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ABsSTRACT. In this note we consider a method of generating functions for
systems with constraints and, as an example, we prove that the billiard map-
pings for billiards on the Euclidean space, sphere, and the Lobachevsky space
are sympletic. Further, by taking a quadratic generating function we get the
skew-hodograph mapping introduced by Moser and Veselov, which relates the
ellipsoidal billiards in the Euclidean space with the Heisenberg magnetic spin
chain model on a sphere. We define analogous mapping for the ellipsoidal
billiard on the Lobachevsky space. It relates the billiard with the Heisenberg
spin model on the light-like cone in the Lorentz—Poincare-Minkowski space.

1. Introduction

The billiard within (n — 1)-dimensional ellipsoid in the Euclidean space

(1.1) QU l={reR"| (A a,2) =1},
A = diag(aq,...,a,) > 0, is a basic example of a discrete integrable system (e.g,
see [6,12,19]). One of manifestations of integrability is the existence of the skew-

hodograph mapping, which relates the system with the Heisenberg magnetic spin
chain model, i.e., a discrete Neumann system [13,16,21].

In this note we consider a method of generating functions for constrained sys-
tem and give another interpretation of the skew-hodograph mapping, allowing its
formulation for ellipsoidal billiards on the Lobachevsky space. It is related to the
Heisenberg spin model on light-like cones defined in [8].

Usually, the symplectic property of the billiard mapping for convex regions D in
R™ is formulated for a space of lines that intersect the boundary 9D (see [11,19]).
Alternatively, in Section 2, we use a method of generating functions for constrained
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systems (Theorem 2.1). For ellipsoidal billiards, we consider the variety M defined
by constraints

(12) M : f1:<A_1J},l'>:17 f2:<yay>:1a f3:<A_1J}7y>§é0
within the symplectic linear space (R*",dy A dx), dy A dz = Yo dyi A dxy (see
Proposition 2.1). Next, we take a quadratic generating function

(1.3) Sz, X) = (A_1/2$7X>
for a system given by constraints (1.2). The corresponding symplectic dynamics
v M — M

is actually the skew-hodorgraph mapping given by Moser and Veselov [13] (Sub-
section 2.3).

This observation motivated us to consider an analogous construction for ellip-
soidal billiards on the sphere and the Lobachevsky space in Section 3. By using The-
orem 2.1 we prove that the billiard mappings are symplectic (Lemma 3.1, Propo-
sition 3.1), and taking the generating function (1.3) we define the skew-hodograph
mapping ¥ for the later system (Theorem 3.1). Following [10], in the construction
we use a correspondence between the ellipsoidal billiard on the sphere (Lobachevsky
space) and the virtual billiard within the cone in the Euclidean (Lorentz—Poincare—
Minkowski) space (see Lemma 3.2).

For the completeness of the exposition we included the notion of virtual billiards
and the proof of Lemma 3.2 (Subsection 3.3). Note again that the symplectic
properties of the ellipsoidal billiards (Propositions 2.1, 3.1) are well known, but
the presented proofs are quite simple and can be applied for billiards within an
arbitrary convex region. To the author knowledge, the observation about generating
functions for systems with constraints (Theorem 2.1) and the construction of skew-
hodograph mappings by the use of quadratic generating functions (Subsections 2.3,
3.4, Theorem 3.1) are not given in the literature. It would be interesting to study
dynamics and symmetries related to some other discrete integrable systems with
constraints by taking suitable generating functions (see also [17]).

2. Billiards and generating functions for systems with constraints

2.1. Generating functions. Recall that if a graph I'y of the diffeomorphism
¢: U —=V,UCR”™(p,z), VC R*™(P,X) can be written in the form
0S(z, X) 05 (z, X)

= — P:—i
p or ox

for a certain function S(z, X), then ¢ is symplectic with respect to the canonical
structure: ¢*dP A dX = dp A dz. The function S(z,X) is called a generating
function of the mapping ¢ (the generating function S; in notation of [1]). The
above set up allows generalisation to cotangent bundles T*@ endowed with the
standard symplectic structures (e.g., see [14]). Instead, we use redundant variables
and constraints and have the following simple observation.
Consider (2n—2k)-dimensional submanifolds M ¢ R**(p, z) and N € R*"(P, X),

defined by the constraints of the form
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M: fz(x):07 fk?+i(p7m)207 i:17"'7ka
N: Fi(X) =0, Fioyi(P,X) =0, i=1,...,k

We assume that M and N are symplectic submanifolds, that is
det({fi, fi})lm #0,  det({Fy, Fj})[v #0, 4,5 =1,...,2k
(e.g., see [16]).

