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DYNAMICS OF A BODY SLIDING ON A ROUGH
PLANE AND SUPPORTED AT THREE POINTS
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Abstract. This paper is concerned with the problem of a rigid body (tripod)
moving with three points in contact with a horizontal plane under the action of
dry friction forces. It is shown that the regime of asymptotic motion (final dy-
namics) of the tripod can be pure rotation, pure sliding, or sliding and rotation
can cease simultaneously, which is determined by the position of the tripod’s
supports relative to the radius of inertia. In addition, the dependence of the
trajectory of the center of mass on the system parameters is investigated. A
comparison is made with the well-known theoretical and experimental studies
on the motion of bodies with a flat base.

1. Introduction

This paper is concerned with the problem of a rigid body (tripod) moving with
three points in contact with a horizontal plane under the action of dry friction
forces.

The system under consideration has a model character, since the equations of
motion for it can be written without making additional hypotheses and assump-
tions (requiring the use of elasticity theory) as to how the pressure of the body is
distributed over the plane of sliding: the reaction forces at three points of contact
are uniquely defined from the conditions for projections of forces and their mo-
menta. From this point of view, the laws found in the system’s dynamics can be
used to verify and refine the dynamical friction models.

N. E. Zhukovskii [1] was the first to address a simpler problem, that of a bench
with two point supports (bipod), as an example of application of the conditions
for equilibrium of the system with friction. However, the dynamics of the bipod
does not differ significantly from that of the tripod as far as the simplification of
analysis is concerned, and can be obtained in the limit when two supports approach
each other. Afterwards, some particular motions of this system were discussed
in [3, 10, 13]. In particular, purely rotational motions were found for which the
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body rotates about one of its fixed supports [3], and it was numerically shown [10]
that these solutions can be limit solutions as the motion approaches a stop. The
trajectories in absolute space are constructed in [3, 13]. It is shown that in the
general case the velocity of the center of mass changes direction in the course of
motion, so that the trajectory meanders. However, this effect is not observed in
the case of “roughening” of trajectories [3]. We also mention the paper [13], in
which the author considers the motion of a bipod on an inclined plane and gives an
example of translational motion arising when the initial motion is purely rotational.

In 1912, P. Field [9] was the first to present an approximate analysis of the
motion of a body with three point supports (tripod). Some partial solutions to this
system and conditions for their existence and stability were found in [2]. In [4],
more general quadratures were obtained, but they are entirely useless for analysis
of the dynamics. A modern investigation of the motion of a tripod was carried out
by Shegelski and coauthors in [11]. This paper presents numerically constructed
trajectories for different tripods. In particular, it is demonstrated that in some
cases the trajectories of an equilateral tripod are similar to those of a body with an
annular contact area. However, a counterexample of an "undulatory" trajectory of
the tripod is also given, which contradicts the well-known laws of the dynamics of
bodies with a flat base [6].

Unfortunately, the final dynamics of the tripod has been poorly studied so far.
Mention can be made of [5], where conditions for the existence of asymptotic (when
the motion approaches a stop) stable translational motions of the tripod have been
found. It is appropriate here to present the results of [10,12], where the regimes
of asymptotic motion of bodies with a flat base are investigated and it is shown
that the final dynamics is determined by the ratio between the radius of the contact
patch and the radius of inertia of the body. When its value is small, asymptotic pure
rotation is realized, when it is large, asymptotic translational motion takes place,
and when the value is close to unity, the rotation and sliding cease simultaneously.

We give particular attention to comparison of the laws of dynamics of a tripod
and a body with a flat round base (disk); for a detailed review, analytical and
experimental study of such a body see [6] and [7]. It is well known from theoretical
works that the pattern of absolute motion of the disk depends on the choice of the
model of the pressure distribution of the body on the plane of sliding. In the case
of homogeneous pressure distribution the trajectories of the center of mass of the
body are rectilinear [8, 10], which is not confirmed experimentally. Experiments
have shown that, in the case of a linear law of pressure distribution, the trajectories
of the center of mass deviate in the direction opposite to that of rotation. Both
models of pressure distribution predict simultaneous termination of rotation and
sliding of the body, which finds a qualitative, but no quantitative, experimental
confirmation [7]. We note that the difficulties in comparing theoretical and ex-
perimental results on the motion of a disk are mainly due to the uncertainty of
distribution of normal reactions. The probabilistic approach to this problem has
been proposed recently in [14].

Some results of our research can be verified experimentally, which is very impor-
tant for identification of various friction models in describing the system dynamics.
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We are planning to carry it out by using modern high-precision equipment (see [7]).
At the end of the paper we present the results under discussion and formulate un-
solved problems.

