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EFFECTS OF SMALL BOUNDARY PERTURBATION
ON THE MHD DUCT FLOW

Ulavathi Shettar Mahabaleshwar, Igor Pažanin,
Marko Radulović, and Francisco Javier Suárez-Grau

Abstract. In this paper, we investigate the effects of small boundary per-
turbation on the laminar motion of a conducting fluid in a rectangular duct
under applied transverse magnetic field. A small boundary perturbation of
magnitude 𝜖 is applied on cross-section of the duct. Using the asymptotic
analysis with respect to 𝜖, we derive the effective model given by the explicit
formulae for the velocity and induced magnetic field. Numerical results are
provided confirming that the considered perturbation has nonlocal impact on
the asymptotic solution.

1. Introduction

It is well-known that only a limited number of the fluid flow problems can
be solved (or approximated) by the solutions in the explicit form. To derive such
solutions, we usually need to start with (over)simplified mathematical models and
consider ideal geometries on the flow domains with no distortions introduced. How-
ever, in practice, the boundary of the fluid domain can contain various small ir-
regularities (rugosities, dents, etc.) being far from the ideal one. Such problems
are challenging from the mathematical point of view and, in most cases, can be
treated only numerically. The analytical treatments are rare because introducing
the small parameter as the perturbation quantity in the domain boundary forces
us to perform tedious change of variables. As a result, we obtain the problem
that cannot be solved analytically and is only amenable for numerical simulations.
Having this in mind, not many analytical results on the subject can be found in
the existing literature, both engineering and mathematical. We refer the reader
to monograph [1] (and the references therein) for more details on the subject of
boundary perturbation in boundary–value problems for PDEs.

In this paper we address the magnetohydrodynamic (MHD) flow of electrically
conducting and incompressible liquid through a duct under the action of a trans-
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verse magnetic field. Such flows naturally appear in the industrial applications, such
as nuclear reactors, MHD generators, accelerators, pumps, etc. For that reason,
MHD duct problems have been continuously investigated for a long time, starting
from the pioneering paper by Hartmann [2] to nowadays. Here we mention only
the papers that influenced our work and refer the reader to [3–8].

The goal of this paper is to study the effects of slightly perturbed boundary
on the MHD flow through a rectangular duct. More precisely, we assume that the
cross-section of the duct has the following form:

Ω̂𝜖 =
{︁
(𝑥̂, 𝑦) ∈ R2 : −𝑏 < 𝑥̂ < 𝑏, −𝑎 < 𝑦 < 𝑎− 𝜆𝑓

(︁ 𝑥̂
𝑎

)︁}︁
.

The ratio 𝜖 = 𝜆
𝑎 is taken to be a small parameter (0 < 𝜖 ≪ 1), while 𝑓 is assumed to

be an arbitrary smooth function of 𝒪(1) magnitude. For the purpose of our anal-
ysis, it is convenient to work in non-dimensional setting so we normalize physical
variables by 𝑎 (see Section 2) and address the MHD flow problem in the domain
(see Fig. 1):

Ω𝜖 =
{︀
(𝑥, 𝑦) ∈ R2 : −𝑐 < 𝑥 < 𝑐, −1 < 𝑦 < 1− 𝜖𝑓(𝑥)

}︀
, 𝑐 =

𝑏

𝑎
.

Figure 1. Cross-section of a duct after non-dimensionalization.

Due to the strong coupling of the equations of fluid mechanics and electrody-
namics, exact solutions can be derived only in case of ideal geometries under simple
(physically doubtful) boundary conditions (see e.g. [9]). Here, of course, we cannot
hope to do the same, so we employ asymptotic analysis and seek for the approx-
imate solution. Instead of rewriting the governing problem in an 𝜖–independent
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domain (by introducing the suitable change of variables), we choose different, more
efficient approach. It consists of expanding the unknown functions in the Taylor
series with respect to 𝑦 (in the vicinity of the upper boundary) and applying the
asymptotic expansion technique (see Section 3). The boundary value problems
describing the first two terms in the expansion remain strongly coupled, but we
can solve them analytically in case of non-conducting walls parallel to the imposed
magnetic field and perfectly conducting walls perpendicular to the field. Employing
Fourier series representation of the solution, we derive explicit expressions for the
first-order approximation and corresponding corrector. The first-order approxima-
tion does not feel the effects of the small boundary perturbation and that was to be
expected. The effects we seek for appear in the correctors, as confirmed numerically
with many illustrations in Section 4. We use relatively small Hartmann numbers in
the process to better illustrate the desired effects, since greater Hartmann numbers
lead to solutions having an infinite number of inflexion points. It turns out that
the small perturbation of the domain boundary affects the solution not only locally
(near the upper boundary), but also (moderately) far from the perturbed boundary
and these findings represent our main contribution.

We finish the Introduction by providing additional bibliographic remarks. For
fluid flows, the boundary perturbation investigations are mostly done in the context
of periodically corrugated boundaries, see e.g. [10–15]. The study not limited to
periodic corrugations has been performed recently for classical Newtonian flow [16],
micropolar fluid flow [17] and porous medium flow [18]. This work is, in fact, the
continuation of this research. The results presented here are valid for an arbitrary
(smooth enough) boundary perturbation function 𝑓 and that should be empha-
sized. To conclude, though the MHD duct flows have been studied extensively (as
mentioned above), the influence of the boundary perturbation on such flows has
not been addressed so far, at least to our knowledge. Thus, it is our firm belief
that our results will prove useful in the engineering practice, in particular in those
industrial applications where the MHD flow is affected by the wall roughness.

