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ON HAMEL’S EQUATIONS

Dmitry V. Zenkov

Abstract. This paper reviews recent results on the extension of Hame’s for-
malism to infinite-dimensional mechanical systems and to variational integra-
tors. Of a particular interest are applications to the dynamics and numerical
integration of systems with velocity constraints.

1. Introduction

This paper surveys some of the contemporary development of the formalism
introduced by Hamel [21] in his habilitation thesis.

Hamel’s formalism is an extension of Euler’s ideas of using nonmaterial velocity
in mechanics. Nonmaterial velocity of a system carries information about system’s
velocity, but is not the rate of change of system’s configuration with respect to
time. For a finite degree of freedom system, nonmaterial velocity is a collection
of velocity components relative to a set of vector fields that span the fibers of the
tangent bundle of the configuration space. In the finite-dimensional setting, this
development was carried out by Hamel himself in [21].

One of the reasons for using nonmaterial velocity is that the Euler–Lagrange
equations are not always effective for analyzing the dynamics, either analytically or
numerically, of a mechanical system of interest. For example, it is difficult to study
the motion of the Euler top if the Euler–Lagrange equations are used to represent
the dynamics. On the other hand, the use of the angular velocity components
relative to a body frame as pioneered by Euler [14] results in a much simpler
representation of dynamics. In a similar fashion, Euler [15–17] uses convective

velocity to represent the dynamics of an ideal incompressible fluid. Euler’s approach
was further developed by Lagrange [31] for reasonably general Lagrangians on the
rotation group and by Poincaré [41] for arbitrary Lie groups (see [35] for details
and history).

The nonmaterial velocity used in [31, 41] is associated with a group action.
Hamel obtained the equations of motion in terms of nonmaterial velocity that is
unrelated to a group action on the configuration space. Hamel’s equations include
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both the Euler–Lagrange and Euler–Poincaré equations (for the rigid body for
example) as special cases.

As clearly seen from his paper, Hamel was particularly motivated by nonholo-
nomic mechanics. His formalism features the simplicity of analytic representation
of constraints and the intrinsic absence of Lagrange multipliers in the equations of
motion. It is exceptionally effective for studying (finite-dimensional) constrained
systems and understanding their dynamics, both analytically and numerically; see
e.g. [2,7,25–27,39,51] and references therein.

The paper concentrates on the two recent developments: Hamel’s formalism for
infinite-dimensional mechanical systems and discrete Hamel’s mechanics. The for-
mer is motivated by the importance of nonmaterial velocity in continuum mechanics
as demonstrated by Arnold [1] and Ebin and Marsden [13] as well as by the recent
development of infinite-dimensional nonholonomic mechanics (see e.g. [3,46–48]).
Motivation for the latter includes the development of structure-preserving numer-
ical integrators for mechanical systems with velocity constraints, an attempt to
restore the concept of ideal constraints in the discrete setting, and related struc-
tural stability of variational and nonholonomic integrators. A loss of structural
stability has been recently observed in [32,40].

Being a survey, this paper leaves many technical details out. Interested readers
are referred to [2, 44] for such details, applications to systems with symmetry,
etc. We concentrate on the formulation of the Hamilton and Lagrange–d’Alembert
variational principles for Hamel’s equations. In the infinite-dimensional setting,
this is done by computing the velocity variation, which requires a construction of
an infinite-dimensional version of Hamel’s coefficients. Of course, this variation
formula is induced by the Lagrangian formulation of continuum mechanics. In the
discrete setting, the situation is a bit more delicate. For the constraints to remain
ideal after discretization, the velocity variation should be properly defined and in
general cannot be derived from discrete Lagrangian mechanics. This is a reflection
of an intrinsic dependence of an integrator on the discretization mesh.

The results are illustrated with examples, including an infinite-dimensional gen-
eralization of the Chaplygin sleigh and a global energy- and momentum-preserving
integrator for the spherical pendulum.

2. Preliminaries

Lagrangian mechanics provides a systematic approach to deriving the equations
of motion as well as establishes the equivalence of force balance and variational
principles.

2.1. The Euler–Lagrange Equations. A Lagrangian mechanical system is
specified by a smooth manifold Q called the configuration space and a function
L : TQ → R called the Lagrangian. In many cases, the Lagrangian is the differ-
ence of system’s kinetic and potential energies, with the kinetic energy defined by
a Riemannian metric and the potential energy being a smooth function on the con-
figuration space Q. If necessary, non-conservative forces can be introduced. For
instance, gyroscopic forces are represented by terms in L that are linear in the
velocity, but this is not discussed in detail in this paper.
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In local coordinates q = (q1, . . . , qn) on the configuration space Q we write
L = L(q, q̇). The dynamics is given by the Euler–Lagrange equations

d

dt

∂L

∂q̇i
=
∂L

∂qi
, i = 1, . . . , n.

These equations were originally derived by Lagrange [31] in 1788 by requiring
that simple force balance be covariant, i.e. expressible in arbitrary generalized
coordinates. A variational derivation of the Euler–Lagrange equations, namely
Hamilton’s principle (see Theorem 2.1 below), came later in the work of Hamilton
[22,23] in 1834/35.

Let q(t), a 6 t 6 b, be a smooth curve in Q. A variation of the curve q(t) is a
smooth map β : [a, b]× [−ε, ε] → Q that satisfies the condition β(t, 0) = q(t). This
variation defines the vector field

δq(t) =
∂β(t, τ)

∂τ

∣

∣

∣

∣

τ=0

along the curve q(t).

Theorem 2.1. The following statements are equivalent:

(i) The curve q(t), where a 6 t 6 b, is a critical point of the action functional
∫ b

a

L(q, q̇) dt

on the space of curves in Q connecting qa to qb on the interval [a, b], where

we choose variations of the curve q(t) that satisfy δq(a) = δq(b) = 0.
(ii) The curve q(t) satisfies the Euler–Lagrange equations.

We point out here that this principle assumes that a variation of the curve q(t)
induces the variation δq̇(t) of its velocity vector according to the formula

δq̇(t) :=
d

dt
δq(t).

For more details and a proof, see e.g. [4,35].

2.2. The Euler–Poincaré Equations. The classical Euler equations for a
freely rotating rigid body read

JΩ̇ = JΩ× Ω,

where Ω is the body angular velocity and J is the inertia tensor. First derived
by Euler [14], these equations, as well as the Euler equation for an incompressible
inviscid fluid flow,

∂v

∂t
+∇vv = −∇p, div v = 0,

were generalized by Poincaré [41, 42] to any Lie algebra. These Euler–Poincaré

equations for a Lagrangian l(ξ) defined on a Lie algebra g read

(2.1)
d

dt

δl

δξ
= ± ad∗ξ

δl

δξ
.

These equations are variational, with variations satisfying certain constraints, as
the following theorem clarifies.
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Theorem 2.2. Let g be a Lie algebra and l : g → R be a Lagrangian. The

following statements are equivalent:

(i) The variational principle

δ

∫ b

a

l(ξ(t)) dt = 0

holds on g, using variations of the form

δξ = η̇ ± adξ η,

where η vanishes at the endpoints.

(ii) The Euler–Poincaré equations (2.1) hold.

See [6,9,24,34,35] for details, history, and proofs.

2.3. Hamel’s Equations. There are mechanical systems for which the La-
grangian and equations of motion have a simpler structure when the velocity com-
ponents are measured against a frame that is unrelated to the system’s local con-
figuration coordinates. Examples of such a systems include the rigid body and an
inviscid fluid flow.

Let q = (q1, . . . , qn) be local coordinates on the configuration space Q and
ui ∈ TQ, i = 1, . . . , n, be smooth independent local vector fields on Q defined in
the same coordinate neighborhood. In certain cases, some or all of ui can be chosen
to be global vector fields on Q.

Let ξ = (ξ1, . . . , ξn) ∈ Rn be the components of the velocity vector q̇ ∈ TQ
relative to the frame u(q) = (u1(q), . . . , un(q)), i.e.,

q̇ = ξiui(q).