2. Equations of motion for a dry friction model

2.1. Equations of motion of a balanced body. Consider the problem of a
rigid body moving on a horizontal rough plane and supported at three points (tri-
pod). We shall assume that the body is balanced. This implies that the distribution
of mass 𝑚 is such that one of the principal axes of inertia of the body coincides
with the normal to the surface, the center of mass also lies on this axis at height
ℎ. We define two coordinate systems (see Fig. 1):

1. coordinate system 𝑂𝑋𝑌 𝑍 — the origin lies at some point of the plane,
and the axis 𝑂𝑍 is perpendicular to the plane;

2. a moving coordinate system 𝐶𝑥𝑦𝑧 — the origin 𝐶 coincides with the
center of mass of the body, the axis 𝐶𝑧 is perpendicular to the plane
and coincides with the principal axis of inertia, the axes 𝐶𝑥 and 𝐶𝑦 are
parallel to the plane, and the axis 𝐶𝑥 passes above one of the supports of
the body at height ℎ.

Let 𝑅𝑃 = (𝑋,𝑌 ) be the coordinates of the projection of the tripod’s center of
mass onto the plane of sliding and let 𝛼 be the rotation angle of the axes of the
moving coordinate system 𝐶𝑥𝑦𝑧 relative to the fixed coordinate system 𝑂𝑋𝑌 𝑍.
The configuration space of the system of interest is the product ℳ = {(𝑋,𝑌, 𝛼)} =
R2×𝑆𝑂(2), where the first factor describes the position of the projection of the cen-
ter of mass onto the plane of sliding and the second factor describes the orientation
of the tripod.

Remark 2.1. In [11], the moving coordinate system has been chosen such that
one of its axes coincides with the linear velocity vector of the tripod. However,
such a choice requires constantly recalculating the projections of the position of the
supporting points onto its axes. The advantage of the moving system proposed in
this paper is that the coordinate axes are rigidly attached to the supporting points.

Let us write the equations of motion in the moving coordinate system 𝐶𝑥𝑦𝑧.
Let 𝑟𝑖(𝑖 = 1, 2, 3) be the radius vectors of the supporting points

𝑟1 = (𝑥1, 0,−ℎ), 𝑟2 = (𝑥2, 𝑦2,−ℎ), 𝑟3 = (𝑥3, 𝑦3,−ℎ)

and let 𝜔 = (0, 0, 𝜔) and 𝑣 = (𝑣𝑥, 𝑣𝑦, 0) be, respectively, the angular velocity and
the velocity of the center of mass of the tripod, referred to the moving axes 𝐶𝑥𝑦𝑧.
The equations of motion in vector form are

(2.1) 𝑚�̇� +𝑚(𝜔 × 𝑣) = 𝐹 +𝑁 +𝑚𝑔, (I𝜔)̇ = 𝑀 + 𝑇 ,

where 𝐹 = (𝐹𝑥, 𝐹𝑦, 0) is the friction force, 𝑁 = (0, 0, 𝑁) is the normal reaction,
𝑀 = (𝑀𝑥,𝑀𝑦,𝑀𝑧) is the friction torque, 𝑇 = (𝑇𝑥, 𝑇𝑦, 0) is the moment of the
reaction force (since the reaction force is vertical, its moment is parallel to the



172 BORISOV, MAMAEV, AND ERDAKOVA

plane of sliding), 𝑔 is the free-fall acceleration, and I is the inertia tensor, which
for a balanced body has the following block-diagonal form:

I =

⎛⎝𝐼𝑥𝑥 𝐼𝑥𝑦 0
𝐼𝑥𝑦 𝐼𝑦𝑦 0
0 0 𝐼𝑧𝑧

⎞⎠ .

Figure 1. Sliding rigid body with three point supports (tripod),
fixed (𝑂𝑋𝑌 𝑍) and moving (𝐶𝑥𝑦𝑧) coordinate systems.

The equations of motion (2.1) may be written in terms of the moving axes
𝐶𝑥𝑦𝑧

(2.2)

𝑚(�̇�𝑥 − 𝜔𝑣𝑦) = 𝐹𝑥, 𝑚(�̇�𝑦 + 𝜔𝑣𝑥) = 𝐹𝑦, 𝐼𝑧𝑧�̇� = 𝑀𝑧,

𝐹𝑥 =

3∑︁
𝑖=1

𝐹𝑥𝑖, 𝐹𝑦 =

3∑︁
𝑖=1

𝐹𝑦𝑖, 𝑀𝑧 =

3∑︁
𝑖=1

(𝑥𝑖𝐹𝑦𝑖 − 𝑦𝑖𝐹𝑥𝑖),

where 𝐹𝑥𝑖 and 𝐹𝑦𝑖 are the projections of the friction forces for the i-th support.
In addition, for a body sliding on a horizontal plane, we need to write the

conditions for motion without loss of contact, which in this case are the requirements
for compensation of the vertical projections of forces and horizontal projections of
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the moments:

(2.3)

3∑︁
𝑖=1

𝑁𝑖 −𝑚𝑔 = 0, 𝑀𝑥 + 𝑇𝑥 = 0, 𝑀𝑦 + 𝑇𝑦 = 0,

𝑀𝑥 =

3∑︁
𝑖=1

ℎ𝐹𝑦𝑖, 𝑀𝑦 = −
3∑︁

𝑖=1

ℎ𝐹𝑥𝑖,

𝑇𝑥 =

3∑︁
𝑖=1

𝑦𝑖𝑁𝑖, 𝑇𝑦=−
3∑︁

𝑖=1

𝑥𝑖𝑁𝑖,

where 𝑁𝑖 is the normal reaction of the i-th support.

