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Abstract. In this note we consider a method of generating functions for
systems with constraints and, as an example, we prove that the billiard map-
pings for billiards on the Euclidean space, sphere, and the Lobachevsky space
are sympletic. Further, by taking a quadratic generating function we get the
skew-hodograph mapping introduced by Moser and Veselov, which relates the
ellipsoidal billiards in the Euclidean space with the Heisenberg magnetic spin
chain model on a sphere. We define analogous mapping for the ellipsoidal
billiard on the Lobachevsky space. It relates the billiard with the Heisenberg
spin model on the light-like cone in the Lorentz–Poincare–Minkowski space.

1. Introduction

The billiard within (𝑛− 1)-dimensional ellipsoid in the Euclidean space

(1.1) Q𝑛−1 = {𝑥 ∈ R𝑛 | ⟨𝐴−1𝑥, 𝑥⟩ = 1},

𝐴 = diag(𝑎1, . . . , 𝑎𝑛) > 0, is a basic example of a discrete integrable system (e.g,
see [6,12,19]). One of manifestations of integrability is the existence of the skew-
hodograph mapping, which relates the system with the Heisenberg magnetic spin
chain model, i.e., a discrete Neumann system [13,16,21].

In this note we consider a method of generating functions for constrained sys-
tem and give another interpretation of the skew-hodograph mapping, allowing its
formulation for ellipsoidal billiards on the Lobachevsky space. It is related to the
Heisenberg spin model on light-like cones defined in [8].

Usually, the symplectic property of the billiard mapping for convex regions𝐷 in
R𝑛 is formulated for a space of lines that intersect the boundary 𝜕𝐷 (see [11,19]).
Alternatively, in Section 2, we use a method of generating functions for constrained
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systems (Theorem 2.1). For ellipsoidal billiards, we consider the variety 𝑀 defined
by constraints

(1.2) 𝑀 : 𝑓1 = ⟨𝐴−1𝑥, 𝑥⟩ = 1, 𝑓2 = ⟨𝑦, 𝑦⟩ = 1, 𝑓3 = ⟨𝐴−1𝑥, 𝑦⟩ ≠ 0

within the symplectic linear space (R2𝑛, 𝑑𝑦 ∧ 𝑑𝑥), 𝑑𝑦 ∧ 𝑑𝑥 =
∑︀

𝑖 𝑑𝑦𝑖 ∧ 𝑑𝑥𝑖 (see
Proposition 2.1). Next, we take a quadratic generating function

(1.3) 𝑆(𝑥,𝑋) = ⟨𝐴−1/2𝑥,𝑋⟩
for a system given by constraints (1.2). The corresponding symplectic dynamics

𝜓 : 𝑀 →𝑀

is actually the skew-hodorgraph mapping given by Moser and Veselov [13] (Sub-
section 2.3).

This observation motivated us to consider an analogous construction for ellip-
soidal billiards on the sphere and the Lobachevsky space in Section 3. By using The-
orem 2.1 we prove that the billiard mappings are symplectic (Lemma 3.1, Propo-
sition 3.1), and taking the generating function (1.3) we define the skew-hodograph
mapping Ψ for the later system (Theorem 3.1). Following [10], in the construction
we use a correspondence between the ellipsoidal billiard on the sphere (Lobachevsky
space) and the virtual billiard within the cone in the Euclidean (Lorentz–Poincare–
Minkowski) space (see Lemma 3.2).

For the completeness of the exposition we included the notion of virtual billiards
and the proof of Lemma 3.2 (Subsection 3.3). Note again that the symplectic
properties of the ellipsoidal billiards (Propositions 2.1, 3.1) are well known, but
the presented proofs are quite simple and can be applied for billiards within an
arbitrary convex region. To the author knowledge, the observation about generating
functions for systems with constraints (Theorem 2.1) and the construction of skew-
hodograph mappings by the use of quadratic generating functions (Subsections 2.3,
3.4, Theorem 3.1) are not given in the literature. It would be interesting to study
dynamics and symmetries related to some other discrete integrable systems with
constraints by taking suitable generating functions (see also [17]).

2. Billiards and generating functions for systems with constraints

2.1. Generating functions. Recall that if a graph Γ𝜑 of the diffeomorphism
𝜑 : 𝑈 → 𝑉 , 𝑈 ⊂ R2𝑛(𝑝, 𝑥), 𝑉 ⊂ R2𝑛(𝑃,𝑋) can be written in the form

𝑝 =
𝜕𝑆(𝑥,𝑋)

𝜕𝑥
, 𝑃 = −𝜕𝑆(𝑥,𝑋)

𝜕𝑋
,

for a certain function 𝑆(𝑥,𝑋), then 𝜑 is symplectic with respect to the canonical
structure: 𝜑*𝑑𝑃 ∧ 𝑑𝑋 = 𝑑𝑝 ∧ 𝑑𝑥. The function 𝑆(𝑥,𝑋) is called a generating
function of the mapping 𝜑 (the generating function 𝑆1 in notation of [1]). The
above set up allows generalisation to cotangent bundles 𝑇 *𝑄 endowed with the
standard symplectic structures (e.g., see [14]). Instead, we use redundant variables
and constraints and have the following simple observation.