2. The equations and boundary conditions

We study the stationary flow of an incompressible conducting fluid governed
by a pressure gradient along a duct, under an applied transverse magnetic field.
We suppose that no secondary flow is produced and that there are no variations in
the duct cross-section or imposed magnetic field with distance 𝑧 along the duct. As
a consequence, all physical quantities except pressure are constant along the duct
(i.e. independent of 𝑧). Finally, we assume that the induced magnetic field due to
the motion of the fluid does not disturb the applied magnetic field so the latter can
be taken as the constant field of flux density 𝐵0 in 𝑦-direction. In view of that, the
classical Maxwell equations reduce to (see e.g. [4] for details):

𝜇
(︁𝜕2𝑢̂𝜖

𝑧

𝜕𝑥̂2
+

𝜕2𝑢̂𝜖
𝑧

𝜕𝑦2

)︁
+𝐵0

𝜕𝐻̂𝜖
𝑧

𝜕𝑦
− 𝜕𝑝𝜖

𝜕𝑧
= 0, in Ω̂𝜖,(2.1)

1

𝜎

(︁𝜕2𝐻̂𝜖
𝑧

𝜕𝑥̂2
+

𝜕2𝐻̂𝜖
𝑧

𝜕𝑦2

)︁
+𝐵0

𝜕𝑢̂𝜖
𝑧

𝜕𝑦
= 0, in Ω̂𝜖.(2.2)
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In the above system, the unknowns are the fluid velocity 𝑢̂𝜖
𝑧 and the induced mag-

netic field 𝐻̂𝜖
𝑧. The superscript 𝜖 is added into the notation to stress the dependence

of the solution on the small parameter as well. We denote by 𝜎, 𝜇 and 𝜕𝑝𝜖

𝜕𝑧 the con-
stant conductivity, viscosity of the fluid and pressure gradient, respectively. The
above equations should be endowed with the appropriate boundary conditions. As
indicated in the Introduction, we impose:

𝑢̂𝜖
𝑧 = 0,

𝜕𝐻̂𝜖
𝑧

𝜕𝑦
= 0, for 𝑦 = −𝑎, 𝑎− 𝜆𝑓

(︁ 𝑥̂
𝑎

)︁
,(2.3)

𝑢̂𝜖
𝑧 = 0, 𝐻̂𝜖

𝑧 = 0, for 𝑥̂ = −𝑏, 𝑏,(2.4)

meaning that we have non–conducting walls parallel to the applied magnetic field
and perfectly conducting walls perpendicular to the field.

Let us rewrite the problem (2.1)–(2.4) in dimensionless form. To accomplish
that, we introduce:

𝑥 =
𝑥̂

𝑏
, 𝑦 =

𝑦

𝑎
, 𝑀 = 𝑎𝐵0

√︂
𝜎

𝜇
, 𝑐 =

𝑏

𝑎
, 𝜖 =

𝜆

𝑎
,

𝑢𝜖 =
𝜇𝑢̂𝜖

𝑧

𝑎2(−𝜕𝑝𝜖

𝜕𝑧 )
, 𝐻𝜖 =

√︂
𝜇

𝜎

𝐻̂𝜖
𝑧

(−𝜕𝑝𝜖

𝜕𝑧 )𝑎
2
.

In view of that, the problem under consideration becomes:

𝜕2𝑢𝜖

𝜕𝑥2
+

𝜕2𝑢𝜖

𝜕𝑦2
+𝑀

𝜕𝐻𝜖

𝜕𝑦
= −1, in Ω𝜖,(2.5)

𝜕2𝐻𝜖

𝜕𝑥2
+

𝜕2𝐻𝜖

𝜕𝑦2
+𝑀

𝜕𝑢𝜖

𝜕𝑦
= 0, in Ω𝜖,(2.6)

with the boundary conditions

𝑢𝜖 = 0,
𝜕𝐻𝜖

𝜕𝑦
= 0, for 𝑦 = −1, 1− 𝜖𝑓(𝑥),(2.7)

𝑢𝜖 = 0, 𝐻𝜖 = 0, for 𝑥 = −𝑐, 𝑐.(2.8)

Note that a non-dimensional parameter 𝑀 (Hartmann number) appears in the
dimensionless equations depending on the flux density, fluid viscosity and conduc-
tivity. Its order of magnitude could be very important in practical applications.
Our goal is to investigate the effective behaviour of the flow governed by (2.5)–(2.8),
as 𝜖 → 0.