Remark 2.2. Moreover, it should be borne in mind that in this case the reac-
tion forces cannot become negative, i. e.,

𝑁𝑖 > 0, 𝑖 = 1, 2, 3.

According to the Amontons–Coulomb dry friction model, the friction force acts
at each supporting point:

𝐹 𝑖 = −𝑓𝑁𝑖
𝑣𝑖

|𝑣𝑖|
, 𝑣𝑖 = 𝑣 + (𝜔 × 𝑟𝑖),

where 𝑓 is the coefficient of friction and 𝑣𝑖 is the velocity of the supporting point. In
this case, the scalar expressions for projections of the friction force and the friction
torque are

(2.4) 𝐹𝑥 = −𝑓

3∑︁
𝑖=1

𝑁𝑖𝑉𝑥𝑖, 𝐹𝑦 = −𝑓

3∑︁
𝑖=1

𝑁𝑖𝑉𝑦𝑖, 𝑀𝑧 = −𝑓

3∑︁
𝑖=1

𝑁𝑖(𝑥𝑖𝑉𝑦𝑖 − 𝑦𝑖𝑉𝑥𝑖),

𝑉𝑥𝑖 =
𝑣𝑥 − 𝜔𝑦𝑖√︀

(𝑣𝑥 − 𝜔𝑦𝑖)2 + (𝑣𝑦 + 𝜔𝑥𝑖)2
, 𝑉𝑦𝑖 =

𝑣𝑦 + 𝜔𝑥𝑖√︀
(𝑣𝑥 − 𝜔𝑦𝑖)2 + (𝑣𝑦 + 𝜔𝑥𝑖)2

.

Substituting the known expressions for the friction force and friction torque
into the conditions for motion without loss of contact (2.3), we obtain equations
defining the normal reactions 𝑁𝑖:

3∑︁
𝑖=1

𝑁𝑖(𝑥𝑖 − 𝑓ℎ𝑉𝑥𝑖) = 0,
3∑︁

𝑖=1

𝑁𝑖(𝑦𝑖 − 𝑓ℎ𝑉𝑦𝑖) = 0
3∑︁

𝑖=1

𝑁𝑖 = 𝑚𝑔.

The solution of these equations can be conveniently represented using three-
dimensional vectors

(2.5)
𝑎 = (𝑎1, 𝑎2, 𝑎3), 𝑏 = (𝑏1, 𝑏2, 𝑏3), 𝑒 = (1, 1, 1), �̂� = (𝑁1, 𝑁2, 𝑁3),

𝑎𝑖 = 𝑥𝑖 − 𝑓ℎ𝑉𝑖𝑥, 𝑏𝑖 = 𝑦𝑖 − 𝑓ℎ𝑉𝑖𝑦,

whose components are not the projections on the axes of a coordinate system,
but scalar quantities relating to one of the three supporting points. Hence the
expression defining the components �̂� can be written in vector form

(2.6) �̂� = 𝑚𝑔
(𝑏× 𝑎)

(𝑏,𝑎× 𝑒)
.
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Substituting the known expressions for projections of the friction force and
friction torque (2.4) and normal reaction force (2.6) in (2.2), we obtain equations
of motion for a balanced body with three points in contact with a horizontal plane
in the moving coordinate system

(2.7)

𝑚(�̇�𝑥 − 𝜔𝑣𝑦) = 𝐹𝑥, 𝑚(�̇�𝑦 + 𝜔𝑣𝑥) = 𝐹𝑦, 𝐼𝑧𝑧�̇� = 𝑀𝑧,

𝐹𝑥 = −𝑓

3∑︁
𝑖=1

𝑁𝑖𝑉𝑥𝑖, 𝐹𝑦 = −𝑓

3∑︁
𝑖=1

𝑁𝑖𝑉𝑦𝑖,

𝑀𝑧 = −𝑓

3∑︁
𝑖=1

𝑁𝑖(𝑥𝑖𝑉𝑦𝑖 − 𝑦𝑖𝑉𝑥𝑖),

𝑁𝑖 = 𝑚𝑔
𝜀𝑖𝑗𝑘𝑏𝑗𝑎𝑘
𝜀𝑖𝑗𝑘𝑏𝑖𝑎𝑗𝑒𝑘

,

where 𝜀𝑖𝑗𝑘 is the antisymmetric Levi-Civita tensor.
The evolution of the position and orientation of the body relative to the fixed

coordinate system 𝑂𝑋𝑌 𝑍 is governed by the equations

(2.8) �̇� = 𝑣𝑥 cos𝛼− 𝑣𝑦 sin𝛼, �̇� = 𝑣𝑥 sin𝛼+ 𝑣𝑦 cos𝛼, �̇� = 𝜔,

where 𝑉𝑥𝑖, 𝑉𝑦𝑖 and 𝑁𝑖 are given by (2.4), (2.5) and (2.7).