The Lagrangian of the system written in the local coordinates (q, ξ) on the velocity
phase space TQ reads

l(q, ξ) := L(q, ξiui(q)).

The coordinates (q, ξ) are a Lagrangian analogue of non-canonical variables of
Hamiltonian mechanics.

Define the Hamel coefficients or structure functions ckij(q) by the equations

[ui(q), uj(q)] = caij(q)ua(q), a, i, j = 1, . . . , n.

The quantities caij(q) vanish if and only if the vector fields ui(q), i = 1, . . . , n,
commute.

Viewing ui as vector fields on TQ whose fiber components equal 0 (that is, tak-
ing the vertical lift of the frame vector fields), one defines the directional derivatives
ui[l] for a function l : TQ→ R in a usual way.

The evolution of the variables (q, ξ) is governed by the Hamel equations

(2.2)
d

dt

∂l

∂ξj
= caij

∂l

∂ξa
ξi + uj [l],

a, i, j = 1, . . . , n, coupled with the equation q̇ = ξiui(q). These equations were
introduced in Hamel [21]. See also [7,39] for details, history, and contemporary
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geometric exposition. If ui = ∂/∂qi, the Hamel equations become the Euler–
Lagrange equations.

2.4. Ideal Constraints. Assume now that there are velocity constraints im-
posed on the system. We confine our attention to constraints that are linear and
homogeneous in the velocity. Accordingly, we consider a configuration space Q and
a distribution D on Q that describes these constraints. Recall that a distribution
D is a collection of linear subspaces of the tangent spaces of Q; we denote these
subspaces by Dq ⊂ TqQ, one for each q ∈ Q.

A curve q(t) ∈ Q is said to satisfy the constraints if q̇(t) ∈ Dq(t) for all t.
This distribution will, in general, be nonintegrable, i.e., the constraints will be, in
general, nonholonomic.1

As discussed in e.g. [11,45], it is assumed in classical mechanics that the con-
straints imposed on the system can be replaced with the reaction force. This means
that after the force is imposed on the unconstrained system, the constraint distribu-
tion D ⊂ TQ becomes a conditional invariant manifold of the forced unconstrained

Lagrangian system whose dynamics on this invariant manifold is identical to that
of the constrained system.

Definition 2.1. Constraints (either holonomic or nonholonomic) are called
ideal if their reaction force at each q ∈ Q belong to the null space D◦

q ⊂ T ∗
qQ of Dq.

As shown in [11,45], the reaction forces of ideal constraints are defined uniquely
at each each state (q, q̇) ∈ TQ satisfying the constraints. For a system subject to
ideal constraints, the forced dynamics is equivalent to the Lagrange–d’Alembert
principle.

Utilizing Hamel’s formalism and assuming the ideal velocity constraints read
ξm+1 = · · · = ξn = 0, the dynamics of the constrained system is given by (2.2)
for j = 1, . . . ,m. The remaining n−m equations serve for computing the reaction
force, and do not affect the dynamics of the system. For the early development of
these equations see Poincaré [41] and Hamel [21].

We refer the readers to [7,35] for the history and development of the concept
of ideal constraints and of variational principles for the Euler–Lagrange, Euler–
Poincaré, and Hamel equations.

2.5. The Chaplygin Sleigh. The sleigh is a vertical blade moving on a hori-
zontal plane. There is a single contact point of the blade and the plane. The center
of mass of the blade coincides with this contact point. The velocity component
of the contact point perpendicular to the blade is set to zero. The sleigh is often
thought of as a balanced platform on the top of the blade. See Figure 1 where the
platform, the blade, and the contact point are depicted as an oval, a bold segment
and a bold dot, respectively.

Let θ be the angular orientation of the sleigh and (x, y) be the coordinates of
the contact point as shown in Figure 1. The configuration space for the sleigh is the
Euclidean group SE(2), which has the semidirect product structure SO(2)sR2.

1Constraints are nonholonomic if and only if they cannot be rewritten as position constraints.
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We parametrize the elements of SE(2) as (θ, x, y). The body frame is

∂

∂θ
, cos θ

∂

∂x
+ sin θ

∂

∂y
, − sin θ

∂

∂x
+ cos θ

∂

∂y

Using this frame,

(2.3) θ̇ = ω, ẋ = v1 cos θ − v2 sin θ, ẏ = v1 sin θ + v2 cos θ.

That is, ω is the angular velocity of the sleigh relative to the vertical line through
the contact point, and (v1, v2) are the components of the linear velocity of the
contact point in the directions along and orthogonal to the blade, respectively.
Thus, the constraint reads v2 = 0.

,

Figure 1. The Chaplygin sleigh.

It is convenient to utilize the complex configuration variable z = x + iy on
the plane. Similarly, the linear velocity relative to the body frame is written as
v = v1 + iv2, and formulae (2.3) become

(2.4) θ̇ = ω, ż = eiθv,

whereas the constraint in this complex representation reads

v = v̄.

Denote the mass and the moment of inertia of the sleigh by m and J . The
Lagrangian is just the kinetic energy of the sleigh, which is the sum of the kinetic
energies of the linear and rotational modes of the body:

l = 1
2 (Jω

2 +mvv̄).

The elements of the algebra se(2) = so(2)sC in the complex representation
are written as (iω, v), where iω ∈ so(2), ω ∈ R, and v ∈ C. The bracket operation
on the algebra se(2) reads

(2.5) [(iω1, v1), (iω2, v2)] = (0, iω1v2 − iω2v1).

Using (2.5), the constrained Hamel equations for the Chaplygin sleigh are computed
to be

(2.6) ω̇ = 0, v̇ = 0.

Recall that in (2.6) the quantity v is real-valued.
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Solving equations (2.4) and (2.6) gives

ω = const, v = const, θ = θ0 + ωt, z =

{

z0 + eiθ0vt if ω = 0

z0 −
iv
ω e

iθ0(eiωt − 1) if ω 6= 0

and so generically the sleigh moves along a circle at a uniform rate.

3. Infinite-Dimensional Systems

Here and in Section 4, system’s number of degrees of freedom is not assumed
finite. As the use of frames and bases in the infinite-dimensional setting is unnat-
ural and not always possible, we introduce a coordinate-free approach to Hamel’s
formalism. Thus, instead of frames, we use linear velocity substitutions. These sub-
stitutions, however, are not induced by a (local) configuration coordinate change.

Below, the functional-analytic details are mostly omitted. These details and
can be found in [44]. It is safe to assume that all infinite-dimensional configuration
spaces are Banach manifolds, however, the results remain correct for much more
general settings, such as convenient spaces.

3.1. Lagrangian Mechanics. LetM be an infinite-dimensional smooth man-
ifold modeled on a vector space W and let TM be its kinematic tangent bundle
with the projection πM : TM →M . Consider the initial inclusion map i : Q→M
and the pullback vector bundle P = i∗TM . The map i satisfies the following prop-
erty: A map f : N → Q is smooth if and only if i ◦ f : N → M is smooth. Note
that Q is usually not a submanifold of M , see [30] for details.

A Lagrangian is a smooth function L : P → R. The dynamics for this La-
grangian is defined in a usual way by Hamilton’s principle: The curve γ : [a, b] → Q
is a trajectory if

δ

∫ b

a

Ldt = 0

along γ.

3.2. Hamel’s Formalism and Hamilton’s Principle. Let U be an open
subset of M containing q ∈ Q and let

(3.1) U ×W ∋ (q, ξ) 7→ (q,Ψq ξ) ∈ π−1
M (U) ⊂ TM

be a fiber-preserving diffeomorphism that is linear in the second input. Hence, for
each q ∈ U , both Ψq : W → TqM and Ψ−1

q : TqM → W are invertible bounded

linear operators smoothly dependent on q in an open subset i−1(U) ⊂ Q.
As the Lagrangian fails to be defined, in general, on TM , it is necessary to

consider various forms of equations of motion, such as weak and strong forms.
Further, the objects involved may not even be defined on the entire TM but only
on its dense subset. See [35] for details and references.