THEOREM 2.1. If a graph Ty, of the diffeomorphism ¢: M — N can be given by
k

05(2,X) | ~~, fi B anX
o X Ng Peo

(2.1) p=

for certain Lagrange multipliers \;, A;, then ¢ is symplectzc. Szmzlarly, if (2.1)
defines a diffeomorphism ¢: M — N, then ¢ is symplectic.

PROOF. The equations (2.1) imply

afi

pdr — PdX = dS+Z>\ dx—i—A dX\pW

0X

and, therefore,
k
(2.2) dp ANdx —dP AdX = dX\i Adf; + dA; AdF|r,.
i=1
Note that the right hand side of (2.2) is equal to zero for vectors £ tangent to
Ty, since df;(§) = dF;(§) = 0. Thus,

Theorem 2.1 allows a quite simple proof that the billiard mapping for the
billiards within convex regions D C R" is symplectic.

2.2. Billiards. Let ¢ : (y,z) — (Y, X) be the billiard mapping mapping

(2.3) X =z 4+ py,
(2.4) Y =y+vA'X
of a billiard system within the ellipsoid (1.1) (e.g., see [13]). The multipliers
(A", y) (A7'X)Y)
2.5 =2 I/ —9ox> 7/
22) S A VW

are determined from the conditions that two successive impact points x and X
belong to the ellipsoid ((A™1X, X) = (A~!'z,2) = 1) and that y and Y are unit
vectors ((Y,Y) = (y,y) = 1).

For > 0 (i.e., (A7 x,y) < 0), the vectors y and Y are the outgoing velocities
at two successive impact points z and X, while for p < 0 (i.e., (A71z,y) > 0), the
outgoing velocities are —y and —Y . The function (A~'x, y) is the first integral of the
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system and we have the decomposition of M on invariant subsets M = M, U M_,
where M, and M_ are domains with (A~ 1z, y) < 0 and (A~1z,y) > 0, respectively.

The billiard mapping ¢ commutes with the Zs-action y — —y that interchange
M, and M_. Thus, ¢ defines the dynamics on M/Zs, which can be identified with
the space of lines that intersect the ellipsoid Q"~!. Also, since

{flvf?} = 4f3 # O‘Mv

M is a symplectic submanifold of (R*"(y, z),dy A dz). Note that here we identified
vectors and covectors in R™ by mean of the Euclidean scalar product.
The equations (2.1) for the constraints (1.2) and the generating function

S, X)=—|X—z|=—/(X—2,X —x)
get the form
X -z
2. = 4+ A7t
(2.6) VSt x,
X -z
2.7 Y="—"—AA'X.

By taking A = 0, A = —v, u = |X — x|, we obtain the billiard system (2.3),
(2.4) within the domain M, . Applying the Zy-symmetry, we get:

ProrosSITION 2.1. The billiard map ¢: M — M 1is symplectic.

A similar proof can be applied for a billiard within an arbitrary convex region
D ={f(x) <0} Cc R", by taking the constraints f(z) =0, (y,y) = 1, and replacing
the normal vector A~!X at X in (2.4) and (2.7) and A~'x at x in (2.6) by Vf|x
and V f|,, respectively.

Proposition 2.1 also follows from the fact that the skew-hodograph mapping
: M — M is symplectic and satisfies 12 = —¢ (see below). It is also convenient
to consider the billiard as a discrete Lagrangian system on Q" !: the billiard
trajectories xy, k € Z are the extremals of the discrete action S{xy] = >, |zr41—2k]
(see [13]). An interesting dual Lagrangian formulation is recently given by Suris
[17], representing the ellipsoidal billiard mapping as a symplectic mapping of the
cotangent bundle of the sphere (y,y) = 1.