Consider (2𝑛−2𝑘)-dimensional submanifolds𝑀 ⊂ R2𝑛(𝑝, 𝑥) and𝑁 ⊂ R2𝑛(𝑃,𝑋),
defined by the constraints of the form
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𝑀 : 𝑓𝑖(𝑥) = 0, 𝑓𝑘+𝑖(𝑝, 𝑥) = 0, 𝑖 = 1, . . . , 𝑘,

𝑁 : 𝐹𝑖(𝑋) = 0, 𝐹𝑘+𝑖(𝑃,𝑋) = 0, 𝑖 = 1, . . . , 𝑘.

We assume that 𝑀 and 𝑁 are symplectic submanifolds, that is

det({𝑓𝑖, 𝑓𝑗})|𝑀 ̸= 0, det({𝐹𝑖, 𝐹𝑗})|𝑁 ̸= 0, 𝑖, 𝑗 = 1, . . . , 2𝑘

(e.g., see [16]).

Theorem 2.1. If a graph Γ𝜑 of the diffeomorphism 𝜑 : 𝑀 → 𝑁 can be given by

(2.1) 𝑝 =
𝜕𝑆(𝑥,𝑋)

𝜕𝑥
+

𝑘∑︁
𝑖=1

𝜆𝑖
𝜕𝑓𝑖
𝜕𝑥

, 𝑃 = −𝜕𝑆(𝑥,𝑋)

𝜕𝑋
−

𝑘∑︁
𝑖=1

Λ𝑖
𝜕𝐹𝑖

𝜕𝑋
,

for certain Lagrange multipliers 𝜆𝑖,Λ𝑖, then 𝜑 is symplectic. Similarly, if (2.1)
defines a diffeomorphism 𝜑 : 𝑀 → 𝑁 , then 𝜑 is symplectic.

Proof. The equations (2.1) imply

𝑝𝑑𝑥− 𝑃𝑑𝑋 = 𝑑𝑆 +

𝑘∑︁
𝑖=1

𝜆𝑖
𝜕𝑓𝑖
𝜕𝑥

𝑑𝑥+ Λ𝑖
𝜕𝐹𝑖

𝜕𝑋
𝑑𝑋|Γ𝜑

,

and, therefore,

(2.2) 𝑑𝑝 ∧ 𝑑𝑥− 𝑑𝑃 ∧ 𝑑𝑋 =

𝑘∑︁
𝑖=1

𝑑𝜆𝑖 ∧ 𝑑𝑓𝑖 + 𝑑Λ𝑖 ∧ 𝑑𝐹𝑖|Γ𝜑
.

Note that the right hand side of (2.2) is equal to zero for vectors 𝜉 tangent to
Γ𝜑, since 𝑑𝑓𝑖(𝜉) = 𝑑𝐹𝑖(𝜉) = 0. Thus,

𝜑*
(︂∑︁

𝑖

𝑑𝑃𝑖 ∧ 𝑑𝑋𝑖|𝑁
)︂

=
∑︁
𝑖

𝑑𝑝𝑖 ∧ 𝑑𝑥𝑖|𝑀 . �

Theorem 2.1 allows a quite simple proof that the billiard mapping for the
billiards within convex regions 𝐷 ⊂ R𝑛 is symplectic.

2.2. Billiards. Let 𝜑 : (𝑦, 𝑥) ↦→ (𝑌,𝑋) be the billiard mapping mapping

𝑋 = 𝑥+ 𝜇𝑦,(2.3)

𝑌 = 𝑦 + 𝜈𝐴−1𝑋(2.4)

of a billiard system within the ellipsoid (1.1) (e.g., see [13]). The multipliers

(2.5) 𝜇 = −2
⟨𝐴−1𝑥, 𝑦⟩
⟨𝐴−1𝑦, 𝑦⟩

, 𝜈 = 2
⟨𝐴−1𝑋,𝑌 ⟩
⟨𝐴−2𝑋,𝑋⟩

are determined from the conditions that two successive impact points 𝑥 and 𝑋
belong to the ellipsoid (⟨𝐴−1𝑋,𝑋⟩ = ⟨𝐴−1𝑥, 𝑥⟩ = 1) and that 𝑦 and 𝑌 are unit
vectors (⟨𝑌, 𝑌 ⟩ = ⟨𝑦, 𝑦⟩ = 1).

For 𝜇 > 0 (i.e., ⟨𝐴−1𝑥, 𝑦⟩ < 0), the vectors 𝑦 and 𝑌 are the outgoing velocities
at two successive impact points 𝑥 and 𝑋, while for 𝜇 < 0 (i.e., ⟨𝐴−1𝑥, 𝑦⟩ > 0), the
outgoing velocities are −𝑦 and −𝑌 . The function ⟨𝐴−1𝑥, 𝑦⟩ is the first integral of the
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system and we have the decomposition of 𝑀 on invariant subsets 𝑀 =𝑀+ ∪𝑀−,
where𝑀+ and𝑀− are domains with ⟨𝐴−1𝑥, 𝑦⟩ < 0 and ⟨𝐴−1𝑥, 𝑦⟩ > 0, respectively.