3. Asymptotic analysis

To keep the notation as simple as possible, in the following we assume that
𝑓 < 0. By doing that, we have Ω = {(𝑥, 𝑦) ∈ R2 : −𝑐 < 𝑥 < 𝑐, −1 < 𝑦 < 1} ⊂ Ω𝜖

so that the solution (𝑢𝜖, 𝐻𝜖) of (2.5)–(2.8) is defined on Ω. As a consequence, we
are in position to directly expand velocity in Taylor series with respect to 𝑦 near
the upper boundary (otherwise, we would have to extend the solution to Ω and
contaminate the notation). Before, proceeding, it must be emphasized that this
is just a technical assumption, i.e. the obtained results are valid for an arbitrary
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(smooth enough) function 𝑓 . That is essentially due to the fact that it can be
proved that the approximation derived in the sequel is asymptotically the same as
the one that could be built if we have first passed to the 𝜖-independent domain by
introducing the change of variable, namely 𝑧 = 𝑦

1−𝜖 ℎ . This part is straightforward
and can be done following the same procedure as in [16,18].

We expand as follows:

𝑢𝜖(𝑥, 𝑦) =

∞∑︁
𝑘=0

1

𝑘!

𝜕𝑘𝑢𝜖

𝜕𝑦𝑘
(𝑥, 1)(𝑦 − 1)𝑘, 𝐻𝜖(𝑥, 𝑦) =

∞∑︁
𝑘=0

1

𝑘!

𝜕𝑘𝐻𝜖

𝜕𝑦𝑘
(𝑥, 1)(𝑦 − 1)𝑘.

In view of the boundary conditions (2.7), we deduce

0 = 𝑢𝜖(𝑥, 1− 𝜖𝑓) = 𝑢𝜖(𝑥, 1)− 𝜖𝑓(𝑥)
𝜕𝑢𝜖

𝜕𝑦
(𝑥, 1) +

𝜖2

2
𝑓(𝑥)2

𝜕2𝑢𝜖

𝜕𝑦2
(𝑥, 1)− . . . ,(3.1)

0 =
𝜕𝐻𝜖

𝜕𝑦
(𝑥, 1− 𝜖𝑓) =

𝜕𝐻𝜖

𝜕𝑦
(𝑥, 1)− 𝜖𝑓(𝑥)

𝜕2𝐻𝜖

𝜕𝑦2
(𝑥, 1)(3.2)

+
𝜖2

2
𝑓(𝑥)2

𝜕3𝐻𝜖

𝜕𝑦3
(𝑥, 1)− . . . .

On the other hand, we seek for the unknowns in the form of the asymptotic expan-
sion in powers of 𝜖:

(3.3)
𝑢𝜖(𝑥, 𝑦) = 𝑢0(𝑥, 𝑦) + 𝜖𝑢1(𝑥, 𝑦) + 𝜖2𝑢2(𝑥, 𝑦) + ...,

𝐻𝜖(𝑥, 𝑦) = 𝐻0(𝑥, 𝑦) + 𝜖𝐻1(𝑥, 𝑦) + 𝜖2𝐻2(𝑥, 𝑦) + ...

Plugging the above expansions (3.3) into (3.1)–(3.2) yields

0 = 𝑢0(𝑥, 1) + 𝜖
(︁
𝑢1(𝑥, 1)− 𝑓(𝑥)

𝜕𝑢0

𝜕𝑦
(𝑥, 1)

)︁
+ 𝜖2

(︁
𝑢2(𝑥, 1)− 𝑓(𝑥)

𝜕𝑢1

𝜕𝑦
(𝑥, 1) +

𝑓(𝑥)2

2

𝜕2𝑢0

𝜕𝑦2
(𝑥, 1)

)︁
+ . . . ,

0 =
𝜕𝐻0

𝜕𝑦
(𝑥, 1) + 𝜖

(︁𝜕𝐻1

𝜕𝑦
(𝑥, 1)− 𝑓(𝑥)

𝜕2𝐻0

𝜕2𝑦
(𝑥, 1)

)︁
+ 𝜖2

(︁𝜕𝐻2

𝜕𝑦
(𝑥, 1)− 𝑓(𝑥)

𝜕2𝐻1

𝜕𝑦2
(𝑥, 1) +

𝑓(𝑥)2

2

𝜕3𝐻0

𝜕𝑦3
(𝑥, 1)

)︁
+ . . . .

As a result, we obtain the effective boundary conditions satisfied by the first two
terms at the upper boundary:

𝑢0(𝑥, 1) = 0,
𝜕𝐻0

𝜕𝑦
(𝑥, 1) = 0,

𝑢1(𝑥, 1) = 𝑓(𝑥)
𝜕𝑢0

𝜕𝑦
(𝑥, 1),

𝜕𝐻1

𝜕𝑦
(𝑥, 1) = 𝑓(𝑥)

𝜕2𝐻0

𝜕𝑦2
(𝑥, 1).
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3.1. First-order approximation. The first-order approximation (𝑢0, 𝐻0)
satisfies the following system:

𝜕𝑢0

𝜕𝑥2
+

𝜕2𝑢0

𝜕𝑦2
+𝑀

𝜕𝐻0

𝜕𝑦
= −1, in Ω,(3.4)

𝜕2𝐻0

𝜕𝑥2
+

𝜕2𝐻0

𝜕𝑦2
+𝑀

𝜕𝑢0

𝜕𝑦
= 0, in Ω,(3.5)

equipped with the boundary conditions

𝑢0(𝑥,−1) = 0, 𝑢0(𝑥, 1) = 0,
𝜕𝐻0

𝜕𝑦
(𝑥,−1) = 0,

𝜕𝐻0

𝜕𝑦
(𝑥, 1) = 0,(3.6)