2.2. Energy dissipation. In the general case, the kinetic energy of a rigid
body has the form

(2.9) 𝑇 =
1

2
𝑚𝑣2 +

1

2
(𝜔, 𝐼𝜔).

Differentiating (2.9) with respect to time and substituting the equations of
motion (2.7) and (2.8), we obtain an expression for the evolution of the kinetic
energy of the tripod depending on the components of the friction force and friction
torque, the linear velocity of the center of mass and the angular velocity of the
body

(2.10) �̇� = 𝐹𝑥𝑣𝑥 + 𝐹𝑦𝑣𝑦 +𝑀𝑧𝜔.

Substituting (2.4) into (2.10), we bring this expression to the form

�̇� = −𝑓

3∑︁
𝑖=1

𝑁𝑖

√︁
(𝑣𝑥 − 𝜔𝑦𝑖)2 + (𝑣𝑦 + 𝜔𝑥𝑖)2,

from which it follows that �̇� < 0.
The kinetic energy of the tripod decreases, which, generally speaking, leads to

a stop of the tripod in finite time. However, this can be rigorously proved only in
a few particular cases where the solution is given by explicit expressions. In the
general case, it can only be shown that at a sufficiently small initial velocity, due
to the reaction (2.6) being different from zero, the body stops in finite time. In the
case of an arbitrary initial velocity, the proof requires analysis of the reactions (2.6),
which occur in the process of motion and can be obtained only numerically. Some
of them can become equal to zero, resulting generally in the loss of contact or in
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different paradoxes which were first noted by Painlevé. In this paper, we ignore
these issues. However, for a real analysis of the dynamics, it is necessary (but also
much more difficult) to consider a more complicated model incorporating these
effects.

3. Analysis of the dynamics at final stages of motion

Since the motion of the tripod occurs in a finite time interval, we can investigate
some problems of the final dynamics and its stability by restricting ourselves to an
asymptotic subsystem of smaller dimension. This transition to a reduced system
is physically obvious, although it requires some justification. One can avoid proofs
by introducing special definitions, for example, 𝜏 -stability of translational motion
at instants close to a stop [5].

In this section we restrict ourselves to exploring the dynamics of the asymptotic
subsystem. To do so, we write the equations of motion (2.7) in a cylindrical coordi-
nate system, use the regularization procedure (rescale time) to exclude a singularity
at the instant of stop and discard higher-order terms of smallness due to a decrease
in the energy of the system. We note that the reduced system approximates well
the complete system at the final stage of motion, i.e., at small energies.

3.1. Dimensionless equations of motion. We introduce the new cylindri-
cal coordinate system 𝑂ℛ𝜑𝜁 by using the relations

𝑣𝑥 = ℛ cos𝜑
√︀
1− 𝜁2, 𝑣𝑦 = ℛ sin𝜑

√︀
1− 𝜁2, 𝜌𝜔 = ℛ𝜁,

where ℛ =
√︁
𝑣2𝑥 + 𝑣2𝑦 + 𝜌2𝜔2 is a quantity related to the kinetic energy by 𝑇 =

𝑚ℛ2

2 , 𝜑 is the angle between the axis 𝐶𝑥 and the velocity vector of the center of
mass 𝑣, the variable 𝜁 determines the ratio between the linear and angular velocities

(3.1)
√︀
1− 𝜁2

𝜁
=

𝑣

𝜔𝜌
= 𝑘,

and 𝜌 =
√︁

𝐼𝑧𝑧
𝑚 is the radius of inertia of the balanced body relative to the axis 𝑂𝑧.

We recall that the value of the parameter 𝑘 at the instant of stop determines
the asymptotic motion of the body. At 𝑘 = const the translational and rotational
motions of the body cease simultaneously, at 𝑘 = 0, which corresponds to 𝜁 =
1, 𝑣 = 0, the body asymptotically tends to pure rotation, and at 𝑘 → ∞, which
corresponds to 𝜁 = 0, 𝜔 = 0, the body asymptotically tends to pure sliding.

To facilitate further qualitative analysis, we also pass on to dimensionless co-
ordinates of the position of the tripod’s supports, �̄�𝑖, 𝑦𝑖, and to the coefficient of
effective friction, 𝜇:

�̄�𝑖 =
𝑥𝑖

𝜌
, 𝑦𝑖 =

𝑦𝑖
𝜌
, 𝜇 =

ℎ

𝜌
𝑓.