The billiard mapping 𝜑 commutes with the Z2-action 𝑦 ↦→ −𝑦 that interchange
𝑀+ and 𝑀−. Thus, 𝜑 defines the dynamics on 𝑀/Z2, which can be identified with
the space of lines that intersect the ellipsoid Q𝑛−1. Also, since

{𝑓1, 𝑓2} = 4𝑓3 ̸= 0|𝑀 ,

𝑀 is a symplectic submanifold of (R2𝑛(𝑦, 𝑥), 𝑑𝑦∧ 𝑑𝑥). Note that here we identified
vectors and covectors in R𝑛 by mean of the Euclidean scalar product.

The equations (2.1) for the constraints (1.2) and the generating function

𝑆(𝑥,𝑋) = −|𝑋 − 𝑥| = −
√︀
⟨𝑋 − 𝑥,𝑋 − 𝑥⟩

get the form

𝑦 =
𝑋 − 𝑥

|𝑋 − 𝑥|
+ 𝜆𝐴−1𝑥,(2.6)

𝑌 =
𝑋 − 𝑥

|𝑋 − 𝑥|
− Λ𝐴−1𝑋.(2.7)

By taking 𝜆 = 0, Λ = −𝜈, 𝜇 = |𝑋 − 𝑥|, we obtain the billiard system (2.3),
(2.4) within the domain 𝑀+. Applying the Z2-symmetry, we get:

Proposition 2.1. The billiard map 𝜑 : 𝑀 →𝑀 is symplectic.

A similar proof can be applied for a billiard within an arbitrary convex region
𝐷 = {𝑓(𝑥) ≤ 0} ⊂ R𝑛, by taking the constraints 𝑓(𝑥) = 0, ⟨𝑦, 𝑦⟩ = 1, and replacing
the normal vector 𝐴−1𝑋 at 𝑋 in (2.4) and (2.7) and 𝐴−1𝑥 at 𝑥 in (2.6) by ∇𝑓 |𝑋
and ∇𝑓 |𝑥, respectively.

Proposition 2.1 also follows from the fact that the skew-hodograph mapping
𝜓 : 𝑀 → 𝑀 is symplectic and satisfies 𝜓2 = −𝜑 (see below). It is also convenient
to consider the billiard as a discrete Lagrangian system on Q𝑛−1: the billiard
trajectories 𝑥𝑘, 𝑘 ∈ Z are the extremals of the discrete action S[𝑥𝑘] =

∑︀
𝑘 |𝑥𝑘+1−𝑥𝑘|

(see [13]). An interesting dual Lagrangian formulation is recently given by Suris
[17], representing the ellipsoidal billiard mapping as a symplectic mapping of the
cotangent bundle of the sphere ⟨𝑦, 𝑦⟩ = 1.

2.3. Skew-hodograph mapping. Now, we take a quadratic generating func-
tion (1.3). The equations (2.1) become

𝑦 = 𝐴−1/2𝑋 + 𝜆𝐴−1𝑥,(2.8)

𝑌 = −𝐴−1/2𝑥− Λ𝐴−1𝑋,(2.9)

where ⟨𝐴−1𝑥, 𝑥⟩ = 1, ⟨𝐴−1𝑋,𝑋⟩ = 1.
From the constraints ⟨𝑦, 𝑦⟩ = 1, ⟨𝑌, 𝑌 ⟩ = 1, we get that 𝜆 and Λ are solutions

of the equations

2𝜆⟨𝐴−1𝑥,𝐴−1/2𝑋⟩+ 𝜆2⟨𝐴−2𝑥, 𝑥⟩ = 0,(2.10)

2Λ⟨𝐴−1𝑋,𝐴−1/2𝑥⟩+ Λ2⟨𝐴−2𝑋,𝑋⟩ = 0.(2.11)



BILLIARDS ON CONSTANT CURVATURE SPACES 107

We have four real solutions (𝜆,Λ) of (2.10), (2.11) given by

𝜆 = 0 or 𝜆 = −2⟨𝐴−1𝑥,𝐴−1/2𝑋⟩/⟨𝐴−2𝑥, 𝑥⟩,

Λ = 0 or Λ = −2⟨𝐴−1𝑥,𝐴−1/2𝑋⟩/⟨𝐴−2𝑋,𝑋⟩.

The cases when both (𝜆,Λ) are equal to zero, or different from zero, lead to
the trivial dynamics:

𝜓2 = − Id𝑀 .

The cases when one of the multipliers is zero and the second one is not zero
are equivalent. Let us take 𝜆 = 0, Λ = −2⟨𝐴−1𝑥,𝐴−1/2𝑋⟩/⟨𝐴−2𝑋,𝑋⟩. Then the
relations (2.8), (2.9) define the symplectic mapping 𝜓 : 𝑀 →𝑀 :

𝑋 = 𝐴1/2𝑦,

𝑌 = −𝐴−1/2𝑥− 𝜇𝐴−1/2𝑦, 𝜇 = −2⟨𝐴−1𝑥, 𝑦⟩/⟨𝐴−1𝑦, 𝑦⟩.