𝑢0(−𝑐, 𝑦) = 0, 𝑢0(𝑐, 𝑦) = 0, 𝐻0(−𝑐, 𝑦) = 0, 𝐻0(𝑐, 𝑦) = 0.(3.7)

We note that the above problem is strongly coupled. Following [4], we can solve it
by seeking the solution in the form of the Fourier cosine series, namely:

𝑢0(𝑥, 𝑦) =

∞∑︁
𝑘=0

𝑣𝑘(𝑦) cos
(︁ (𝑘 + 1

2 )𝜋

𝑐
𝑥
)︁
,(3.8)

𝐻0(𝑥, 𝑦) =

∞∑︁
𝑘=0

ℎ𝑘(𝑦) cos
(︁ (𝑘 + 1

2 )𝜋

𝑐
𝑥
)︁
.(3.9)

Observe that (3.8)–(3.9) are postulated in a way so that the boundary conditions
(3.7) are automatically fulfilled.

Remark 3.1. Taking into account the practical applications, it would be even
more of interest to analyze the case of the rectangular duct with perfectly conduct-
ing walls parallel to the imposed magnetic field and non-conducting walls perpen-
dicular to the field. The boundary conditions in that case read:

𝑢𝜖 = 0, 𝐻𝜖 = 0, for 𝑦 = −1, 1− 𝜖𝑓(𝑥),

𝑢𝜖 = 0,
𝜕𝐻𝜖

𝜕𝑥
= 0, for 𝑥 = −𝑐, 𝑐.

By following the above procedure, we would arrive to the conclusion that the system
(3.4)–(3.5) cannot be solved in order to meet the zero boundary conditions for the
velocity at 𝑥 = −𝑐, 𝑐. It means that the boundary layers appear in the vicinity of
𝑥 = −𝑐, 𝑐 forcing us to change the approach. This is the subject of our current
investigation. Formal analysis of the boundary layers in this case has been carried
out in [5] for high Hartman numbers and with no boundary distortions introduced.

In the sequel, we use the representation

(3.10) 1 =

∞∑︁
𝑘=0

𝑎𝑘 cos
(︁ (𝑘 + 1

2 )𝜋

𝑐
𝑥
)︁
,

where

(3.11) 𝑎𝑘 =
1

𝑐

∫︁ 𝑐

−𝑐

cos
(︁ (𝑘 + 1

2 )𝜋

𝑐
𝑥
)︁
𝑑𝑥 =

2 · (−1)𝑘

(𝑘 + 1
2 )𝜋

.
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Substituting (3.8)–(3.9), (3.10)–(3.11) into the equations (3.4)–(3.5), we get a
second-order system of ODEs satisfied by 𝑣𝑘, ℎ𝑘 and 𝑎𝑘, namely:

𝑣′′𝑘 − 𝛼2
𝑘𝑣𝑘 +𝑀ℎ′

𝑘 = −𝑎𝑘,(3.12)

ℎ′′
𝑘 − 𝛼2

𝑘ℎ𝑘 +𝑀𝑣′𝑘 = 0,(3.13)

with 𝛼𝑘 =
(𝑘+ 1

2 )𝜋

𝑐 . Let us solve (3.12)–(3.13). Differentiating (3.12), we obtain the
following equation

(3.14) 𝑣′′′𝑘 − 𝛼2
𝑘𝑣

′
𝑘 +𝑀ℎ′′

𝑘 = 0.

Multiplying (3.13) by the Hartmann number 𝑀 and then subtracting the obtained
equation from (3.14), we get

𝑣′′′𝑘 − (𝛼2
𝑘 +𝑀2)𝑣′𝑘 + 𝛼2

𝑘𝑀ℎ𝑘 = 0

implying

(3.15) ℎ𝑘 =
1

𝛼2
𝑘𝑀

(−𝑣′′′𝑘 + (𝛼2
𝑘 +𝑀2)𝑣′𝑘).

Now, from (3.12) and (3.15) we deduce the equation for 𝑣𝑘

𝑣
(4)
𝑘 − (2𝛼2

𝑘 +𝑀2)𝑣′′𝑘 + 𝛼4
𝑘𝑣𝑘 = 𝛼2

𝑘𝑎𝑘.

We can easily solve it leading to

𝑣𝑘(𝑦) = 𝑉 1
𝑘 sinh(𝑟1𝑘𝑦) + 𝑉 2

𝑘 cosh(𝑟1𝑘𝑦) + 𝑉 3
𝑘 sinh(𝑟2𝑘𝑦)(3.16)

+ 𝑉 4
𝑘 cosh(𝑟2𝑘𝑦) +

1

𝛼2
𝑘

𝑎𝑘,

where 𝑟1𝑘, 𝑟2𝑘 =
[︀
1
2

(︀
2𝛼2

𝑘+𝑀2±𝑀
√︀

4𝛼2
𝑘 +𝑀2

)︀]︀1/2. Finally, plugging the equation
(3.16) into the relation (3.15) gives

ℎ𝑘(𝑦) = 𝑉 1
𝑘

(︁𝑟1𝑘(𝛼2
𝑘 +𝑀2)− 𝑟31𝑘
𝛼2
𝑘𝑀

)︁
cosh(𝑟1𝑘𝑦)(3.17)