We write the equations of motion (2.7) in the new coordinate system 𝑂ℛ𝜑𝜁:

ℛ̇
𝑔𝑓

=
√︀
1− 𝜁2(𝐹𝑦 sin𝜑+ 𝐹𝑥 cos𝜑) + �̄�𝑧𝜁,
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ℛ
𝑔𝑓

√︀
1− 𝜁2�̇� = 𝐹𝑦 cos𝜑− 𝐹𝑥 sin𝜑− ℛ2𝜁

√︀
1− 𝜁2

𝜌𝑔𝑓
,(3.2)

ℛ
𝑔𝑓

𝜁 = −𝜁
√︀

1− 𝜁2(𝐹𝑦 sin𝜑+ 𝐹𝑥 cos𝜑) + �̄�𝑧(1− 𝜁2),

where 𝐹𝑥, 𝐹𝑦, �̄�𝑧 are the dimensionless expressions for projections of the friction
force and the friction torque

𝐹𝑥 = −
3∑︁

𝑖=1

�̄�𝑖𝑉𝑥𝑖, 𝐹𝑦 = −
3∑︁

𝑖=1

�̄�𝑖𝑉𝑦𝑖, �̄�𝑧 = −
3∑︁

𝑖=1

�̄�𝑖(�̄�𝑖𝑉𝑦𝑖 − 𝑦𝑖𝑉𝑥𝑖),

�̄�𝑖 =
𝜀𝑖𝑗𝑘�̄�𝑗 �̄�𝑘
𝜀𝑖𝑗𝑘 �̄�𝑖�̄�𝑗𝑒𝑘

, �̄�𝑖 = �̄�𝑖 − 𝜇𝑉𝑥𝑖, �̄�𝑖 = 𝑦𝑖 − 𝜇𝑉𝑦𝑖, 𝑒 = (1, 1, 1),

𝑉𝑥𝑖 =

√︀
1− 𝜁2 cos𝜑− 𝜁𝑦𝑖√︁

(
√︀

1− 𝜁2 cos𝜑− 𝜁𝑦𝑖)2 + (
√︀
1− 𝜁2 sin𝜑+ 𝜁�̄�𝑖)2

,

𝑉𝑦𝑖 =

√︀
1− 𝜁2 sin𝜑+ 𝜁�̄�𝑖√︁

(
√︀
1− 𝜁2 cos𝜑− 𝜁𝑦𝑖)2 + (

√︀
1− 𝜁2 sin𝜑+ 𝜁�̄�𝑖)2

.

3.2. Regularization and reduction near the state of rest. In the sys-
tem (3.1), we rescale time, as is done in the three-body problem of celestial me-
chanics, to regularize the singularity:

𝑑𝜏 =
𝑔𝑓

ℛ
𝑑𝑡,

𝑑ℛ
𝑑𝜏

= ℛ′,
𝑑𝜑

𝑑𝜏
= 𝜑′,

𝑑𝜁

𝑑𝜏
= 𝜁 ′.

This yields a system of differential equations defining the functions ℛ(𝜏), 𝜑(𝜏), 𝜉(𝜏):

(3.3)

ℛ′ = ℛ
(︁√︀

1− 𝜁2(𝐹𝑦 sin𝜑+ 𝐹𝑥 cos𝜑) + �̄�𝑧𝜁
)︁
,√︀

1− 𝜁2𝜑′ = 𝐹𝑦 cos𝜑− 𝐹𝑥 sin𝜑− ℛ2𝜁
√︀
1− 𝜁2

𝜌𝑔𝑓
,

𝜁 ′ = −𝜁
√︀
1− 𝜁2(𝐹𝑦 sin𝜑+ 𝐹𝑥 cos𝜑) + �̄�𝑧(1− 𝜁2).

In the last two equations, at small values of ℛ we single out the asymptotic (re-
duced) system

(3.4)

√︀
1− 𝜁2𝜑′ = 𝐹𝑦 cos𝜑− 𝐹𝑥 sin𝜑,

𝜁 ′ = −𝜁
√︀
1− 𝜁2(𝐹𝑦 sin𝜑+ 𝐹𝑥 cos𝜑) + �̄�𝑧(1− 𝜁2),

which describes the dynamics of the tripod in the limiting cases of small energies of
motion, for example, at stages close to the instant of stop.

The properties of the system (3.4) reflect the characteristic properties of the
initial system when the stop is approached, and so we examine the system (3.4) in
more detail.
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3.3. Simplifying assumption on the position of the tripod’s supports.
We note that, despite the reduction of order of the system, the analysis of the as-
ymptotic motion of the tripod is difficult due to a large set of parameters (�̄�1, �̄�2, �̄�3,
𝑦1, 𝑦2, 𝑦3, 𝜇). To decrease their number, we introduce the following assumption on
the position of the tripod’s supports to simplify analysis and calculations.

Consider a particular case where the supports lie at the apices of an isosceles
triangle inscribed into a circle of radius �̄�1 with center in the projection of the
tripod’s center of mass onto the plane of sliding (see Fig. 2). In this case, 𝑦1 =

0, �̄�2 = �̄�3, 𝑦2 = −𝑦3 =
√︀
𝑥1

2 − 𝑥2
2, hence, the number of parameters decreases

to three (�̄�1, �̄�2, 𝜇). The domain of definition of parameters �̄�1 and �̄�2 is �̄�1 >
0,−�̄�1 < �̄�2 < 0.

Figure 2. Supports of the tripod in the case where the points
of contact lie at the apices of an isosceles triangle.