Note that ⟨𝐴−1𝑥, 𝑦⟩ is the integral of 𝜓. Also, 𝜓 coincides with the skew-
hodograph mapping introduced by Moser and Veselov [13]1.

Remark 2.1. The skew-hodograph mapping has nice properties:

𝜑 ∘ 𝜓 = 𝜓 ∘ 𝜑, 𝜓2 = −𝜑,
i.e., it maps billiard trajectories into a billiard trajectories and it can be considered
as a square root of the billiard dynamics [13]. Further, let (𝑦𝑗 , 𝑥𝑗) be its trajectory.
Then the sequence 𝑦𝑗 satisfies the equations

(2.12) 𝐴1/2𝑦𝑗+1 +𝐴1/2𝑦𝑗−1 = 2⟨𝐴−1/2𝑦𝑗 , 𝑦𝑗−1⟩/⟨𝐴−1𝑦𝑗 , 𝑦𝑗⟩𝑦𝑗 ,
which are the equations of the Heisenberg model on a sphere S𝑛−1(𝑦) with the
action S[𝑦𝑖] =

∑︀
𝑖⟨𝑦𝑖, 𝐴1/2𝑦𝑖+1⟩ (see [13,16,21]). Also, if 𝑦𝑗 is a solution of the

Heisenberg model (2.12), then 𝑥𝑗 = (−1)𝑗𝐴1/2𝑦2𝑗 is a sequence of impact points of
the billiard trajectory within ellipsoid (1.1) (see [13]).

3. Billiards on the sphere and the Lobachevsky space

3.1. Definition of billiards. From now on we use the following notation:

⟨𝜉, 𝜂⟩ = 𝜉1𝜂1 + · · ·+ 𝜉𝑛−1𝜂𝑛−1 ± 𝜉𝑛𝜂𝑛,

for all 𝜉, 𝜂 ∈ R𝑛 and whenever we have ±1 (∓1), this means +1 (−1) for the
Euclidean space and −1 (+1) for the pseudo-Euclidean space of signature (𝑛−1, 1).
We identify tangent 𝑇 R𝑛 = R2𝑛(𝑦, 𝑥) and cotangent bundle 𝑇 * R𝑛 = R2𝑛(𝑝, 𝑥)
by means of the metric 𝐸 = diag(1, . . . , 1,±1): 𝑝 = 𝐸𝑦, defining the symplectic
structure

𝐸𝑑𝑦 ∧ 𝑑𝑥 =

𝑛−1∑︁
𝑖=1

𝑑𝑦𝑖 ∧ 𝑑𝑥𝑖 ± 𝑑𝑦𝑛 ∧ 𝑑𝑥𝑛

on R2𝑛(𝑦, 𝑥).

1More precisely, in order to have a skew-hodograph mapping given in [13], one should take
Λ = 0, 𝜆 = 0 and that 𝑦 is incoming velocity at 𝑥 ∈ Q𝑛−1 in the billiard mapping.
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Next, we consider the sphere S𝑛−1 = S𝑛−1
+ and the Lobachevsky space H𝑛−1, re-

alized as upper pseudo-sphere S𝑛−1
− in the the Lorentz–Poincare–Minkowski space,

given by

S𝑛−1
+ = {𝑥 ∈ R𝑛 | ⟨𝑥, 𝑥⟩ = 1}, S𝑛−1

− = {𝑥 ∈ R𝑛 | ⟨𝑥, 𝑥⟩ = −1 | 𝑥𝑛 > 0}.

The induced metrics on S𝑛−1
± is Riemannian of constant curvature ±1, while ge-

odesic lines are simply intersections of S𝑛−1
± with two-dimensional planes through

the origin.
It is well known that the ellipsoidal billiards on the sphere and the Lobachevsky

space are completely integrable [4,5,12,18,20]. In the above notation, the ellipsoid
Q𝑛−2 ⊂ S𝑛−1

± can be defined as a intersection of a cone

K𝑛−1 : ⟨𝐴−1𝑥, 𝑥⟩ = 0

with S𝑛−1
± and the upper half-space {𝑥𝑛 > 0}, where

𝐴 = diag(𝑎1, . . . , 𝑎𝑛), 0 < 𝑎1, 𝑎2, . . . , 𝑎𝑛−2, 𝑎𝑛−1 < ∓𝑎𝑛.
Note that 𝐴−1𝑥 for 𝑥 ∈ Q𝑛−1 is normal to 𝑇𝑥K𝑛−1 and belongs to 𝑇𝑥S𝑛−1

± . Thus,
𝐴−1𝑥 is a normal of the quadric 𝑄𝑛−2 at 𝑥.

For a phase space we take (2𝑛 − 4)-dimensional variety 𝑀 ⊂ R2𝑛(𝑦, 𝑥) de-
fined by

𝑀 : 𝑓1 = ⟨𝑥, 𝑥⟩ = ±1, 𝑓3 = ⟨𝐴−1𝑥, 𝑥⟩ = 0, 𝑥𝑛 > 0,

𝑓2 = ⟨𝑥, 𝑦⟩ = 0, 𝑓4 = ⟨𝑦, 𝑦⟩ = 1, 𝑓5 = ⟨𝐴−1𝑥, 𝑦⟩ < 0.