+ 𝑉 2
𝑘

(︁𝑟1𝑘(𝛼2
𝑘 +𝑀2)− 𝑟31𝑘
𝛼2
𝑘𝑀

)︁
sinh(𝑟1𝑘𝑦)

+ 𝑉 3
𝑘

(︁𝑟2𝑘(𝛼2
𝑘 +𝑀2)− 𝑟32𝑘
𝛼2
𝑘𝑀

)︁
cosh(𝑟2𝑘𝑦)

+ 𝑉 4
𝑘

(︁𝑟2𝑘(𝛼2
𝑘 +𝑀2)− 𝑟32𝑘
𝛼2
𝑘𝑀

)︁
sinh(𝑟2𝑘𝑦).

From the boundary conditions (3.6) and Fourier representations (3.8)–(3.9) we de-
duce the boundary conditions for 𝑣𝑘 and ℎ𝑘:

𝑢0(𝑥,−1) = 0 ⇒ 𝑣𝑘(−1) = 0,

𝑢0(𝑥, 1) = 0 ⇒ 𝑣𝑘(1) = 0,

𝜕𝐻0

𝜕𝑦
(𝑥,−1) = 0 ⇒ ℎ′

𝑘(−1) = 0,
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𝜕𝐻0

𝜕𝑦
(𝑥, 1) = 0 ⇒ ℎ′

𝑘(1) = 0.

Consequently, we determine the constants 𝑉 𝑙
𝑘 , 𝑙 = 1, 2, 3, 4 as

(3.18)

𝑉 1
𝑘 = 0,

𝑉 2
𝑘 =

𝑎𝑘𝑟2𝑘𝐵𝑘

𝛼2
𝑘𝑟1𝑘𝐴𝑘 cosh(𝑟1𝑘)

(︀
1− 𝑟2𝑘𝐵𝑘

𝑟1𝑘𝐴𝑘

)︀ ,
𝑉 3
𝑘 = 0,

𝑉 4
𝑘 = − 𝑎𝑘

𝛼2
𝑘 cosh(𝑟2𝑘)

(︀
1− 𝑟2𝑘𝐵𝑘

𝑟1𝑘𝐴𝑘

)︀ ,
with 𝐴𝑘 =

𝑟1𝑘(𝛼
2
𝑘+𝑀2)−𝑟31𝑘
𝛼2

𝑘𝑀
and 𝐵𝑘 =

𝑟2𝑘(𝛼
2
𝑘+𝑀2)−𝑟32𝑘
𝛼2

𝑘𝑀
. To conclude, our first-order

approximation reads

(3.19)

𝑢0(𝑥, 𝑦) =

∞∑︁
𝑘=0

𝑣𝑘(𝑦) cos
(︁ (𝑘 + 1

2 )𝜋

𝑐
𝑥
)︁
,

𝐻0(𝑥, 𝑦) =

∞∑︁
𝑘=0

ℎ𝑘(𝑦) cos
(︁ (𝑘 + 1

2 )𝜋

𝑐
𝑥
)︁
,

where 𝑣𝑘(𝑦) and ℎ𝑘(𝑦) are given by (3.16)–(3.17) and the constants 𝑉 𝑙
𝑘 are provided

with (3.18).

3.2. Correctors. As expected, no effects of the boundary perturbation can be
seen from the first order approximation (3.19). Thus, we continue the computation
by identifying the next term in the asymptotic expansions (3.3). The problem
satisfied by the corrector (𝑢1, 𝐻1) reads as follows:

𝜕2𝑢1

𝜕𝑥2
+

𝜕2𝑢1

𝜕𝑦2
+𝑀

𝜕𝐻1

𝜕𝑦
= −1, in Ω,

𝜕2𝐻1

𝜕𝑥2
+

𝜕2𝐻1

𝜕𝑦2
+𝑀

𝜕𝑢1

𝜕𝑦
= 0, in Ω,

with

𝑢0(𝑥,−1) = 0, 𝑢1(𝑥, 1) = 𝑓(𝑥)
𝜕𝑢0

𝜕𝑦
(𝑥, 1),(3.20)

𝜕𝐻1

𝜕𝑦
(𝑥,−1) = 0,

𝜕𝐻1

𝜕𝑦
(𝑥, 1) = 𝑓(𝑥)

𝜕2𝐻0

𝜕𝑦2
(𝑥, 1),(3.21)

𝑢1(−𝑐, 𝑦) = 0, 𝑢1(𝑐, 𝑦) = 0, 𝐻1(−𝑐, 𝑦) = 0, 𝑢1(𝑐, 𝑦) = 0.(3.22)

We notice that the perturbation function 𝑓(𝑥) now appears in the boundary condi-
tions (3.20)–(3.21) carrying the effects we seek for. We again represent the solution
in the form of the Fourier cosine series:

𝑢1(𝑥, 𝑦) =

∞∑︁
𝑘=0

𝑤𝑘(𝑦) cos
(︁ (𝑘 + 1

2 )𝜋

𝑐
𝑥
)︁
,
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𝐻1(𝑥, 𝑦) =

∞∑︁
𝑘=0

𝑑𝑘(𝑦) cos
(︁ (𝑘 + 1

2 )𝜋

𝑐
𝑥
)︁
.

