Buoyancy driven, adiabatic and compressible flow in relatively high solar chimneys is treated in the paper analytically by using one-dimen\-sional model of flow. General equations written suitably in a non-dimensional form are used for a qualitative discussion pertaining to the mutual effects of gravity, viscosity and varying cross section of the chimney. It is shown that in case of low Mach number flow these equations possess exact solutions obtainable by ordinary mathematical methods for any given chimney shape. Also shown, and demonstrated on an example, is the procedure of evaluation of the chimney shape that satisfies a condition imposed beforehand upon the flow. For better insight into the role of various parameters the solutions are presented in the form of power series expansions.