cipal deformations by changing the sign of the loading, these microcracks close.
On the macroscopic level, the initial stiffness is then recovered: it is the unilateral
phenomenon... To take it into account, the model is completed by introducing two
damage quantities instead of a single one... they are 𝛽𝑡 for extension and 𝛽𝑐 for
contraction. ...”
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In the same chapter his plot of the possible values of these parameters (see [5,
fig. 12.2, p. 322]) in some sense resembles our Fig. 1.

5. Conclusion

In the present paper the anisotropic elasticity damage mechanics is investigated
within the framework of the classical theory of elasticity.

Starting from the principle of strain equivalence, elasticity tensor components
are derived in terms of damage parameters in close form.

We show that the tensor of elasticity of damaged material can be determined
in two ways. In both cases, we use the resulting expressions for damage tensors. In
the case of hexagonal elasticity damage tensor we used both approaches in order
to compare them. We show that the derived results are equivalent.

The approaches are algebraically the same and generally simple.
The procedure we present here was applied to several crystal classes which are

subjected to hexagonal, orthotropic, tetragonal, cubic and isotropic damage. We
underline that this procedure can be applied to all crystal systems.

Finally, we propose a possible procedure to determine damage parameters of
isotropic damage, and evaluate them.

Acknowledgement. We are grateful to the anonymous referee for very valu-
able comments and suggestions that help us in improving the paper.
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О ТЕНЗОРУ ОШТЕЋЕЊА У ЛИНЕАРНОJ
АНИЗОТРОПНОJ ЕЛАСТИЧНОСТИ

Резиме. У овом раду разматра се аниозотропна линеарна механика оште-
ћења користећи принцип еквивалентне деформациjе. У претходном раду ау-
тори су одредили компоненте тензора оштећења у затвореном облику преко
чланова еластичних пареметара неоштећеног материjала. Користећи резул-
тате претходног рада, изводи се еластични тензор такође у затвореном облику,
као функциjа тензора оштећења. Поступак,коjи се овде излаже, примењуjе се
на кристалним класама коjе су подвргнуте хексагоналном, ортотропном, те-
трагоналном, кубном и изотропном оштећењу. Посебно се разматра изотропан
систем као пример указивања на неке могућности израчунавања парамететара
његовог оштећења.
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