For each ξ ∈ W , the operator Ψq : W → TqM introduced in (3.1) outputs the
vector Ψq ξ ∈ TqM for each q ∈ U . Thus, each ξ ∈W defines the vector field

Ψ ξ(q) := Ψq ξ

on U .
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Given two vectors ξ, η ∈ W , define an antisymmetric bilinear operation [ · , · ]q :
W ×W →W by

(3.2) Ψq[ξ, η]q := [Ψ ξ,Ψ η](q),

where [ · , · ] is the Jacobi–Lie bracket on the manifold M . Next, for arbitrary ξ, η,
ζ ∈ W , we have

Ψq([[ξ, η]q, ζ]q + [[η, ζ]q, ξ]q + [[ζ, ξ]q , η]q)

= [[Ψ ξ,Ψ η],Ψ ζ](q) + [[Ψ η,Ψ ζ],Ψ ξ](q) + [[Ψ ζ,Ψ ξ],Ψ η](q) = 0,

implying, in view of invertibility of Ψq, the Jacobi identity for the bracket [ · , · ]q.
Therefore, for each q ∈ U , the space W with the operation [ · , · ]q is a Lie algebra,
denoted hereafter Wq.

The dual of [ · , · ]q is, by definition, the operation [ · , · ]∗q : Wq ×W ∗
q → W ∗

q

given by
〈

[ξ, α]∗q , η
〉

W
:=

〈

α, [ξ, η]q
〉

W
, ξ, η ∈ W, α ∈W ∗.

As in the finite-dimensional setting, let q̇ and δq denote the velocity and the
virtual displacement at q ∈ Q. From now on, the inverse images of q̇ and δq are
written as ξ, η ∈W , that is, q̇ = Ψq ξ and δq = Ψq η.

Interpreting ξ as an independent variable that replaces q̇ (locally) defines the
Lagrangian as a smooth function of (q, ξ) on i−1U ×W :

(3.3) l(q, ξ) := L(q,Ψq ξ).

The equations of motion written when (q, ξ) are selected as (local) coordinates on
the velocity phase space are called the Hamel equations.

Recall that, given a smooth curve q(t) ∈ Q, t ∈ [a, b], its variation is a smooth
one-parameter family of curves

[a, b]× [−ε, ε] ∋ (t, τ) 7→ β(t, τ) ∈ Q such that β(t, 0) = q(t).

An infinitesimal variation δq is defined by

δq(t, τ) :=
∂

∂τ
β(t, τ).

When this field is evaluated along the curve q(t), we write δq(t), i.e.,

(3.4) δq(t) := δq(t, 0) =
∂

∂τ

∣

∣

∣

τ=0
β(t, τ).

Thus, a variation of a smooth curve q(t) ∈ Q defines a curve η(t) ∈W :

δq(t) = Ψq(t) η(t).

Theorem 3.1 (Hamilton’s Principe for Hamel’s Equations). Let L : P → R

be a Lagrangian and l be its representation in local coordinates (q, ξ). Then, the

following statements are equivalent:

(i) The curve q(t), where a 6 t 6 b, is a critical point of the action functional
∫ b

a

L(q, q̇) dt
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on the space of curves in Q connecting qa to qb on the interval [a, b], where

we choose variations of the curve q(t) that satisfy δq(a) = δq(b) = 0.
(ii) The curve q(t) satisfies the weak form of the Euler–Lagrange equations

(3.5)

∫ b

a

〈

δL

δq
−
d

dt

δL

δq̇
, δq

〉

dt = 0.

If, additionally, δL/δq ∈ T ∗
qM and i∗TqQ is dense in TqM for every

q ∈ Q, the curve q(t) satisfies the strong form of the Euler–Lagrange

equations,

(3.6)
d

dt

δL

δq̇
−
δL

δq
= 0.

(iii) The curve (q(t), ξ(t)) is a critical point of the functional

(3.7)

∫ b

a

l(q, ξ) dt

with respect to variations δξ, induced by the variations

(3.8) δq = Ψq η,

and given by

(3.9) δξ = η̇ + [ξ, η]q.

(iv) The curve (q(t), ξ(t)) satisfies the weak form of the Hamel equations

(3.10)

∫ b

a

〈

Ψ∗

q

δl

δq
+

[

ξ,
δl

δξ

]∗

q

−
d

dt

δl

δξ
, η

〉

dt = 0, η ∈ Ψ−1
q (TqQ)

coupled with the equations q̇ = Ψq ξ. If δl/δq ∈ T ∗
qM and i∗TqQ is dense

in TqM for every q ∈ Q, the curve (q(t), ξ(t)) satisfies the strong form of
the Hamel equations

(3.11)
d

dt

δl

δξ
=

[

ξ,
δl

δξ

]∗

q

+Ψ∗

q

δl

δq

coupled with the equation q̇ = Ψq ξ.

For the early development of these equations in the finite-dimensional setting
see [21,41].

Proof. The equivalence of (i) and the weak form of the Euler–Lagrange equa-
tions (3.5) is proved by integration by parts:

δ

∫ b

a

L(q, q̇) dt =

∫ b

a

(〈

δL

δq
, δq

〉

+

〈

δL

δq̇
, δq̇

〉)

dt =

∫ b

a

〈

δL

δq
−
d

dt

δL

δq̇
, δq

〉

dt.

The strong form of the Euler–Lagrange equations (3.6) follows from a standard
contradiction argument: Skipping technical details,

δL

δq
−
d

dt

δL

δq̇
6≡ 0
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implies

δ

∫ b

a

L(q, q̇) dt 6= 0

for a certain variation of q(t), which finishes the proof of the equivalence of (i)
and (ii).

To prove the equivalence of (i) and (iii), we first compute the quantities δq̇ and
d(δq)/dt. Recall that

δq(t) =
∂

∂τ

∣

∣

∣

∣

τ=0

β(t, τ) = Ψq(t) η(t), where η(t) ∈ W.

Using the definition (3.4) of the field δq,

(3.12) δΨq(t) =
∂

∂τ

∣

∣

∣

∣

τ=0

Ψβ(t,τ) = δq(t)[Ψq(t)] = (Ψq(t) η(t))[Ψq(t)].

Hereafter, v[f ] denotes the derivative of the function f along the vector filed v; in
particular, in (3.12) an operator-valued function is differentiated.

Similarly,
d
dtΨq(t) = q̇(t)[Ψq(t)] = (Ψq(t) ξ(t))[Ψq(t)],

and therefore

δq̇ = (Ψq η)[Ψq]ξ +Ψq δξ,
d
dtδq = (Ψq ξ)[Ψq]η +Ψq η̇.

From δq̇ = d
dtδq, we obtain

Ψq(δξ − η̇) = (Ψ ξ)[Ψ η](q)− (Ψ η)[Ψ ξ](q) = [Ψ ξ,Ψ η](q) = Ψq[ξ, η]q,

which implies formula (3.9).
To prove the equivalence of (iii) and the weak form of Hamel’s equations (3.10),

we use the above formula and compute the variation of the action (3.7):

δ

∫ b

a

l(q, ξ) dt =

∫ b

a

(〈

δl

δq
, δq

〉

+

〈

δl

δξ
, δξ

〉)

dt

=

∫ b

a

(〈

δl

δq
,Ψq η

〉

+

〈

δl

δξ
, η̇ + [ξ, η]q

〉)

dt

=

∫ b

a

〈

Ψ∗

q

δl

δq
+

[

ξ,
δl

δξ

]∗

q

−
d

dt

δl

δξ
, η

〉

dt.