2.3. Skew-hodograph mapping. Now, we take a quadratic generating func-
tion (1.3). The equations (2.1) become

(2.8) y=A"12X + A e,
(2.9) Y = —A"Y2p — AATIX,

where (A~'x,2) =1, (A71X, X) = 1.
From the constraints (y,y) = 1, (Y,Y) = 1, we get that A and A are solutions
of the equations

(2.10) INA™ e, ATV2XY) 4 A2(A 22, 2) = 0,
(2.11) 2MNATLX, A7V 20) + A2(A72X, X) = 0.
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We have four real solutions (A, A) of (2.10), (2.11) given by
A=0 or A=-2(A"te, A7V2X) /(A %z, ),
A=0 or A=-2(A"1a, A7V2X)/(A72X, X).

The cases when both (A, A) are equal to zero, or different from zero, lead to
the trivial dynamics:
2 = —TIdyy.
The cases when one of the multipliers is zero and the second one is not zero
are equivalent. Let us take A\ = 0, A = —2(A~ 'z, A7Y/2X)/(A72X, X). Then the
relations (2.8), (2.9) define the symplectic mapping ¢: M — M:

X = AY?y,
V= —AY20 — pyA7V2y = 2(A7 e y) (AT, ).

Note that (A~'z,y) is the integral of . Also, ¢ coincides with the skew-
hodograph mapping introduced by Moser and Veselov [13]!.

REMARK 2.1. The skew-hodograph mapping has nice properties:
¢°¢:¢°¢» 1/}2:_9255
i.e., it maps billiard trajectories into a billiard trajectories and it can be considered

as a square root of the billiard dynamics [13]. Further, let (y;,z;) be its trajectory.
Then the sequence y; satisfies the equations

(2.12) APy + APy 0 = 2(A7 Py 5 0) (AT 950y,

which are the equations of the Heisenberg model on a sphere S"~!(y) with the
action S[y;] = >, (yi, AY%y, 1) (see [13,16,21]). Also, if y; is a solution of the
Heisenberg model (2.12), then x; = (—1)7 A'/2yy; is a sequence of impact points of
the billiard trajectory within ellipsoid (1.1) (see [13]).

3. Billiards on the sphere and the Lobachevsky space
3.1. Definition of billiards. From now on we use the following notation:

<£a77> = 517]1 +- fn—lnn—l + §n77n7

for all £,»7 € R"™ and whenever we have £1 (F1), this means +1 (—1) for the
Euclidean space and —1 (+1) for the pseudo-Euclidean space of signature (n—1,1).
We identify tangent TR" = R*"(y,z) and cotangent bundle T* R™ = R*"(p, x)
by means of the metric £ = diag(1,...,1,4+1): p = Ey, defining the symplectic

structure
n—1

Edy N\ dx = Z dy; N\ dz; £ dy, A dxy,
i=1
on R*(y, z).

IMore precisely, in order to have a skew-hodograph mapping given in [13], one should take
A =0, A =0 and that y is incoming velocity at z € Q”! in the billiard mapping.
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Next, we consider the sphere S*~! = Sﬁ71 and the Lobachevsky space H* !, re-
alized as upper pseudo-sphere S~ ! in the the LorentzPoincare-Minkowski space,
given by

Stt={zeR"|(z,z)=1}, S '={zeR"|(z,2)=-1]|m, >0}

The induced metrics on Si‘l is Riemannian of constant curvature +1, while ge-
odesic lines are simply intersections of Si_l with two-dimensional planes through
the origin.

It is well known that the ellipsoidal billiards on the sphere and the Lobachevsky

space are completely integrable [4,5,12,18,20]. In the above notation, the ellipsoid
Q"2 ¢ S’! can be defined as a intersection of a cone
K"—1 . (A 'z,2) =0

with S~ ' and the upper half-space {z,, > 0}, where
A =diag(ay,...,an), 0<ai,a9,...,an—2,a,-1 < Fay.