Note that now 𝑦 denotes the outgoing velocity (tangent to S𝑛−1
± ) at the point

𝑥 ∈ Q𝑛−2.

Lemma 3.1. The billiard mapping 𝜑 : 𝑀 →𝑀 is given by

𝑋 = 𝛼𝑥+ 𝛽𝑦,(3.1)

𝑌 = ∓𝛽𝑥+ 𝛼𝑦 + 𝛾𝐴−1𝑋,(3.2)

where

𝛼 =
⟨𝐴−1𝑦, 𝑦⟩√︀

⟨𝐴−1𝑦, 𝑦⟩2 ± 4⟨𝐴−1𝑥, 𝑦⟩2
, 𝛽 = −2𝛼

⟨𝐴−1𝑥, 𝑦⟩
⟨𝐴−1𝑦, 𝑦⟩

, 𝛾 = 2
⟨𝐴−1𝑥, 𝑦⟩
⟨𝐴−2𝑋,𝑋⟩

.

Proof. For (𝑦, 𝑥) ∈𝑀 , (𝑌,𝑋) = 𝜑(𝑦, 𝑥) is determined in two steps. First, we
consider the geodesic line 𝑐(𝑡), 𝑐(0) = 𝑥, �̇�(0) = 𝑦 and find its intersection 𝑋 = 𝑐(𝑡0)
with Q𝑛−2. Let 𝑌 ′ = �̇�(𝑡0) be the incoming velocity at 𝑋. Then 𝑋 and 𝑌 ′ are
(pseudo-)Euclidean rotations of 𝑥 and 𝑦:

𝑋 = 𝛼𝑥+ 𝛽𝑦, 𝑌 ′ = ∓𝛽𝑥+ 𝛼𝑦, 𝛼2 ± 𝛽2 = 1, 𝛼, 𝛽 > 0,

implying the relations ⟨𝑋,𝑋⟩ = ±1, ⟨𝑌 ′, 𝑌 ′⟩ = 1, and ⟨𝑌 ′, 𝑋⟩ = 0.
From the condition ⟨𝐴−1𝑋,𝑋⟩ = 0, it follows that the parameters 𝛼 and 𝛽 are

related by the equation

(3.3) 𝛽⟨𝐴−1𝑦, 𝑦⟩+ 2𝛼⟨𝐴−1𝑥, 𝑦⟩ = 0,

and after the substitution to 𝛼2±𝛽2 = 1 we get 𝛼 = 1/
√︀
1± 4⟨𝐴−1𝑥, 𝑦⟩2/⟨𝐴−1𝑦, 𝑦⟩2.
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Now, let 𝑌 be the reflection of 𝑌 ′ with respect to 𝑇𝑋Q𝑛−2 - the outgoing
velocity at 𝑋. The difference of 𝑌 ′ and 𝑌 is normal to Q𝑛−2: 𝑌 = 𝑌 ′ + 𝛾𝐴−1𝑥,
for a certain multiplier 𝛾. From the condition ⟨𝑌, 𝑌 ⟩ = 1, it follows

(3.4) 𝛾 = −2
⟨𝐴−1𝑋,𝑌 ′⟩
⟨𝐴−2𝑋,𝑋⟩

.

Next, as in the case of the billiard within an ellipsoid, 𝐽 = ⟨𝐴−1𝑥, 𝑦⟩ is the
integral of the billiard mapping:

⟨𝐴−1𝑌,𝑋⟩ = ⟨𝐴−1𝑌 ′, 𝑋⟩+ 𝛾⟨𝐴−2𝑋,𝑋⟩
= −⟨𝐴−1𝑋,𝑌 ′⟩ (3.4)

= −⟨𝐴−1(𝛼𝑥+ 𝛽𝑦), (∓𝛽𝑥+ 𝛼𝑦)⟩
= −𝛼𝛽⟨𝐴−1𝑦, 𝑦⟩ − (𝛼2 ∓ 𝛽2)⟨𝐴−1𝑥, 𝑦⟩
= 2𝛼2⟨𝐴−1𝑥, 𝑦⟩ − (𝛼2 ∓ 𝛽2)⟨𝐴−1𝑥, 𝑦⟩ (3.3)

= ⟨𝐴−1𝑥, 𝑦⟩,

which completes the proof. �

3.2. Generating function. Firstly, note that 𝑀 is a symplectic submanifold
of (R2𝑛, 𝐸𝑑𝑦 ∧ 𝑑𝑥). Indeed, let 𝐷𝑖𝑗 = {𝑓𝑖, 𝑓𝑗}. We have

𝐷12 = 2𝑓1, 𝐷13 = 0, 𝐷14 = 4𝑓2, 𝐷23 = −2𝑓3, 𝐷24 = 2𝑓4, 𝐷34 = 4𝑓5.

Therefore, det𝐷|𝑀 = (𝐷12𝐷34 −𝐷13𝐷24 +𝐷23𝐷14)
2|𝑀 = 8𝑓25 ̸= 0 2.