Consequently, the boundary conditions (3.22) are automatically satisfied and, as in
Section 3.1, we get

𝑤𝑘(𝑦) = 𝑊 1
𝑘 sinh(𝑟1𝑘𝑦) +𝑊 2

𝑘 cosh(𝑟1𝑘𝑦) +𝑊 3
𝑘 sinh(𝑟2𝑘𝑦)(3.23)

+𝑊 4
𝑘 cosh(𝑟2𝑘𝑦) +

1

𝛼2
𝑘

𝑎𝑘,

(3.24)

𝑑𝑘(𝑦) = 𝑊 1
𝑘

(︁𝑟1𝑘(𝛼2
𝑘 +𝑀2)− 𝑟31𝑘
𝛼2
𝑘𝑀

)︁
cosh(𝑟1𝑘𝑦)

+𝑊 2
𝑘

(︁𝑟1𝑘(𝛼2
𝑘 +𝑀2)− 𝑟31𝑘
𝛼2
𝑘𝑀

)︁
sinh(𝑟1𝑘𝑦)

+𝑊 3
𝑘

(︁𝑟2𝑘(𝛼2
𝑘 +𝑀2)− 𝑟32𝑘
𝛼2
𝑘𝑀

)︁
cosh(𝑟2𝑘𝑦)

+𝑊 4
𝑘

(︁𝑟2𝑘(𝛼2
𝑘 +𝑀2)− 𝑟32𝑘
𝛼2
𝑘𝑀

)︁
sinh(𝑟2𝑘𝑦).

From (3.20)1 and (3.21)1, we deduce

(3.25) 𝑤𝑘(−1) = 0, 𝑑′𝑘(−1) = 0,

while for the upper boundary we have (see (3.20)2, (3.21)2)
∞∑︁
𝑘=0

𝑤𝑘(1) cos
(︁ (𝑘 + 1

2 )𝜋

𝑐
𝑥
)︁
= 𝑓(𝑥)

∞∑︁
𝑖=0

𝑣′𝑖(1) cos
(︁ (𝑘 + 1

2 )𝜋

𝑐
𝑥
)︁
,(3.26)

∞∑︁
𝑘=0

𝑑′𝑘(1) cos
(︁ (𝑘 + 1

2 )𝜋

𝑐
𝑥
)︁
= 𝑓(𝑥)

∞∑︁
𝑖=0

ℎ′′
𝑖 (1) cos

(︁ (𝑘 + 1
2 )𝜋

𝑐
𝑥
)︁
.(3.27)

Since we will use finite series approximations in the numerical simulations, we can
consider a finite number of terms in (3.26) and proceed as follows:

𝑛∑︁
𝑘=0

𝑤𝑘(1) cos
(︁ (𝑘 + 1

2 )𝜋

𝑐
𝑥
)︁
=

𝑛∑︁
𝑖=0

𝑣′𝑖(1)𝑓(𝑥) cos
(︁ (𝑖+ 1

2 )𝜋

𝑐
𝑥
)︁
.

Multiplying the above equation with cos
(︀ (𝑗+ 1

2 )𝜋

𝑐 𝑥
)︀
, integrating with respect to 𝑥,

and taking into account that∫︁ 𝑐

−𝑐

cos
(︁ (𝑘 + 1

2 )𝜋

𝑐
𝑥
)︁
cos

(︁ (𝑗 + 1
2 )𝜋

𝑐
𝑥
)︁
𝑑𝑥 =

{︃
𝑐, 𝑗 = 𝑘,

0, 𝑗 ̸= 𝑘,

we obtain

(3.28) 𝑤𝑘(1) =
1

𝑐

𝑛∑︁
𝑖=0

𝑣′𝑖(1)

∫︁ 𝑐

−𝑐

𝑓(𝑥) cos
(︁ (𝑖+ 1

2 )𝜋

𝑐
𝑥
)︁
cos

(︁ (𝑘 + 1
2 )𝜋

𝑐
𝑥
)︁
𝑑𝑥.
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Analogously, from (3.27) we conclude

(3.29) 𝑑′𝑘(1) =
1

𝑐

𝑚∑︁
𝑖=0

ℎ′′
𝑖 (1)

∫︁ 𝑐

−𝑐

𝑓(𝑥) cos
(︁ (𝑖+ 1

2 )𝜋

𝑐
𝑥
)︁
cos

(︁ (𝑘 + 1
2 )𝜋

𝑐
𝑥
)︁
𝑑𝑥.