If δL/δq ∈ T ∗
qM and i∗TqQ is dense in TqM for every q ∈ Q, then for each t the

subspace Ψ−1
q(t)(i∗Tq(t)Q) is dense in W , and the variational derivative vanishes if

and only if the strong form of the Hamel equations (3.11) is satisfied. �

Example 3.1. For an incompressible fluid flow in a compact domain D ⊂ R3

with a smooth boundary the configuration space is the group Diff(D) of volume-
preserving diffeomorphism of D. Let q(t) be a curve in this group, one may think
of q(t) as a particular fluid flow. Following Euler [15–17], one typically uses the
spatial velocity ξ = q̇ ◦ q−1 ∈ TeDiff(D). Selecting W = TeDiff(D) = X (D) (the
space of smooth vector fields on D tangent to the boundary) and Ψq = TRq gives



ON HAMEL’S EQUATIONS 201

q̇ = Ψq ξ. Therefore, the use of spatial velocity in fluid dynamics is an instance of
infinite-dimensional Hamel’s formalism. The variation formula (3.9) becomes

δξ = η̇ − adξ η ≡ η̇ + [ξ, η],

where [ · , · ] is the Jacobi–Lie bracket on D. The dynamics, in the form of Hamel’s
equations, reads

d

dt

δl

δξ
+ ad∗ξ

δl

δξ
= 0,

which are the Euler–Poincaré equations, as established by [1,41].

Remark 3.1. The convective representation of fluid dynamics is straightfor-
ward to obtain by setting Ψq = TLq. See [20] for details on the convective repre-
sentation in continuum mechanics.

Example 3.2. For an inextensible string moving in the plane (see Figure 2) the
configuration manifold is the space of smooth embeddings Emb([0, 1],R2). We will
view R2 as a complex plane. Given z ∈ Emb([0, 1],C), the inextensibility condition

Figure 2. An inextensible planar string.

reads ‖zs‖ = 1, 0 6 s 6 1. For simplicity, we assume no resistance to bending.
Therefore, the Lagrangian reads

L(z) =

∫ 1

0

1

2

(

‖ż‖2 − λ(‖zs‖
2 − 1)

)

ds,

where λ : [0, 1] → R is the Lagrange multiplier (tension). The boundary conditions
for the Lagrange multiplier are a part of the requirement δL = 0. For a free motion
of a string, these conditions read

(3.13) λ|s=0 = λ|s=1 = 0.

Let

(3.14) ż = Ψz ξ := zsξ,

so the velocity components to be used to construct Hamel’s equations are rep-
resented by a complex-valued function ξ = ξ(s, t). Geometrically, the real and
imaginary parts of ξ are the tangent and normal velocity components of the points
of the string.

The Lagrangian becomes

l =

∫ 1

0

1

2

(

z̄szsξ̄ξ − λ(z̄szs − 1)
)

ds,

in which the density should be understood as a function of (zs, z̄s, ξ, ξ̄) and the
Lagrange multiplier λ.



202 ZENKOV

Next, the formula (3.2) for the string becomes

[Ψ ξ,Ψ η](z)
d

dτ

∣

∣

∣

∣

τ=0

(

(z + τzsξ)sη − (z + τzsη)sξ
)

= zs(ξsη − ηsξ) = Ψz[ξ, η]z.

That is,

(3.15) [ξ, η]z = ξsη − ξηs.

Instead of establishing the formulae for the dual bracket and dual operator Ψ∗,
it is more efficient in this example to directly work with the variational principle.
We have:

(3.16)
δl

δz
δz +

δl

δξ
δξ +

δl

δz̄
δz̄ +

δl

δξ̄
δξ̄,

and since l is real-valued, the two last terms are obtained from the first two by
conjugation. Thus, it is sufficient to evaluate the last two terms in (3.16):

δl

δz̄
δz̄ +

δl

δξ̄
δξ̄ =

δl

δz̄
δz̄ +

δl

δξ̄

(

ξ̄sη̄ − ξ̄η̄s
)

−
d

dt

δl

δξ̄
η̄

=

∫ 1

0

1

2

(

(

λzs − zsξ̄ξ
)

s
δz̄ + z̄szsξ

(

ξ̄sη̄ − ξ̄η̄s
)

−
d

dt

(

z̄szsξ
)

η̄
)

ds

− 1
2 z̄szs

(

λ− ξ̄ξ
)

η̄
∣

∣

s=1

s=0

=

∫ 1

0

1

2

(

zsz̄ssξξ̄ + zsz̄sξξ̄s + λsz̄szs + λzssz̄s −
d

dt

(

z̄szsξ
)

)

η̄ ds−
1

2
z̄szsλη̄

∣

∣

s=1

s=0
,

which, after imposing the constraint z̄szs = 1, implies

(3.17) ξ̇ = ξξ̄s + λs + iκ
(

λ− ξ̄ξ
)

as well as the tension conditions (3.13). Here κ is the (signed) curvature of the curve
[0, 1] ∋ s 7→ z(s) ∈ C. The right-hand side of (3.17) gives an explicit representation
of the terms on the right-hand side of Hamel’s equations (3.11) for the string.

Remark 3.2. Alternatively, one defines the operator Ψ by

Ψz ξ :=
zs
|zs|

ξ.

Because of the constraint |zs| = 1, the resulting Hamel equations are (3.17). How-
ever, the bracket [ξ, η]z is now given not by (3.15) but by a slightly different formula.
This latter bracket is in fact induced by the (standard) bracket of the Lie algebra
of the infinite-dimensional group

G =
{

[0, 1] ∋ s 7→ g(s) ∈ SE(2)
}

.

To see that, the string dynamics should be interpreted as a motion on G specified
by the degenerate Lagrangian

l =

∫ 1

0

1

2

(

ξ̄ξ − λ(z̄szs − 1)
)

ds



ON HAMEL’S EQUATIONS 203

subject to the constraint

(3.18)
zs
|zs|

= eiθ,

where (θ, z) are the (standard) coordinates on SE(2) = SO(2)sC and ξ is the C-
component of the body velocity g−1ġ. One then composes the C-component of the
Euler–Poincaré equations on G and imposes constraint (3.18). This results in the
string equations (3.17). It is worth noticing that the derivation of these equations
using formula (3.14) is simper and more efficient.

4. Systems with Constraints

Here we discuss infinite-dimensional dynamics with velocity constraints. To
simplify the exposition, we assume in the rest of the section that δL/δq ∈ T ∗

qM and
i∗TqQ is dense in TqM for every q ∈ Q, and thus all results will be stated for strong
equations of motion. Similar statements for weak equations are straightforward
to obtain.

4.1. The Lagrange–d’Alembert Principle. Recall that in this paper the
constraints imposed on the system are assumed linear and homogeneous in the
velocity. Such constraints are specified by a vector subbundle D of the bundle
P = i∗TM . The base of this subbundle is the manifold Q. This subbundle will, in
general, be nonintegrable.

The condition for a curve to satisfy the constraints, q̇(t) ∈ Dq(t) for all t, is,
by itself, insufficient for the development of constrained mechanics. One needs
a mechanism for constructing the vector field that captures the dynamics of the
constrained system. For the ideal constraints in the finite-dimensional setting, this
is accomplished by a projection. Thus, constraints define a submanifold of the
velocity phase space and a projection onto this submanifold.

For a projection to be meaningful in the infinite-dimensional case, D is required
to be a locally splitting subbundle of P . That is, for each q ∈ Q there exists a chart
(U, h) of M such that

Th(π−1
Q (U) ∩ D) = h(U)×WD,

where the closed subspace WD of the model space W is splitting, or complemented,
i.e., there is a closed subspace WU of W such that WD ⊕ WU = W and the
projection πD uniquely determined by setting (KerπD, ImπD) = (WU ,WD) is
continuous.

The following Lagrange–d’Alembert principle is known to be equivalent to the
dynamics of systems with ideal constraints:

Definition 4.1. The Lagrange–d’Alembert equations of motion for the system
are those determined by

δ

∫ b

a

L(q, q̇) dt = 0,

where we choose variations δq(t) of the curve q(t) that satisfy δq(a) = δq(b) = 0
and δq(t) ∈ Dq(t) for each t where a 6 t 6 b.
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This principle is supplemented by the condition that the curve q(t) itself satis-
fies the constraints. Note that we take the variation before imposing the constraints;
that is, we do not impose the constraints on the family of curves defining the varia-
tion. This is well known to be important to obtain the correct mechanical equations
(see [5] for a discussion and references).

The Lagrange–d’Alembert principle is equivalent to the equations

d

dt

δL

δq̇
−
δL

δq
∈ D◦

q , q̇ ∈ Dq.