We investigate possible regimes of motion and singular points of the two-dimen-
sional asymptotic system (3.4) depending on the geometric and inertial properties
of the tripod: the coefficient of effective friction 𝜇 and the relative position of the
supports �̄�𝑖, 𝑦𝑖.

3.4. Asymptotic stability of translational motion. The complete sys-
tem (3.1) and hence the asymptotic system (3.4)have partial solutions(and, in this
case, degenerate families of singular points (𝜑, 𝜁*)) which correspond to purely
translational and purely rotational motions of the tripod. The translational mo-
tion is realized at the value 𝜁*1 = 0, which according to (3.1) corresponds to 𝜔 = 0,
and the rotational motion is realized at 𝜁*2 = ±1, which corresponds to 𝑣 = 0.

We show that asymptotic stable translational motions are possible in the sys-
tem and that the pattern of these motions depends on the geometric and inertial
properties of the tripod.

To analyze the stability of a degenerate family of singular points (𝜑, 𝜁*1 =
0) with respect to the parameters and the variables (𝜑, 𝜁), we use the methods
of qualitative analysis of dynamical systems near the state of equilibrium (see,
e. g., [15]). We linearize the system (3.4) and investigate the vector field near the
axis 𝜁 = 0.
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The linearized equations of motion of the system (3.4) are

(3.5)
𝜑′ = −𝜇𝜁 +𝑂(𝜁2), 𝜇 =

ℎ

𝜌
𝑓

𝜁 ′ = 𝐾(𝜑, 𝜇, �̄�𝑖, 𝑦𝑖)𝜁 +𝑂(𝜁2),

where

𝐾(𝜑, 𝜇, �̄�𝑖, 𝑦𝑖) = 1−
∑︀3

𝑖=1 𝐴𝑖𝐵𝑖 + 𝐶𝑖𝐷𝑖

2𝑆
,

𝐴𝑖 = (cos(𝜑)�̄�𝑖 + sin(𝜑)𝑦𝑖)
2,

𝐵𝑖 = 𝜇 cos(𝜑)(𝑦𝑗 − 𝑦𝑘)− 𝜇 sin(𝜑)(�̄�𝑗 − �̄�𝑘) + �̄�𝑗𝑦𝑘 − �̄�𝑗𝑦𝑘,

𝐶𝑖 = sin(𝜑)�̄�𝑖 − cos(𝜑)𝑦𝑖,

𝐷𝑖 = −𝜇2(cos(𝜑)(�̄�𝑗 − �̄�𝑘) + sin(𝜑)(𝑦𝑗 − 𝑦𝑘)),

𝑆 = 1
2 ((�̄�1 − �̄�3)(𝑦2 − 𝑦3)− (�̄�2 − �̄�3)(𝑦2 − 𝑦3)),

𝑆 being the area of the triangle whose apices are the point supports of the tripod.
When the supports of the tripod lie at the apices of an isosceles triangle, the

function 𝐾(𝜑, 𝜇, �̄�𝑖, 𝑦𝑖) has the form

𝐾2(𝜑, 𝜇, �̄�1, �̄�2) =− 2𝜇 cos3 𝜑�̄�1 + cos2 𝜑(�̄�2
1 + 2�̄�1�̄�2)

+ cos𝜑(𝜇�̄�1 − 𝜇�̄�2) + 𝜇2 − �̄�2
1 − �̄�2�̄�1 + 1,

and in the case of imposition of the additional condition that the tripod’s supports
lie at the apices of an equilateral triangle the above function has an even simpler
form

𝐾3(𝜑, 𝜇, �̄�1) = − 1
2 �̄�

2
1 + 𝜇�̄�1(

3
2 cos𝜑− 2 cos3 𝜑) + 𝜇2 + 1.

Applying elementary considerations of qualitative analysis of dynamical sys-
tems, one may assert that, if the equations of motion of the tripod which are
linearized near 𝜁 = 0 have the form (3.5), then the stability of the degenerate fam-
ily of singular points (𝜑, 𝜁* = 0) with respect to the variables (𝜑, 𝜁) depends on the
sign of the function 𝐾(𝜑, 𝜇, �̄�𝑖, 𝑦𝑖) as follows:

(1) when 𝐾(𝜑, 𝜇, �̄�𝑖, 𝑦𝑖) < 0, the motion is asymptotically stable,
(2) when 𝐾(𝜑, 𝜇, �̄�𝑖, 𝑦𝑖) > 0, the motion is unstable.