Now, it remains to compute the constants 𝑊 𝑙
𝑘, 𝑙 = 1, 2, 3, 4 appearing in (3.23)–

(3.24). We do that by taking into account the boundary conditions (3.25), (3.28)–
(3.29) leading to

(3.30)

𝑊 1
𝑘 =

1
2𝑤𝑘(1)−𝑊 3

𝑘 sinh(𝑟2𝑘)

sinh(𝑟1𝑘)
,

𝑊 2
𝑘 =

1
2𝑤𝑘(1)− 𝑎𝑘

𝛼2
𝑘
−𝑊 4

𝑘 cosh(𝑟2𝑘)

cosh(𝑟1𝑘)
,

𝑊 3
𝑘 =

𝑑′𝑘(1)−𝐴𝑘𝑤𝑘(1)𝑟1𝑘
2 sinh(𝑟2𝑘)(𝐵𝑘𝑟2𝑘 −𝐴𝑘𝑟1𝑘)

,

𝑊 4
𝑘 =

𝑑′𝑘(1)−𝐴𝑘𝑤𝑘(1)𝑟1𝑘 + 2 𝑎𝑘

𝛼2
𝑘
𝐴𝑘𝑟1𝑘

2 cosh(𝑟2𝑘)(𝐵𝑘𝑟2𝑘 −𝐴𝑘𝑟1𝑘)
,

where 𝐴𝑘 =
𝑟1𝑘(𝛼

2
𝑘+𝑀2)−𝑟31𝑘
𝛼2

𝑘𝑀
and 𝐵𝑘 =

𝑟2𝑘(𝛼
2
𝑘+𝑀2)−𝑟32𝑘
𝛼2

𝑘𝑀
. Thus, the computed cor-

rectors can be written in the following form:

𝑢1(𝑥, 𝑦) =

𝑛∑︁
𝑘=0

𝑤𝑘(𝑦) cos
(︁ (𝑘 + 1

2 )𝜋

𝑐
𝑥
)︁
,(3.31)

𝐻1(𝑥, 𝑦) =

𝑚∑︁
𝑘=0

𝑑𝑘(𝑦) cos
(︁ (𝑘 + 1

2 )𝜋

𝑐
𝑥
)︁
,

with 𝑤𝑘(𝑦), 𝑑𝑘(𝑦) and 𝑊 𝑙
𝑘 given by (3.23), (3.24) and (3.30) respectively.

3.3. Asymptotic approximation. To conclude this Section, we define our
asymptotic approximation as

𝑢𝜖
approx(𝑥, 𝑦) = 𝑢0(𝑥, 𝑦) + 𝜖𝑢1(𝑥, 𝑦),(3.32)

𝐻𝜖
approx(𝑥, 𝑦) = 𝐻0(𝑥, 𝑦) + 𝜖𝐻1(𝑥, 𝑦),(3.33)

where the functions 𝑢0, 𝑢1, 𝐻0, 𝐻1 are provided in Sections 3.1 and 3.2. It is
important to emphasize that all those functions have been computed explicitly.
The asymptotic solution is affected by the small boundary perturbation and those
affects are present in the correctors (𝑢1, 𝐻1). Thus, it is reasonable to expect that
the influence of the boundary perturbation on the effective flow is not just local
(i.e., near the upper boundary), in particular if 𝜖 is not too small. This assertion is
going to be confirmed in the following section by providing the numerical example.

4. Numerical illustrations

In this section, we visually present our asymptotic solution in order to indicate
how the flow adjusts to the presence of small boundary perturbation. Throughout
the section, we employ the boundary perturbation function 𝑓(𝑥) = − cos

(︀
𝜋𝑥
4

)︀
for
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𝑥 ∈ (−2, 2). By considering such restriction of the cosine function, we, in fact,
consider the non-periodic boundary perturbation. This is consistent with the fact
that our analysis is not limited to a perturbation of a periodic nature.

In the numerical example, we take the Hartmann number 𝑀 = 5. Taking
higher Hartmann numbers leads to the solution having an infinite number of in-
flexion points, which is not easily visualized, so we restrict ourselves to the case of
Hartmann numbers of smaller magnitude. We first plot the correctors derived in
Section 3.2. We bring the 2D profiles of the velocity and induced magnetic field
for fixed values of 𝑥 and 𝑦, together with 3D figures. Then, we visually present the
whole asymptotic solution given by (3.32)–(3.33) for different magnitudes of small
parameter 𝜖, namely 𝜖 ∈ {0.1, 0.01}. Again, we depict the 3D figures along with 2D
profiles for fixed values of 𝑥 and 𝑦. 2D profiles are brought only for 𝜖 = 0.1, since
smaller values of 𝜖 produce no significant impact on the solution.

First, we visualize the correctors 𝑢1 and 𝐻1 provided by (3.31). We first plot the
velocity corrector profiles for fixed values 𝑦 = 1.0 and 𝑥 = −1.5,−1.0, 0.0, 1.0, 1.5
and the solution on the whole domain (see Figures 2–5). We then present the profiles
of induced field corrector for fixed values 𝑦 = −1.0, 1.0 and 𝑥 = −1.5,−1.0, 0.0,
1.0, 1.5, with the solution on the whole domain as well (see Figures 6–10). The
correctors 𝑢1 and 𝐻1 have been computed up to 𝑛 = 𝑚 = 10 in the Fourier series
approximations, since increasing those indexes leads to no significant improvements.
The coefficients 𝑤𝑘(1) and 𝑑′𝑘(1) (given by (3.28) and (3.29)) have been calculated
using the numerical integration in MATLAB. One can deduce from the scale and
shape of the correctors that they contain the effect of the boundary perturbation,
being significant near the perturbed boundary 𝑦 = 1 and also present to some
extent in the whole domain.