Here,

D◦
q = {a ∈ T ∗

qM | 〈a, v〉 = 0, v ∈ Dq}.

4.2. The Constrained Hamel Equations. Given a system with velocity
constraints, that is, a Lagrangian L : P → R and constraint distribution D, select
the operators Ψq : W → TqQ on U ⊂ Q such that there exist closed subspaces
WD, WU ⊂W , W =WD ⊕ WU , and Ψq = ΨD

q ⊕ ΨU
q , where ΨD

q : WD → Dq and

ΨU
q : WU → Uq and their inverses are bounded linear operators smoothly dependent

on q ∈ U . One way to choose the operators Ψq is to use the above subbundle chart.
In general, U 6= Q, as numerous finite-dimensional examples demonstrate.

Each q̇ ∈ TM is then uniquely decomposed as

(4.1) q̇ = Ψq ξ
D +Ψq ξ

U , where Ψq ξ
D ∈ Dq,

i.e., Ψq ξ
D is the component of q̇ along Dq. Similarly, each α ∈ W ∗ uniquely

decomposes as

α = αD + αU ,

where αD and αU denote the components of α along the duals of WD and WU ,
respectively. We have

αD = (πD)∗ ◦ α|WD and αU =
(

id−(πD)∗
)

◦ α|WU ,

where (πD)∗ is the adjoint of πD. Using (4.1), the constraints read

(4.2) ξ = ξD or ξU = 0,

which implies

(4.3) δξ = δξD or δξU = 0.

The Lagrange–d’Alembert principle then implies the following theorem:

Theorem 4.1. The dynamics of a system with velocity constraints is repre-

sented by the strong form of constrained Hamel equations

(4.4)

(

d

dt

δl

δξ
−

[

ξD,
δl

δξ

]∗

q

−Ψ∗
q

δl

δq

)

D

= 0, ξU = 0, q̇ = Ψq ξ
D.

Example 4.1. Consider an inextensible string moving in the plane subject to
the vanishing normal velocity constraint, see Figure 2. This is a nonholonomic
constraint. One may think of a motion of a sharp string on the horizontal ice.
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Using the notations introduced in Example 3.2, the constraint reads ξ = ξ̄, i.e.,
ξ ∈ R. Equations (4.4) for the constrained string thus become

ξ̇ = ξξs + λs,(4.5)

ż = zsξ, ξ = ξ̄.(4.6)

along with the inextensibility condition.
It is geometrically evident (or can be confirmed with a simple calculation) that

the inextensibility condition in the presence of constraint ξ = ξ̄ implies ξs = 0.
That is, all points of the string have the same speed, and (4.5) becomes

ξ̇ = λs.

Using the boundary conditions (3.13), we conclude that

ξ̇ = 0,

i.e., ξ = const throughout the motion. This is in agreement with the motion of
Chaplygin sleigh for which the velocity of the contact point relative to the body
frame is constant. Unlike the sleigh, the constrained string motion is not completely
determined by the initial state: Any solution of (4.6) is of the form

z = φ(s+ ξt),

where φ is an arbitrary twice-differentiable complex-valued function. The initial
conditions define φ on the segment [0, 1]. Outside this segment, the function φ is
unknown, unless, for example, the motion of the front end of the string is prescribed.
The motion of the constrained string is therefore purely kinematic: The string
follows its front end, which moves at a constant speed.

This behavior is similar to that of the degenerate Chaplygin sleigh specified by
the Lagrangian l = 1

2ξξ̄ and constraint ξ = ξ̄, where ξ = e−iθż. For the degenerate
sleigh, the dynamics reads

ξ̇ = 0, ż = eiθξ,

where θ(t) is an arbitrary function. Thus, the motions are not identified by the
initial conditions.

Example 4.2. Consider the Chaplygin sleigh with an inextensible string at-
tached at and allowed to rotate around the contact point of the sleigh and the plane,
as shown in Figure 3. Assume that the string is constrained as in Example 4.1.

This system is SE(2)-invariant. The string position z is measured relative to
the sleigh. Below, ω and v denote the angular and linear velocity components of
the sleigh.

The absolute velocity of the string, η, is computed to be

η = z−1
s (ż + v + iωz),

This effectively defines the operator Ψ. The Lagrangian, which is system’s kinetic
energy, reads

l =
1

2
(Jω2 +mv̄v) +

∫ 1

0

1

2
(η̄η − λ(z̄szs − 1)) ds.
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The constraint is given by η̄ = η.

w

θ

Figure 3. The Chaplygin sleigh coupled to a constrained string.

Hamel’s equations for this system become

Jω̇ = 0,(4.7)

mv̇ = λ|s=0,(4.8)

η̇ = ηηs + λ|s,(4.9)

where ξ and η are real-valued. These equations should be amended with the cou-
pling conditions

(4.10) z|s=0 = 0, zs|s=0 = 1, η|s=0 = v.

These simply state that the string is attached to the blade at the contact point
of the blade and the velocity of the attached string end equals the velocity of the
blade.

Arguing as in Example 4.1, one concludes that η is independent of s. Thus,
equation (4.9) becomes

(4.11) η̇ = λs.

Equation (4.7) implies ω = const.
The tension λ is obtained by integrating (4.11) with respect to s and, since

λ|s=1 = 0, we conclude that

(4.12) λ = (s− 1)η̇.

Therefore, λ|s=0 = −η̇, which in combination with (4.8) and (4.10) yields v = const.
The velocity coupling condition then implies that the blade moves at the constant
speed η = v. Using (4.12), we conclude that λ = 0.

Summarizing, the Chaplygin sleigh with the constrained string attached gener-
ically undergoes uniform circular motion. Nongeneric trajectories are straight lines.
The string (possibly after some period of time) follows the trajectory of the contact
point of the sleigh.

It is interesting to point out that in this example the shape dynamics (string’s
motion) is modulated by the group dynamics (skate’s motion). This is the opposite
of typical reconstruction in finite-dimensional constrained systems discussed in [5].

We note also that the qualitative dynamics of this system—uniform circular
or straight line motion—is consistent with the behavior of integrable Hamiltonian
systems. One may raise the question of whether it is integrable in a more precise
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sense—with infinitely-many conserved quantities. We intend toaddress this issue in
a forthcoming publication.

5. Discrete Mechanics

Discrete mechanics is obtained by discretizing variational principles. See Mars-
den and West [36] and references therein for a more detailed discussion of discrete
mechanics.

5.1. Discrete Lagrangian Mechanics. A discrete analogue of Lagrangian
mechanics is the result of discretization of Hamilton’s principle; this approach un-
derlies the construction of variational integrators.

A key notion is that of the discrete Lagrangian, which is a map Ld : Q×Q→ R

that approximates the action integral along an exact solution of the Euler–Lagrange
equations joining the configurations qk, qk+1 ∈ Q,

Ld(qk, qk+1) ≈ ext
q∈C([0,h],Q)

∫ h

0

L(q, q̇) dt,

where C([0, h], Q) is the space of curves q : [0, h] → Q with q(0) = qk, q(h) = qk+1,
and ext denotes extremum.

In the discrete setting, the action integral of Lagrangian mechanics is replaced
by an action sum

Sd(q0, q1, . . . , qN ) =
N−1
∑

k=0

Ld(qk, qk+1),

where qk ∈ Q, k = 0, 1, . . . , N , is a finite sequence in the configuration space.
The equations are obtained by the discrete Hamilton principle, which extremizes
the discrete action given fixed endpoints q0 and qN . Taking the extremum over
q1, . . . , qN−1 gives the discrete Euler–Lagrange equations

(5.1) D1L
d(qk, qk+1) +D2L

d(qk−1, qk) = 0, k = 1, . . . , N − 1.

Here and below, DiF denotes the partial derivative of the function F with respect
to its ith input. Equations (5.1) implicitly define the update map Φ: Q×Q→ Q×Q,
where Φ(qk−1, qk) = (qk, qk+1) and Q×Q replaces the velocity phase space TQ of
continuous-time Lagrangian mechanics.