Proposition 3.1. The billiard mapping (3.1), (3.2) is symplectic with the gen-
erating functions for the sphere and the Lobachevsky space given by

𝑆+ = − arccos ⟨𝑥,𝑋⟩ and 𝑆− = − arccosh (−⟨𝑥,𝑋⟩),
respectively.

Proof. Let 𝜃 = arccos ⟨𝑥,𝑋⟩, i.e., 𝜃 = arccosh (−⟨𝑥,𝑋⟩), and let us denote

sin+ 𝜃 = sin 𝜃, cos+ 𝜃 = cos 𝜃, sin− 𝜃 = sinh 𝜃, cos− 𝜃 = cosh 𝜃.

Then
𝜕𝑆±

𝜕𝑥
=

𝐸𝑋

sin± 𝜃
.

Therefore, the relations (2.1) are

𝑝 =𝐸𝑦 =
𝐸𝑋

sin± 𝜃
+ 𝜆1𝐸𝑥+ 𝜆2𝐸𝐴

−1𝑥,(3.5)

𝑃 =𝐸𝑌 = − 𝐸𝑥

sin± 𝜃
− Λ1𝐸𝑋 − Λ2𝐸𝐴

−1𝑋.(3.6)

2Equivalently, it is well known that the submanifold 𝑓1 = 1, 𝑓2 = 0 is simplectomorphic to
the cotangent bundle 𝑃 = 𝑇 *S𝑛−1

± . Denote the induced Poisson bracket on 𝑃 by {·, ·}𝑃 . We
have {𝑓3, 𝑓4}𝑃 = {𝑓3, 𝑓4} = 4𝑓5 ̸= 0|𝑀 . Thus, 𝑀 is a symplectic submanifold of 𝑃 , that is a
symplectic submanifold of (R2𝑛, 𝐸𝑑𝑦 ∧ 𝑑𝑥).
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Let us take 𝜆2 = 0. From (3.5) we get

𝑋 = sin± 𝜃𝑦 − (𝜆1 sin± 𝜃)𝑥 = 𝛼𝑥+ 𝛽𝑦,

for 𝛼 = −𝜆1 sin± 𝜃 = cos± 𝜃, 𝛽 = sin± 𝜃, 𝜆1 = − cos± 𝜃/ sin± 𝜃 = −𝛼/𝛽. Further,
from (3.6) we get

𝑌 = −𝑥
𝛽
− Λ1(𝛼𝑥+ 𝛽𝑦)− Λ2𝐴

−1𝑋

=
(︁
− 𝛼2 ± 𝛽2

𝛽
− Λ1𝛼

)︁
𝑥− Λ1𝛽𝑦 − Λ2𝐴

−1𝑋

= ∓𝛽𝑥+ 𝛼𝑦 − Λ2𝐴
−1𝑋,

for Λ1 = −𝛼/𝛽. Thus, the above relations imply the mapping (3.1), (3.2) with
Λ2 = −𝛾. �

As in Subsection 2.2, a similar proof can be applied for a billiard within an
arbitrary convex region 𝐷 ⊂ S𝑛−1

± . The billiard mappings for convex domains on
the sphere S2+ and the Lobachevsky plane S2− are recently studied in [2,15,22].

3.3. Virtual billiards within cones. There are alternative descriptions of
the billiards on S𝑛−1

± (see [10, 20]). As for the ellipsoidal billiards, consider the
mapping:

𝑋 = 𝑥+ 𝜇𝑦,(3.7)

𝑌 = 𝑦 + 𝜈𝐴−1𝑋,(3.8)

where the multipliers (2.5) are now determined from the conditions ⟨𝐴−1𝑋,𝑋⟩ = 0,
⟨𝑌, 𝑌 ⟩ = ⟨𝑦, 𝑦⟩, i.e., for the phase space we take

𝑁 = R𝑛 ×K𝑛−1(𝑦, 𝑥)∖{⟨𝐴−1𝑥, 𝑦⟩ = 0, ⟨𝐴−1𝑦, 𝑦⟩ = 0}.
We refer to the mapping Φ defined above as the virtual billiard mapping (see

[9,10]3). Note that 𝐽 = ⟨𝐴−1𝑥, 𝑦⟩ is an invariant of Φ, so if ⟨𝐴−1𝑥, 𝑦⟩ ̸= 0, then
⟨𝐴−1𝑋,𝑌 ⟩ ̸= 0 as well. On the other hand, if ⟨𝐴−1𝑌, 𝑌 ⟩ = 0, then the flow stops
by definition.

Let (𝑦𝑗+1, 𝑥𝑗+1) = Φ(𝑦𝑗 , 𝑥𝑗), 𝑗 ∈ Z. The Hamiltonian 𝐻 = 1
2 ⟨𝑦𝑗 , 𝑦𝑗⟩ is an

invariant. Therefore, the segments 𝑥𝑗𝑥𝑗+1 of a given virtual billiard trajectory are
of the same type: they are all either space-like (𝐻 > 0), time-like (𝐻 < 0) or
light-like (𝐻 = 0)4. For a fixed value of the Hamiltonian 𝐻 = ℎ, the corresponding
mapping is a symplectic transformation of (𝑁ℎ, 𝐸𝑑𝑦 ∧ 𝑑𝑥|𝑁ℎ

), 𝑁ℎ = 𝐻−1(ℎ) ⊂ 𝑁
(see Theorem 2.1, [10]5).