Indeed, on the plane (𝜑, 𝜁) the linearized system (3.5) defines a vector field
whose qualitative analysis near degenerate equilibrium states lying on the straight
line (𝜑, 𝜁* = 0) gives sufficient information on their stability [15]. The trajectories
of the system are continuous lines tending to or moving away from some singular
point (𝜑*, 𝜁* = 0). The directions of motion on the trajectories are determined by
the coefficients on the right-hand sides of the system (3.5). Under the condition
that the coefficient −𝜇 in the equation for 𝜑′ is always negative, the trajectories
will tend to the axis 𝜁 = 0 only in the case 𝐾(𝜑, 𝜇, �̄�𝑖, 𝑦𝑖) < 0, which will lead to
asymptotic stability of motion. When 𝐾(𝜑, 𝜇, �̄�𝑖, 𝑦𝑖) > 0, the trajectories will move
away from the axis 𝜁 = 0, which will lead to instability of translational motion.
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Analysis of the sign definiteness of the functions 𝐾2(𝜑, 𝜇, �̄�1, �̄�2) and 𝐾3(𝜑, 𝜇, �̄�1)
depending on the parameters �̄�1, �̄�2, 𝜇 allows us to make the following assertions
about the asymptotic stability of the translational motion of the tripod.

1. The translational motion of the tripod whose supports lie at the apices of
an isosceles triangle are asymptotically stable in some directions of sliding, 𝜑, when
�̄�1 >

√︀
𝜇2 + 1 (see Fig. 3, region 5).

Figure 3. Dependence of the asymptotic stability of the trans-
lational motion of a tripod whose supports lie at the apices of an
isosceles triangle on the parameters �̄�1, 𝜇 (a). Graphs of the func-
tions 𝐾(𝜑, 𝜇, �̄�1, �̄�2) for regions of asymptotically stable and unsta-
ble translational motions (b). In region (1) (when �̄�1 <

√︀
𝜇2 + 1)

the translational motion is unstable in any direction of sliding,
𝜑. In region (2) (when �̄�1 >

√︀
𝜇2 + 1) the translational motion

is asymptotically stable in some directions of sliding, 𝜑, the val-
ues of which can be determined from the graphs of the functions
𝐾(𝜑, 𝜇, �̄�1, �̄�2) under the condition 𝐾(𝜑, 𝜇, �̄�1, �̄�2) < 0.

Figure 3 shows the dependence of the asymptotic stability of translational
motion on the plane of parameters (�̄�1, 𝜇). In region (1) (when �̄�1 <

√︀
𝜇2 + 1)

the translational motion is unstable in any direction of sliding. A typical graph
of the function 𝐾(𝜑) has been constructed for the parameters �̄�1 = 0.5, �̄�2 =

−0.5, 𝜇 = 0.05. 𝐾(𝜑) > 0 for any value of 𝜑. In region (2) (when �̄�1 >
√︀
𝜇2 + 1)

the stability of translational motion depends on the value of the parameter �̄�2 and
the orientation of the body relative to the direction of sliding, 𝜑. The translational
motion can be asymptotically stable both when it has the same direction as the
axis 𝐶𝑥 and when it has the opposite direction (see Fig. 3 (2.2) showing the graph
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𝐾(𝜑) for �̄�1 = 1.5, �̄�2 = −1.4, 𝜇 = 0.05). Sliding can be stable in a neighborhood of
an arbitrary direction 𝜑 (see Fig. 3 (2.1) showing the graph 𝐾(𝜑) for �̄�1 = 1.5, �̄�2 =
−0.2, 𝜇 = 0.05) and in the directions opposite to the direction of the axis 𝐶𝑥 (see
Fig. 3 (2.3) showing the graph 𝐾(𝜑) for �̄�1 = 10, �̄�2 = 0, 𝜇 = 1).

2. Since the value of the parameter of effective friction is always positive,
𝜇 = 𝑓 ℎ

𝜌 > 0, the translational motion of the bodies whose supports lie inside the
circle of the radius of inertia, that is, �̄�1 < 1, will be unstable for any values of the
parameters �̄�1, �̄�2, 𝜇 in any direction of sliding.

As an additional graphical illustration of this statement and the conclusion
about the stability of the translational motion of the tripod, one can construct
three-dimensional graphs of the function 𝐾(�̄�2, 𝜑) depending on the parameter �̄�1,
as shown in Fig. 4:

(1) when �̄�1 < 1, the translational motion is always unstable, 𝐾(�̄�2, 𝜑) > 0
(Fig. 4a);

(2) when �̄�1 = 1, the translational motion is unstable, however, when 𝜇 = 0,
the function 𝐾(𝜑) = 0 in five limiting cases (�̄�2 = 0, 𝜑 = ±𝜋

2 ), (�̄�2 =
−1, 𝜑 = ±𝜋) and (�̄�2 = −1, 𝜑 = 0) (Fig. 4b);

(3) when �̄�1 > 1, the translational motion is stable in some directions of
motion 𝜑*(�̄�2) (Fig. 4c).