Note that A~ 'z for z € Q"' is normal to T, K"~ ! and belongs to TISTi_l. Thus,
A~ 'z is a normal of the quadric Q"2 at x.

For a phase space we take (2n — 4)-dimensional variety M C R*"(y,z) de-
fined by

M: fr=(z,a) =%+1, fy=(A""w,2) =0, Ty >0,
f2:<-'157y>:0, f4:<y,y>=1, f5:<A_1$7y><0~

Note that now y denotes the outgoing velocity (tangent to S’j;l) at the point
xeQr2.

LEMMA 3.1. The billiard mapping ¢: M — M is given by

(3.1) X =ar+ By,
(3.2) Y =Fpz+ay +vA7X,
where
oo (A ly,y) B oot m ) N (Aly)
V(A Ty, y)2 £ 4(A- 1z, y>27 (A=Yy,y)’ (A72X, X)

PRrOOF. For (y,z) € M, (Y, X) = ¢(y, z) is determined in two steps. First, we
consider the geodesic line ¢(t), ¢(0) = z, ¢(0) = y and find its intersection X = ¢(to)
with Q"~2. Let Y’ = ¢é(to) be the incoming velocity at X. Then X and Y’ are
(pseudo-)Euclidean rotations of z and y:

X:ax+/8y7 Yl:q:5$+ay7 a2i52:17 aaﬁ>07

implying the relations (X, X) = £1, (Y',Y’) =1, and (Y', X) = 0.
From the condition (A~'X, X) = 0, it follows that the parameters a and 3 are
related by the equation

(3.3) BlAT Y, ) + 20(A™ 2, y) = 0,
and after the substitution to a®+38% = 1 weget @ = 1/+/1 £ 4(A- 1z, y)2 /(A 1y, y)2.
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Now, let Y be the reflection of Y’ with respect to TxQ" 2 - the outgoing
velocity at X. The difference of Y’ and Y is normal to Q" 2: ¥ =Y’ + vA~ 'z,
for a certain multiplier 4. From the condition (YY) = 1, it follows

_ Ay
TR XY

Next, as in the case of the billiard within an ellipsoid, J = (A~ 1z, y) is the
integral of the billiard mapping:

(A7Y, X) = (A7, X) + (472X, X)
=—(A7'X,Y") (3.4)
= —(A Yoz + By), (FBz + o))
= —af(A7y,y) — (@@ F B3 (A e, y)
=2a*(A7 2, y) — (® F B2) (A7 2, y) (3.3)
= (A" z,y),
which completes the proof. O

(3.4)

3.2. Generating function. Firstly, note that M is a symplectic submanifold
of (R*™, Edy A dx). Indeed, let D;; = {fi, f;}. We have

Do =2f1, Di3=0, Dia=4fs, Dog=-2f3, Do =2fs, Dss=4fs.
Therefore, det D‘M = (D12D34 — D13D24 + D23D14>2|M == 8f§ 7& 0 2.

PROPOSITION 3.1. The billiard mapping (3.1), (3.2) is symplectic with the gen-
erating functions for the sphere and the Lobachevsky space given by

S4 = —arccos (z, X) and S_ = —arccosh (—(z, X)),
respectively.
PROOF. Let 6 = arccos (z, X), i.e., = arccosh (—(z, X)), and let us denote
sing  =sinf, cos; 8 =cosf, sin_ 0 =sinh 0, cos_ 6 = cosh 6.