3The matrix 𝐴 used here corresponds to the matrix 𝐸𝐴 used in [10].
4The segments 𝑥𝑗−1𝑥𝑗 and 𝑥𝑗𝑥𝑗+1 could be either on the same side (the usual billiard

reflection in the pseudo-Euclidean space [7, 11]) or on the opposite sides of the tangent plane
𝑇𝑥𝑗K𝑛−1 (in the three-dimensional Euclidean case, Darboux referred to such reflection as the
virtual reflection, e.g., see [6, Ch. 5]).

5In [10, Theorem 2.1] a direct proof in terms of the induced Dirac–Poison brackets on 𝑁ℎ is
given for quadrics ⟨𝐴−1𝑥, 𝑥⟩ = 1, but the same proof applies for the virtual billiards within cones
⟨𝐴−1𝑥, 𝑥⟩ = 0.
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We have the following statement (see [10, Lemma 5.1]).

Lemma 3.2. Let �̂�𝑗 be a sequence of the impact points of a virtual billiard
trajectory (𝑦𝑗+1, �̂�𝑗+1) = Φ(𝑦𝑗 , �̂�𝑗), 𝑗 ∈ Z. Then

𝑥𝑗 = span{�̂�𝑗} ∩ S𝑛−1
±

is the sequence of the impact points of a billiard trajectory within ellipsoid Q𝑛−2 on
the (pseudo-)sphere S𝑛−1

± .

Proof. First, we note that Φ defines the dynamics of planes

Δ: span{𝑦, �̂�} → span{𝑌 , �̂�}, (𝑌 , �̂�) = Φ(𝑦, �̂�).

Indeed, we have that the planes spanned by (𝑌 , �̂�) = 𝜑(𝑦, �̂�) and (𝑌 ′, �̂� ′) =

𝜑(𝑦′, �̂�′) coincide, where

�̂�′ = 𝑎�̂�, 𝑦′ = 𝑏�̂�+ 𝑐𝑦, 𝑎, 𝑏, 𝑐 ∈ R, 𝑎, 𝑐 ̸= 0.

(see the proof of [10, Lemma 5.1]). Also, the billiard mapping (3.1), (3.2) deter-
mines the dynamics

𝛿 : span{𝑦, 𝑥} → span{𝑌,𝑋}, (𝑌,𝑋) = 𝜑(𝑦, 𝑥),

and we need to prove the identity Δ = 𝛿, which is sketched in the proof of [10,
Lemma 5.1]. For the completeness of the exposition, here we will derive it.

Let us take (𝑦, �̂�) = (𝑦, 𝑥), where (𝑦, 𝑥) ∈ 𝑀 ⊂ 𝑁 . Then from (3.1) and (3.2)
we get

𝑌 ∧𝑋 = (∓𝛽𝑥+ 𝛼𝑦 + 𝛾𝐴−1𝑋) ∧ (𝛼𝑥+ 𝛽𝑦)

= (𝛼2 ± 𝛽2)𝑦 ∧ 𝑥+ 𝛾𝐴−1𝑋 ∧𝑋

= 𝑦 ∧ 𝑥+ 2
⟨𝐴−1𝑥, 𝑦⟩
⟨𝐴−2𝑋,𝑋⟩

𝐴−1𝑋 ∧𝑋,

while from (3.7) and (3.8) it follows

𝑌 ∧ �̂� = (𝑦 + 𝜈𝐴−1�̂�) ∧ (𝑥+ �̂�𝑦)

= 𝑦 ∧ 𝑥+ 2
⟨𝐴−1�̂�, 𝑌 ⟩
⟨𝐴−2�̂�, �̂�⟩

𝐴−1�̂� ∧ �̂�

= 𝑦 ∧ 𝑥+ 2
⟨𝐴−1𝑥, 𝑦⟩
⟨𝐴−2𝑋,𝑋⟩

𝐴−1𝑋 ∧𝑋,

where we used that 𝐽 is the integral of Φ and that 𝑋 and �̂� are proportional.
Therefore, Δ = 𝛿. The statement is proved. �

3.4. Skew-hodograph mapping. Let L𝑛−1 = {𝑦 ∈ R𝑛 | ⟨𝑦, 𝑦⟩ = 0} be a
light-like cone. By an analogy with the Subsection 2.3, we consider the symplectic
submanifold

𝑁0 = L𝑛−1 ×K𝑛−1(𝑦, 𝑥)∖{⟨𝐴−1𝑥, 𝑦⟩ = 0, ⟨𝐴−1𝑦, 𝑦⟩ = 0}

of (R2𝑛(𝑦, 𝑥), 𝐸𝑑𝑦 ∧ 𝑑𝑥) and the generating function (1.3). For 𝑝 = 𝐸𝑦, the equa-
tions (2.1) become



112 JOVANOVIĆ

𝐸𝑦 = 𝐸𝐵𝑋 + 𝜆𝐸𝐴−1𝑥,(3.9)