In the case that Q is a vector space, it may be convenient to use (qk+1/2, vk,k+1),

where qk+1/2 = 1
2 (qk + qk+1) and vk,k+1 = 1

h (qk+1 − qk), as a state of a discrete
mechanical system. In such a representation, the discrete Lagrangian becomes a
function of (qk+1/2, vk,k+1), and the discrete Euler–Lagrange equations read

1
2

(

D1L
d(qk−1/2, vk−1,k) +D1L

d(qk+1/2, vk,k+1)
)

+ 1
h

(

D2L
d(qk−1/2, vk−1,k)−D2L

d(qk+1/2, vk,k+1)
)

= 0.

These equations are equivalent to the variational principle

(5.2) δSd =

N−1
∑

k=0

(D1L
d(qk+1/2, vk,k+1) δqk+1/2

+D2L
d(qk+1/2, vk,k+1) δvk,k+1) = 0,
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where the variations δqk+1/2 and δvk,k+1 are induced by the variations δqk and are
given by the formulae

δqk+1/2 = 1
2 (δqk+1 + δqk), δvk,k+1 = 1

h (δqk+1 − δqk).

The discrete Hamel formalism introduced below may be interpreted as a general-
ization of the representation (5.2) of discrete mechanics.

5.2. Discrete Hamel’s Equations. In the rest of the paper we assume that
Q is a finite-dimensional vector space. Start with a sequence of configurations
{qk}

N
k=0. Given a parameter τ ∈ [0, 1], define the points qk+τ := (1− τ)qk + τqk+1

for each 0 6 k 6 N −1. Given Ψq :W → TqQ, the velocity components introduced
by this operator at qk+τ are denoted ξk,k+1 = (ξ1k,k+1, . . . , ξ

n
k,k+1). Similar to [8]

and [29], the phase space for the suggested discretization of Hamel’s equation is
the tangent bundle TQ. In local coordinates (q, ξ) on TQ, the discrete Lagrangian
ld : TQ → R reads ld = ld(qk+τ , ξk,k+1). To discretize a continuous-time system,
we suggest the following procedure:

(i) Select operators Ψq : W → TqQ and identify the continuous-time La-
grangian l(q, ξ), as in (3.3).

(ii) Construct the discrete Lagrangian using the formula

ld(qk+τ , ξk,k+1) = hl(qk+τ , ξk,k+1).

The action sum then is

(5.3) sd =

N−1
∑

k=0

ld(qk+τ , ξk,k+1),

which is an approximation of the action integral (3.7) of the continuous-time system.
Given τ ∈ [0, 1], define ηk+τ by the formula

(5.4) ηk+τ = (1− τ)ηk + τηk+1.

The quantities ηk, ηk+1, and ηk+τ will be used below to establish the discrete
analogues of the variation formulae (3.8) and (3.9).

Define the discrete conjugate momentum by

(5.5) µk,k+1 := D2l
d(qk+τ , ξk,k+1).

Below, we use the notations

ldk+τ := ld(qk+τ , ξk,k+1), ψq+τ := Ψ∗
q+τD1l

d(qk+τ , ξk,k+1),

etc.

Theorem 5.1. The sequence
(

qk+τ , ξk,k+1

)

∈ TQ satisfies the discrete Hamel
equations

1
h (µk−1,k − µk,k+1) + τψk−1+τ + (1− τ)ψk+τ(5.6)

+ τ [ξk−1,k, µk−1,k]
∗
qk−1+τ

+ (1 − τ)[ξk,k+1, µk,k+1]
∗
qk+τ

= 0
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if and only if

δsd = δ

N−1
∑

k=0

ld(qk+τ , ξk,k+1) = 0,

where

δqk+τ = Ψqk+τ
ηk+τ ,(5.7)

δξk,k+1 = 1
h (ηk+1 − ηk) + [ξk,k+1, ηk+τ ]qk+τ

.(5.8)

Here η0 = ηN = 0, and ηk+τ is defined in (5.4), k = 0, . . . , N − 1.

In order to obtain a complete system of equations, one supplements (5.6) with
a discrete analogue of the kinematic equation q̇ = Ψqξ. There is a certain freedom
in doing that. For now, we assume this discrete analogue to be

∆qk
h

= Ψk+τ ξk,k+1.

We will use a different discretization of the kinematic equation to construct an
integrator for the spherical pendulum in Section 6.

Remark 5.1. Unlike the continuous-time case, the formulae for variations (5.7)
and (5.8) cannot be derived in a manner presented in the proof of Theorem 3.1. The
situation here is somewhat similar to the issue encountered and resolved by Chetaev
in his work [10] on the equivalence of the Lagrange–d’Alembert and Gauss prin-
ciples for systems with nonlinear nonholonomic constraints. Recall that Chetaev’s
approach was to define variations in such a way that the two principles become
equivalent.

Proof. Using formulae (5.7) and (5.8) and computing the variation of the
action sum (5.3), one obtains

δsd =
N−1
∑

k=0

D1l
d(qk+τ , ξk,k+1) δqk+τ +D2l

d(qk+τ , ξk,k+1) δξk,k+1

=

N−1
∑

k=0

〈

D1l
d
k+τ ,Ψqk+τ

ηk+τ

〉

+
〈

D2l
d
k+τ , (ηk+1 − ηk)/h+ [ξk,k+1, ηk+τ ]qk+τ

〉

=
N−1
∑

k=1

〈

1
h (µk−1,k − µk,k+1), ηk

〉

+
〈

ψk+τ + [µk,k+1, ξk,k+1]
∗
qk+τ

, (1− τ)ηk + τηk+1

〉

=

N−1
∑

k=1

〈

1
h (µk−1,k − µk,k+1), ηk

〉

+
〈

τψk−1+τ + (1 − τ)ψk+τ , ηk

〉

+
〈

τ [µk−1,k, ξk−1,k]
∗
qk−1+τ

+ (1− τ)[µk,k+1, ξk,k+1]
∗
qk+τ

, ηk

〉

.
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Thus, vanishing of δsd for arbitrary ηk, k = 1, . . . , N − 1, is equivalent to discrete
Hamel’s equations (5.6). �

The formulae for variations (5.7) and (5.8) in the discrete setting are motivated
by the following observations. First, recall that in the continuous-time setting the
formula (3.9) for δξ follows from the formula

(5.9) δ(Ψqξ)−
d

dt
(Ψqη) = 0.

A discrete analogue of δ(Ψqξ) is relatively straightforward to obtain. Indeed, using
the formula

δqk+τ = Ψqk+τ
ηk+τ ≡ Ψqk+τ

((1− τ)ηk + τηk+1))

and the interpretation of the operator δ as a directional derivative, just like in
formula (3.12), one obtains

δΨqk+τ
= (Ψηk+τ [Ψ])k+τ ,

and therefore

δ(Ψqk+τ
ξk+1) = δΨqk+τ

ξk,k+1 +Ψqk+τ
δξk,k+1

= Ψqk+τ
δξk,k+1 + (Ψηk+τ [Ψξk,k+1])k+τ .

Hereafter, u[f ] denotes the derivative of the function f along the vector field u.
However, a discrete analogue of the formula d

dt(Ψqη) is not immediately avail-
able, as the operation of time differentiation is not intrinsically present in the
discrete setting. A workaround that we suggest is to view the transition from qk to
qk+1 as a motion along a straight line segment at a uniform rate:

(5.10) qk+τ = (1− τ)qk + τqk+1, 0 6 τ 6 1,

so that qk+τ = qk when τ = 0 and qk+τ = qk+1 when τ = 1. Since the time step
is h, the analogue of continuous-time velocity is ∆qk/h. From (5.10),

∆qk
h

=
1

h

dqk+τ

dτ
,

leading to an interpretation of the operator

1

h

d

dτ
as a discrete analogue of time differentiation of continuous-time mechanics.