Then
0S4+ EX

Or  sing @’
Therefore, the relations (2.1) are

EX
(3.5) p=FEy=— +MEx + EA
sing 6
Ez 1
(3.6) P=FY = —— —MEX — ADEA™X.
sing 6

2Equivalently, it is well known that the submanifold f; = 1, fo = 0 is simplectomorphic to
the cotangent bundle P = T*Si_l. Denote the induced Poisson bracket on P by {-,-}p. We
have {f3, fa}p = {f3,fa} = 4f5 # 0|ar. Thus, M is a symplectic submanifold of P, that is a
symplectic submanifold of (R?", Edy A dz).
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Let us take Ay = 0. From (3.5) we get
X =sing Oy — (A1 sing 0)z = ax + Py,
for « = —Aysing @ = cost 0, B = sing 0, A\; = —cosy /sing § = —a/B. Further,
from (3.6) we get

Y = —% ~ Ar(az + By) — AsATIX
(- a?+ 2
B

= FBr + ay — A AT'X,

— Ala)x — A By — A AT X

for A; = —a/B. Thus, the above relations imply the mapping (3.1), (3.2) with
A2 = —. U

As in Subsection 2.2, a similar proof can be applied for a billiard within an
arbitrary convex region D C Slﬁl. The billiard mappings for convex domains on
the sphere Si and the Lobachevsky plane S? are recently studied in [2,15,22].

3.3. Virtual billiards within cones. There are alternative descriptions of

the billiards on S%7* (see [10,20]). As for the ellipsoidal billiards, consider the
mapping:
(3.8) Y =y+vAlX,

where the multipliers (2.5) are now determined from the conditions (A71 X, X) = 0,
(YY) = (y,y), i.e., for the phase space we take

N =R" XKn_l(y,x)\{<A_1(E,y> =0, <A_1y7y> = 0}

We refer to the mapping ® defined above as the virtual billiard mapping (see
[9,10]%). Note that J = (A~ 'z,y) is an invariant of ®, so if (A~ x,y) # 0, then
(A71X)Y) # 0 as well. On the other hand, if (A=Y, Y) = 0, then the flow stops
by definition.

Let (yj+1,%j41) = ®(yj,2;), j € Z. The Hamiltonian H = 1(y;,y;) is an
invariant. Therefore, the segments ;41 of a given virtual billiard trajectory are
of the same type: they are all either space-like (H > 0), time-like (H < 0) or
light-like (H = 0). For a fixed value of the Hamiltonian H = h, the corresponding
mapping is a symplectic transformation of (N, Edy A dx|y, ), Ny = H-Y(h) C N
(see Theorem 2.1, [10]°).

3The matrix A used here corresponds to the matrix EA used in [10].

4The segments xj_1x; and z;x;41 could be either on the same side (the usual billiard
reflection in the pseudo-Euclidean space [7,11]) or on the opposite sides of the tangent plane
sz Kn—1 (in the three-dimensional Euclidean case, Darboux referred to such reflection as the
virtual reflection, e.g., see [6, Ch. 5]).

®In [10, Theorem 2.1] a direct proof in terms of the induced Dirac-Poison brackets on Ny, is
given for quadrics (A~ 1z, z) = 1, but the same proof applies for the virtual billiards within cones
(A= lz,z) = 0.
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We have the following statement (see [10, Lemma 5.1]).

LEMMA 3.2. Let &; be a sequence of the impact points of a virtual billiard

trajectory (j+1,Zj+1) = ®(Y;,%;), j € Z. Then
x; = span{#;} NS}!

is the sequence of the impact points of a billiard trajectory within ellipsoid Q"2 on
the (pseudo-)sphere ST

PROOF. First, we note that ® defines the dynamics of planes

A: span{y, @} — span{YV, X},  (V,X)=&(y,2).

Indeed, we have that the planes spanned by (Y, X) = ¢(4,#) and (Y', X') =

o(4',2") coincide, where
¥ =az, 9 =0bt+c)y, abccR, a,c#O.
(see the proof of [10, Lemma 5.1]). Also, the billiard mapping (3.1), (3.2) deter-
mines the dynamics
6: span{y,z} — span{Y, X}, (V,X) = ¢(y,z),

and we need to prove the identity A = 4, which is sketched in the proof of [10,
Lemma 5.1]. For the completeness of the exposition, here we will derive it.