𝐸𝑌 = −𝐸𝐵𝑥− Λ𝐸𝐴−1𝑋,(3.10)

where ⟨𝐴−1𝑥, 𝑥⟩ = 0, ⟨𝐴−1𝑋,𝑋⟩ = 0. We choose the following Lagrange multi-
pliers:

𝜆 = 0, Λ = −2⟨𝐴−1𝑥,𝐴−1/2𝑋⟩/⟨𝐴−2𝑋,𝑋⟩.
Then the relations (3.9), (3.10) define the symplectic mapping Ψ: 𝑁0 → 𝑁0:

𝑋 = 𝐴1/2𝑦,

𝑌 = −𝐴−1/2𝑥− 𝜇𝐴−1/2𝑦, 𝜇 = −2⟨𝐴−1𝑥, 𝑦⟩/⟨𝐴−1𝑦, 𝑦⟩.
We have the following analogy with the skew-hodograph mapping for the bil-

liards within ellipsoid (compare with Remark 2.1).

Theorem 3.1. (i) The mapping Ψ commutes with the virtual billiard
mapping for the light-like trajectories within the cone K𝑛−1

Ψ ∘ Φ|𝑁0 = Φ|𝑁0 ∘Ψ
and, moreover,

Ψ2 = −Φ|𝑁0
.

(ii) Let (𝑦𝑗 , 𝑥𝑗), 𝑗 ∈ Z be a trajectory of Ψ. Then the sequence of light-like
vectors 𝑦𝑗 ∈ L𝑛−1 satisfies the equations

(3.11) 𝐴1/2𝑦𝑗+1 +𝐴1/2𝑦𝑗−1 = 2⟨𝐴−1/2𝑦𝑗 , 𝑦𝑗−1⟩/⟨𝐴−1𝑦𝑗 , 𝑦𝑗⟩𝑦𝑗 ,
which are the equations of the Heisenberg model on a light-like cone L𝑛−1

with the action functional S[𝑦𝑖] =
∑︀

𝑖⟨𝑦𝑖, 𝐴1/2𝑦𝑖+1⟩.
(iii) If 𝑦𝑗 is a solution of the Heisenberg model (3.11), then

𝑥𝑗 = span{(−1)𝑗𝐴1/2𝑦2𝑗} ∩ S𝑛−1
−

is a sequence of impact points of the billiard within the quadric Q𝑛−2 on
the Lobachevsky space S𝑛−1

− .

Proof. (Sketch) The proof of items (i) and (ii) is straightforward. Item (iii)
follows from items (i), (ii), and Lemma 3.2. �

The Heisenberg model on pseudo-spheres and light-likes cones in pseudo-Euclidean
spaces is studied in [8]. The system on light-like cones is an example of a discrete
contact integrable system.

Acknowledgments. The author is grateful to the referee for remarks that
improved the exposition of the note. The research was supported by the Serbian
Ministry of Science Project 174020, Geometry and Topology of Manifolds, Classical
Mechanics and Integrable Dynamical Systems.



BILLIARDS ON CONSTANT CURVATURE SPACES 113

References

1. В.И. Арнольд, Математические методы классической механики, Наука, Москва, 1974.
Engl. transl.: V. I. Arnol’d, Mathematical Methods of Classical Mechanics, Second edition,
Grad. Texts Math. 60, Springer-Verlag, New York, 1989.

2. M. Bialy, Hopf rigidity for convex billiards on the hemisphere and hyperbolic plane. Discrete
Contin. Dyn. Syst. 33(9) (2013), 3903–3913; arXiv:1205.3873.

3. M. Bialy, A. E. Mironov, Algebraic Birkhoff conjecture for billiards on Sphere and Hyperbolic
plane, J. Geom. Phys. 115 (2016), 150–156; arXiv:1602.05698.

4. С.В. Болотин, Интегрируемые биьярды на поверхностях постоянной кривизны, Мат.
Заметки 51(2) (1992), 20–28.
Engl. transl.: S. V. Bolotin, Integrable billiards on constant curvature surfaces, Math. Notes
51(1–2) (1992), 117–123.
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БИЛИJАРИ НА ПРОСТОРИМА КОНСТАНТНЕ КРИВИНЕ
И ГЕНЕРАТОРНЕ ФУНКЦИJЕ ЗА СИСТЕМЕ СА ВЕЗАМА

Резиме. У овом прилогу разматрамо метод генераторних функциjа за
системе са везама и, као пример, показуjемо да су билиjарна пресликавања за
билиjаре у Еуклидком простору, сфери и простору Лобачевског симплектичка.
Даље, узимањем квадратне генераторне функциjе, добиjамо косо-ходографско
прескликавање Мозера и Веселова, коjе повезуjе билиjар унутар елипсоида
у Еуклидском простору са дискретним Хаjзенберговим системом на сфери.
Дефинишемо одговараjуће пресликавање за билиjаре унутар елипсоида у про-
стору Лобачевског. Оно повезуjе билиjар са дискретним Хаjзенберговим си-
стемом на светлосном конусу у простору Лоренца–Поенкареа–Минковског.
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