Figure 2. The profile of 𝑢1 for fixed 𝑦 = 1 (left) and 𝑥 = −1.5 (right).
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Figure 3. The profile of 𝑢1 for fixed 𝑥 = −1.0 (left) and 𝑥 = 0.0 (right).

Figure 4. The profile of 𝑢1 for fixed 𝑥 = 1.0 (left) and 𝑥 = 1.5 (right).

Figure 5. The corrector 𝑢1.
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Figure 6. The profile of 𝐻1 for fixed 𝑦 = 1 (left) and 𝑦 = −1 (right).

Figure 7. The profile of 𝐻1 for fixed 𝑥 = −1.5 (left) and 𝑥 = −1.0 (right).

Figure 8. The profile of 𝐻1 for fixed 𝑥 = 0.0 (left) and 𝑥 = 1.0 (right).
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Figure 9. The profile
of 𝐻1 for fixed 𝑥 = 1.5.

Figure 10. The cor-
rector 𝐻1.

Figure 11. The profile of 𝑢𝜖
approx for fixed 𝑦 = 1.0 (left) and 𝑥 = −1.5 (right).

Figure 12. The profile of 𝑢𝜖
approx for fixed 𝑥 = −1.0 (left) and 𝑥 = 0.0 (right).
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Figure 13. The profile of 𝑢𝜖
approx for fixed 𝑥 = 1.0 (left) and

𝑥 = 1.5 (right).

Figure 14. Velocity approximation 𝑢𝜖
approx for 𝜖 = 0.1.

Then, we present the whole asymptotic approximation given by (3.32)–(3.33).
We first depict the velocity approximation profiles for fixed values 𝑦 = 1.0 and
𝑥 = −1.5,−1.0, 0.0, 1.0, 1.5, and the solution on the whole domain for 𝜖 = 0.1 (see
Figures 11–14). Then we plot the profiles of induced magnetic field approximation
for fixed values 𝑦 = 1.0,−1.0 and 𝑥 = −1.5,−1.0, 0.0, 1.0, along with the solution
on the whole domain for 𝜖 = 0.1 (see Figures 15–18). We can clearly detect the
effects of the boundary perturbation near the upper boundary, and the small, but
noticeable impact (moderately) far from the boundary. Lastly, we visualize the
velocity and induced field approximation on the whole domain for 𝜖 = 0.01 (see
Figures 19–20). The desired effects for such 𝜖 turns out to be negligible, so we omit
the corresponding 2D profiles.
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Figure 15. The profile of 𝐻𝜖
approx for fixed 𝑦 = 1.0 (left) and

𝑦 = −1.0 (right).

Figure 16. The profile of 𝐻𝜖
approx for fixed 𝑥 = −1.5 (left) and

𝑥 = −1.0 (right).

Figure 17. The profile of 𝐻𝜖
approx for fixed 𝑥 = 0.0 (left) and

𝑥 = 1.0 (right).
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Figure 18. Induced field ap-
proximation 𝐻𝜖

approx for 𝜖 = 0.1.
Figure 19. Velocity approxi-
mation 𝑢𝜖

approx for 𝜖 = 0.01.

Figure 20. Induced field approximation 𝐻𝜖
approx for 𝜖 = 0.01.

5. Conclusion

Understanding the effective behavior of the laminar motion of a conducting fluid
in a rectangular duct under applied transverse magnetic field is important from the
practical point of view because we naturally come across such processes in numerous
industrial applications. Since, in practice, the boundary of the fluid domain can
contain various small irregularities, it is particularly of interest to study in what
way MHD flow is affected by the slightly perturbed boundary. In view of that, in
the present paper, we present a formal derivation of the effective model in case of
the duct flow flow with non-conducting walls parallel to the imposed magnetic field
and perfectly conducting walls perpendicular to the field. The analysis employs
a singular perturbation technique and the results are confirmed by the numerical
illustrations.

We believe that the result presented here provides a good platform for under-
standing the influence of small boundary perturbation on the MHD duct flow. The
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fact that we have derived the effective system in the form of the explicit formulae
for the velocity and induced magnetic field is particularly important with regards
to numerical simulations. Since the problem under consideration naturally appears
in numerous applications, we hope that the results provided here could have an im-
pact on the current engineering practice. Our further research efforts will be mainly
focused on extending the presented analysis on a non-stationary flow, namely to
the setting in which the shape function 𝑓 depends on the time variable as well.
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ЕФЕКТИ МАЛИХ ПОРЕМЕЋАJА НА ГРАНИЦИ
МХД ТОКА У КАНАЛУ

У раду испитуjемо ефекте малих поремећаjа на граници ламинарног тока
проводног флуида у правоугаоном каналу под утицаjем попречног магнетног
поља. На пресеку канала уводи се мали погранични поремећаj величине 𝜖.
Користећи асимптотску анализу у односу на 𝜖, добиjамо делотворни модел дат
експлицитним формулама за брзину и индуковано магнетно пољe. Нумерички
резултати су потврдили да разматрани поремећаjи имаjу нелокалан утицаj на
асимптотска решења.
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