The discrete analogue of the term d
dt(Ψqη) thus is

1

h

d

dτ
(Ψqk+τ

ηk+τ ) =
1

h

dΨqk+τ

dτ
ηk+τ +Ψqk+τ

1

h

dηk+τ

dτ

= Ψqk+τ

1

h

dηk+τ

dτ
+ (Ψξk,k+1[Ψηk+τ ])k+τ

= Ψqk+τ

ηk+1 − ηk
h

+ (Ψξk,k+1[Ψηk+τ ])k+τ .

Summarizing, the discrete analogue of (5.9) reads

Ψqk+τ
δξk,k+1 = Ψqk+τ

ηk+1 − ηk
h

+ [Ψξk,k+1,Ψηk+τ ]qk+τ
,
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which implies formula (5.8) for variation δξ.

5.3. Discrete Nonholonomic Systems. Discrete nonholonomic systems
(nonholonomic integrators) were introduced by Cortés and Mart́inez in [12].

Let Q be a configuration space. According to Cortés and Mart́inez, a discrete

nonholonomic mechanical system on Q is characterized by:

(i) A discrete Lagrangian Ld : Q×Q→ R.
(ii) A constraint distribution D on Q.
(iii) A discrete constraint manifold Dd ⊂ Q×Q which has the same dimension

as D and satisfies the condition (q, q) ∈ Dd for all q ∈ Q.

The dynamics is given by the following discrete Lagrange–d’Alembert principle

(see [12]):

N−1
∑

k=1

(

D1L
d(qk, qk+1) +D2L

d(qk−1, qk)
)

δqk = 0, δqk ∈ Dqk , (qk, qk+1) ∈ Dd.

As pointed out in [18,19], the discrete constraint manifold should be carefully
selected when a continuous-time nonholonomic system is discretized. For the details
on the properties of discrete nonholonomic systems we refer the reader to papers
[12,18,19,38]. In a recent paper [29], a somewhat different approach to discretizing
nonholonomic systems has been suggested.

Cortés and Mart́inez also study the dynamics of discrete Chaplygin systems.
In particular, given a continuous-time Chaplygin system, they discretize the Euler–

Lagrange equations with constraint reactions, and conclude that, in general, the re-
sulting discrete system is inconsistent with the outcome of their discrete Lagrange–
d’Alembert principle. In other words, the concept of ideal constraints is not ac-

knowledged by their discretization procedure.
Lynch and Zenkov [32,33] proved that the discrete dynamics defined by the

Lagrange–d’Alembert principle of Cortés and Mart́inez may lack structural stability.
For example, it is possible for the discretization of a continuous-time Chaplygin
system to change the dimension and/or stability of manifolds of relative equilibria
of the said continuous-time system.

Below, we shall show that a different definition of the discrete Lagrange–
d’Alembert principle exists that is free of the aforementioned issues. In particular,
the dimension and stability of manifolds of relative equilibria are kept intact if this
new version of the Lagrange–d’Alembert principle is utilized.

5.4. Hamel’s Formalism for Discrete Nonholonomic Systems. Recall
that the Lagrange–d’Alembert principle for continuous-time nonholonomic systems
assumes that the variation of action is carried out before imposing the constraints.
The outcome is the constrained Hamel equations, as discussed in Section 4.2. In a
similar manner, we accept that the dynamics of a discrete nonholonomic system is
determined by the discrete Lagrange–d’Alembert principle, obtained by first taking
the variation of the discrete action (5.3) using variations (5.7) and (5.8) subject
to the discrete analogue of (4.3), and then imposing the discrete constraints. We
emphasize that the definition of the discrete Lagrange–d’Alembert principle given
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here is not the same as the definition of Cortés and Mart́inez reproduced in
Section 5.3.

In the continuous-time setting, the constraints are represented by formula (4.2).
We thus suggest that, under the same assumptions on the frame selection as in
Section 4.2, the discrete constraints are

ξk,k+1 = ξDk,k+1 or ξUk,k+1 = 0.

The discrete analogue of (4.3) is

ηk = ηDk or ηUk = 0.

Arguing like in Section 4.2, one proves the discrete analogue of Theorem 4.1:

Theorem 5.2. The dynamics of a discrete system with velocity constraints is

given by the constrained discrete Hamel equations
1
h (µk−1,k − µk,k+1)D + (τψk−1+τ + (1− τ)ψk+τ )D(5.11)

+ (τ [ξDk−1,k, µk−1,k]
∗
qk−1+τ

+ (1− τ)[ξDk,k+1 , µk,k+1]
∗
qk+τ

)D = 0,

where µk,k+1 is given by formula (5.5).

Of a special interest is the value τ = 1/2, in which case one verifies that the
order of approximation of (5.11) is 2.

5.5. Stability. In this section we link up stability of relative equilibria of
Chaplygin systems with structural stability of nonholonomic integrators.

Let H be a commutative Lie group acting freely and properly on the mani-
fold Q. Consider a commutative Chaplygin system characterized by an H-invariant
Lagrangian L : Q→ R and constraint distribution D. It is well-known that the dy-
namics of such systems reduces to its shape dynamics on Q/H . See [5, 37] for
details.

Assume additionally that this dynamics on Q/H is invariant with respect to
the action of a commutative group G on Q/H . The elements of the group G are
denoted g, and we assume that the action of G on Q/H is free and proper, so that
Q/H is a principal fiber bundle with the structure group G. Thus, locally, there
exist the bundle coordinates (r, g) on Q/H .

Under certain assumptions (see e.g. [28,50]), the dynamics has a manifold of
relative equilibria whose dimension equals dimG. These relative equilibria are the
solutions that in the bundle coordinates (r, g) read

r = re, ġ = ηe.

As established in Karapetyan [28], some of these relative equilibria may be par-

tially asymptotically stable. Karapetyan justifies stability using the center manifold
stability analysis, which, for nonholonomic systems under consideration, reduces to
verifying that the nonzero spectrum of linearization of the dynamics on Q/H at
the relative equilibrium of interest belongs to the left half-plane.2

2The stability analysis of relative equilibria of nonholonomic systems has a long history,
starting form the results of Walker [49] and Routh [43]; see [50] for some of this history and for
the energy-momentum method for nonholonomic systems.
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Partially asymptotically stable relative equilibria are a part of the ω-limit set
of system’s dynamics. Similarly, relative equilibria that become partially asymp-
totically stable after the time reversal are a part of system’s α-limit set.

It is important for a long-term numerical integrator to preserve the manifold of
relative equilibria and their stability types. Indeed, if the limit sets of an integrator
are different from the limit sets of the continuous-time dynamics, this integrator
will not adequately simulate the continuous-time dynamics over long time intervals.

As shown in [32,33], it is possible for the discrete Lagrange–d’Alembert prin-
ciple of Cortés and Mart́inez to produce discretizations that fail to preserve the
manifold of relative equilibria. For instance, it may change the dimension of this
manifold, thus changing the structure of the limit sets. Informally, the origin of
this effect can be explained as follows: The discrete Lagrange–d’Alembert princi-
ple of Cortés and Mart́inez is capable of introducing reactions that correspond to
non-ideal constraints. A typical example would be a reaction force with a dissipa-
tive component, whose discrete counterpart causes the aforementioned changes of
relative equilibria.

Introduce a discrete Chaplygin system by constructing discrete constrained
Hamel’s equations (5.11) for the given continuous Chaplygin system. A relative
equilibrium of this discrete Chaplygin system with commutative symmetry is a
solution

rk = const, ∆gk = const.

Assume now that τ = 1/2 in equations (5.11). Let h > 0 be the time step.

Theorem 5.3 (Lynch and Zenkov [32]). The introduced discretization pre-

serves the manifold of relative equilibria of the continuous-time Chaplygin system;

that is, rk = re, ∆gk = hηe is a relative equilibrium of the discretization if and

only if r = re, ġ = ηe is a relative equilibrium of the continuous-time system. The

conditions for partial asymptotic stability of the equilibria of the continuous-time

system and of its discretization are the same.

Summarizing, the discrete Lagrange–d’Alembert principle proposed in this pa-
per ensures the necessary conditions for structural stability of the associated non-
holonomic integrator.