Let us take (3,%) = (y,x), where (y,z) € M C N. Then from (3.1) and (3.2)
we get

Y AX = (FBz +ay +7A71X) A (az + By)
= (@£ yrnz+yATIXAX
<A71x7 y> —1
= 2—— AT X AKX
yAz+ X X) AX,
while from (3.7) and (3.8) it follows
VYAX =@+ oA X) A (z + i)

(A71XY)

o LATIXAX
(A72X, X)

=yANx+2

<A_1l'7y> -1

where we used that J is the integral of ® and that X and X are proportional.
Therefore, A = §. The statement is proved. O

3.4. Skew-hodograph mapping. Let L""! = {y € R" | (y,y) = 0} be a
light-like cone. By an analogy with the Subsection 2.3, we consider the symplectic
submanifold

No =L"" ' x K"y, e)\{{A™2,y) =0, (A7'y,y) = 0}

of (R*(y,z), Edy A dz) and the generating function (1.3). For p = Ey, the equa-
tions (2.1) become
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(3.9) Ey=EBX + \EA 'z,
(3.10) EY = ~EBx — AEA'X,
where (A~ 'z, 2) = 0, (A71X, X) = 0. We choose the following Lagrange multi-
pliers:
A=0, A=-24"12,A7V2X)/(A72X, X).

Then the relations (3.9), (3.10) define the symplectic mapping ¥: Ny — Ny:

X = A2y,

Y =—APr—pAd Py, = —2(A7 e, y) /(AT Y, y).

We have the following analogy with the skew-hodograph mapping for the bil-

liards within ellipsoid (compare with Remark 2.1).

THEOREM 3.1. (i) The mapping ¥ commutes with the wvirtual billiard
mapping for the light-like trajectories within the cone K*~1

Uod|y, =Py, 00
and, moreover,
T2 = —d|p,.
(i) Let (y;,x;), j € Z be a trajectory of ¥. Then the sequence of light-like
vectors y; € L1 satisfies the equations

(3.11) APys 0+ APy 0 = 2(AT Py g 0) (AT 5,050y,
which are the equations of the Heisenberg model on a light-like cone L" !

with the action functional S[y;] = 3 (yi, AY?y;11).
(iil) If y; is a solution of the Heisenberg model (3.11), then

x; = spanf{(—1)I AY?y,;} N "1

is a sequence of impact points of the billiard within the quadric Q"2 on
the Lobachevsky space ST *.

PRrROOF. (Sketch) The proof of items (i) and (ii) is straightforward. Item (iii)
follows from items (i), (ii), and Lemma 3.2. O

The Heisenberg model on pseudo-spheres and light-likes cones in pseudo-Euclidean
spaces is studied in [8]. The system on light-like cones is an example of a discrete
contact integrable system.
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114 JOVANOVIC

BMNJINJAPU HA TTPOCTOPUMA KOHCTAHTHE KPUBUHE
1N TEHEPATOPHE ®YHKIIMJE 3A CUCTEME CA BE3AMA

PE3UME. VY oBOM mpujory pa3MaTpaMO MeTOJI TeHepaTOpHUX (QyHKIMja 3a
CHCTEeMe Ca Be3aMa U, Kao IPHUMep, ITI0Ka3yjeMo Jia Cy OuinjapHa IpecinKaBama 3a
6unmjape y Eykiuiakom ipoctopy, cdepu u npocropy JIob6adeBCcKOr CUMILIEKTHYIKA.
Jape, y3umameM KBaJpaTHe TeHEpATOPHE DYHKIHjE, TOOHjaMO KOCO-XOI0rPAdCKO
npeckiankaBame Mosepa u BecesoBa, koje mose3yje Ousmjap yHyTap €IUICOUIA
y EykmnackoM mpocTopy ca JUCKPETHHUM Xaj3eHOeproBUM CHCTEMOM Ha CepH.
Hedunumemo ogrosapajyhe mpecankaBambe 3a OUInjape YHyTap eJTUICOUIa Y TIPO-
cropy Jlobadesckor. OHO moOBe3yje Omujap ca JUCKPETHUM Xaj3eHOEproBUM CH-
CTEMOM Ha CBETJIOCHOM KoHycy y mpocropy Jlopenma-Iloenkapea—MuHKOBCKOT.
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