6. The Spherical Pendulum

Here we outline the results of Zenkov, Leok, and Bloch [51] on the applications
of the discrete Hamel formalism to the energy-momentum-preserving integrator for
the spherical pendulum.

6.1. The Spherical Pendulum as a Degenerate Rigid Body. Consider
a spherical pendulum whose length is r and mass is m. We view the pendulum as
a point mass moving on the sphere of radius r centered at the origin of R3. The
development here is based on the representation

µ̇ = µ× ξ +mg γ × a,(6.1)

γ̇ = γ × ξ(6.2)
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of pendulum’s dynamics; that is, the pendulum is viewed as a rigid body rotating
about a fixed point. This rigid body is of course degenerate, with the inertia tensor
I = diag{mr2,mr2, 0}. Here ξ is the angular velocity of the pendulum, µ is its
angular momentum, γ is the unit vertical vector (and thus the constraint ‖γ‖ = 1
is imposed), and a is the vector from the origin to the center of mass, which for
the pendulum is its bob, all written relative to the body frame. Throughout the
rest of the paper, the boldface characters represent three-dimensional vectors. The
kinetic and potential energies of the pendulum are

K = 1
2 〈µ, ξ〉 ≡

1
2 〈I ξ, ξ〉, U = mg〈γ,a〉 ≡ mgrγ3,

and the Lagrangian reads

(6.3) l(ξ,γ) = 1
2 〈I ξ, ξ〉 −mg〈γ,a〉.

This Lagrangian is invariant with respect to rotations about γ, and therefore the
vertical component of the spatial angular momentum is conserved.

There are two independent components in the vector equation (6.1). We em-
phasize that the representation (6.1) and (6.2) of the dynamics of the pendulum,
though redundant, eliminates the use of local coordinates on the sphere, such as
spherical coordinates. Spherical coordinates, while being a nice theoretical tool,
introduce artificial singularities at the north and south poles. That is, the equa-
tions of motion written in spherical coordinates have denominators vanishing at
the poles, but this has nothing to do with the physics of the problem and is solely
caused by the geometry of the spherical coordinates. Thus, the use of spherical
coordinates in calculations is not advisable.

Another important remark is that the length of the vector γ is a conservation

law of equations (6.1) and (6.2), and thus adding the constraint ‖γ‖ = 1 does not

result in a system of differential-algebraic equations. The latter are known to be a
nontrivial object for numerical integration.

Equations (6.1) and (6.2) may be interpreted in a number of ways. In the above,
we viewed them as the dynamics of a degenerate rigid body. Since the moment of
inertia relative to the direction of the vector a is zero, the third component of the
body angular momentum vanishes,

µ3 =
∂l

∂ξ3
= 0,

and thus there are only two nontrivial equations in (6.1). Thus, one needs five
equations to capture the pendulum dynamics. This reflects the fact that rotations
about the direction of the pendulum have no influence on the pendulum’s motion.

The dynamics then can be simplified by setting

(6.4) ξ3 = 0,

which leads to an interpretation of equations (6.1) and (6.2) as the dynamics of the
heavy Suslov top3 with a rotationally-invariant inertia tensor and constraint (6.4).

3See [4,39,45] for the Suslov top.
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Summarizing, the dynamics becomes

(6.5) µ̇ = mgγ × a, γ̇ = γ × ξ, 〈ξ,a〉 = 0.

These equations are in fact the constrained Hamel equations, the reconstruction
equation, and the constraint, written in the redundant configuration coordinates
γ = (γ1, γ2, γ3); see [51] for details. Recall that the length of γ is the conserva-
tion law, so that the constraint ‖γ‖ = 1 does not need to be imposed, but the
appropriate level set of the conservation law has to be selected.

Our discretization is based on this point of view, i.e., the discrete dynamics
will be written in the form of discrete Hamel’s equations. The discrete dynamics
will posses the discrete version of the conservation law ‖γ‖ = const, so that the
algorithm should be capable, in theory, of preserving the length of γ up to machine
precision.

6.2. Variational Discretization for the Spherical Pendulum. The inte-
grator for the spherical pendulum is constructed by discretizing equations (6.5).

Let the positive real constant h be the time step. Applying the mid-point rule
to (6.3), the discrete Lagrangian is computed to be

ld(ξk,k+1,γk+1/2) =
h
2 〈I ξk,k+1, ξk,k+1〉 − hU(γk+1/2).

Here ξk,k+1 = (ξ1k,k+1, ξ
2
k,k+1, 0) is the discrete analogue of the angular velocity

ξ = (ξ1, ξ2, 0) and γk+1/2 = 1
2 (γk+1 + γk). The discrete dynamics then reads

1
h I(ξk,k+1 − ξk−1,k) = mg(γk+1/2 + γk−1/2)× a,(6.6)

1
h (γk+1/2 − γk−1/2) =

1
2 (γk+1/2 + γk−1/2)×

1
2 (ξk,k+1 + ξk−1,k).(6.7)

We reiterate that there is a certain flexibility in setting up the discrete analogue
(6.7) of the continuous-time reconstruction equation (6.2). Our choice may be
justified in a number of ways, one of them being energy conservation by the discrete
dynamics.

The structure-preserving properties of the proposed integrator for the spherical
pendulum are summarized in the following theorem.

Theorem 6.1 (Zenkov, Leok, and Bloch [51]). The discrete spherical pendulum

dynamics (6.6) and (6.7) preserves the energy, the vertical component of the spatial

angular momentum, and the length of γ.

We refer the readers to [51] for the proof and details.

6.3. Simulations. Here we present simulations of the dynamics of the spher-
ical pendulum using the integrator constructed in Section 6.2. For simulations, we
select the parameters of the system and the time step to be

m = 1 kg, r = 9.8 m, h = .2 s.

The trajectory of the bob of the pendulum with the initial conditions

ξ10 = .6 rad/s, ξ20 = 0 rad/s,

γ10 = .3 m, γ20 = .2 m, γ30 = −

√

1−
(

γ10
)2

−
(

γ20
)2

m



216 ZENKOV

is shown in Figure 4a. As expected, it reveals the quasiperiodic nature of pendu-
lum’s dynamics.

Figure 4b shows pendulum’s trajectory that crosses the equator. This simula-
tion demonstrates the global nature of the algorithm, and also seems to do a good
job of hinting at the geometric conservation properties of the method.

(a) Small oscillations (b) Large oscillations

Figure 4. Trajectories of the pendulum calculated with the
Hamel integrator.

Theoretically, if one solves the nonlinear equations exactly, and in the absence of
numerical roundoff error, the Hamel variational integrator should exactly preserve
the length constraint and the energy. In practice, Figure 5a demonstrates that
‖γ‖ stays to within unit length to about 10−14 after 10,000 iterations. Figure
5b demonstrates numerical energy conservation, and the energy error is to about
5 · 10−15 after 10,000 iterations. Indeed, one notices that the energy error tracks the
length error of the simulation, which is presumably due to the relationship between
the length of the pendulum and the potential energy of the pendulum. The drift
in both appear to be due to accumulation of numerical roundoff error, and could
possibly be reduced through the use of compensated summation techniques.

0 2000 4000 6000 8000 10 000

– 1. ´ 10–15

1. ´ 10– 14

(a) Preservation of the length of γ

0 2000 4000 6000 8000 10 000

– 5. ´ 10– 15

5. ´ 10– 15

(b) Conservation of energy

Figure 5. Numerical properties of the integrator for the pendulum.
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For the comparison of the Hamel integrator with simulations using the gener-
alized Störmer–Verlet method and the RATTLE method see [51]. We point out
here that the energy error for the Hamel integrator is smaller than those of the
Störmer–Verlet and RATTLE methods.
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220 ZENKOV

О ХАМЕЛОВИМ JЕДНАЧИНАМА

Резиме. У раду се даjе преглед недавних резултата о проширењу Хамело-
вог формализма на бесконачно-димензионе механичке системе и вариjационе
интеграторе. Од посебног значаjа су примене у динамици и нумеричкоj инте-
грациjи система са везама по брзинама.
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