3. The asymptotic stability of the translational motion of the tripod for a
particular case where its supports lie at the apices of an equilateral triangle is
defined by the following conditions:

(1) when �̄�1 < �̄�12, the translational motion is unstable in any direction of
sliding, 𝜑 (see Fig. 5, region 1), which corresponds to 𝐾(𝜑) > 0 for any
values of 𝜑 (the graph 𝐾(𝜑) has been constructed for the parameters
�̄�1 = 0.9, 𝜇 = 0.05);

(2) when �̄�1 > �̄�23, the translational motion is stable in any direction of
sliding, 𝜑 (see Fig. 5, region 3), which corresponds to 𝐾(𝜑) < 0 for any
value of 𝜑 (the graph 𝐾(𝜑) has been constructed for the parameters �̄�1 =
1.7, 𝜇 = 0.1);

(3) when �̄�12 < �̄�1 < �̄�23, the stability of the translational motion depends
on the orientation of the tripod relative to the direction of sliding, 𝜑 (see
Fig. 5, region 2), the corresponding graph of 𝐾(𝜑) has been constructed
for the parameters �̄�1 = 1.5, 𝜇 = 0.5),

where �̄�12(𝜇) =
1
2 (−𝜇+

√︀
9𝜇2 + 8), �̄�23(𝜇) =

1
2 (𝜇+

√︀
9𝜇2 + 8).

3.5. Analysis of the dynamics of a reduced system (regimes of as-
ymptotic motion). We now examine the dynamics of the system (3.4) which
corresponds to the asymptotic dynamics of the complete system (3.3) at final stages
of motion using the method of constructing phase portraits on the plane (𝜑, 𝜉). We
show that even for a particular case where the supports lie at the apices of an
equilateral triangle the pattern of final motion of the tripod is determined by the
position of the supports relative to the radius of inertia of the tripod, i.e., the pa-
rameter �̄�1 = 𝑥1

𝜌 , and by the value of the coefficient of effective friction 𝜇 = 𝑓 ℎ
𝜌 .
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Figure 4. Schematic of the supports of the tripod relative to
its radius of inertia 𝜌 and the corresponding typical view of the
function 𝐾(�̄�2, 𝜑). When 𝐾(�̄�2, 𝜑) < 0, the translational motion
in the direction 𝜑 is asymptotically stable.

The regime of asymptotic motion can be pure rotation, pure sliding, or sliding and
rotation can cease simultaneously. We shall compare the results with the previ-
ously obtained conditions for existence of the asymptotic stability of translational
motion.

At small values of �̄�1 6 0.5 all trajectories tend to a degenerate family of
singular points (𝜑, 𝜁* = 1), which corresponds to asymptotically pure rotation of
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Figure 5. Dependence of the asymptotic stability of the trans-
lational motion of a tripod whose supports lie at the apices of an
equilateral triangle on the parameters �̄�1, 𝜇. Graphs of the func-
tions 𝐾(𝜑, 𝜇, �̄�1) for regions of asymptotically stable and unstable
translational motions.

�̄�12 = 1
2 (−𝜇+

√︀
9𝜇2 + 8) �̄�23 = 1

2 (𝜇+
√︀
9𝜇2 + 8)

In region (1) (when �̄�1 < �̄�12) the translational motion is unstable
for any value of the direction of sliding, 𝜑. In region (2) (when
�̄�12 < �̄�1 < �̄�23) the asymptotic stability of the translational mo-
tion depends on the direction of sliding of the tripod. In region (3)
(when �̄�1 > �̄�23) the translational motion is asymptotically stable
in all directions of sliding.

the tripod (see Fig. 6a). The translational motion is asymptotically unstable, which
corresponds to region 1 of Fig. 5.

With further increase in the parameter �̄�1 near 𝜁* = 1 there appear three
stable and three unstable fixed points, which at �̄�1 = 1 lie on the same straight line
𝜁* = 1√

2
(see Fig. 6b). Analytically, it is straightforward to show that at �̄�1 = 1 the

value 𝜁* = 1√
2

is a partial solution of the system of equations (3.4). In this case, the
asymptotic motion of the tripod corresponds to simultaneous cessation of rotation
and sliding, and 𝑘 = 𝑣

𝜌𝜔 = 1 at the instant of stop. Accordingly, the translational
motion is asymptotically unstable, which corresponds to region 1 of Fig. 5.

With further increase in the parameters �̄�1 and 𝜇 the fixed points shift and
regions of asymptotic stable translational motion appear (see Fig. 6c), which for
�̄�1 = 1.5, 𝜇 = 0.5 corresponds to region 2 of Fig. 5.
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Figure 6. Phase trajectories of the system of asymptotic dynam-
ics on the plane (𝜁, 𝜑) for the parameters a) �̄�1 = 0.5, 𝜇 = 0.05, b)
�̄�1 = 1, 𝜇 = 0.05, c) �̄�1 = 1.5, 𝜇 = 0.5, d) �̄�1 = 2, 𝜇 = 0.5.

With further increase in the parameters �̄�1 all trajectories tend to a degenerate
familó of singular points (𝜑, 𝜁* = 0), which corresponds to asymptotically pure
rotation of the tripod (see Fig. 6d). The translational motion is asymptotically
stable in any direction of motion, which corresponds to region 3 of Fig. 5.

4. Motion of the center of mass of the body

Knowing the classification of final motion regimes of the tripod depending on
the parameter of the position of its supports, �̄�1, and the coefficient 𝜇, we construct
the corresponding trajectories of the system (2.8) in absolute space on the plane
(𝑋,𝑌 ). We show that the trajectory of the center of mass of the tripod and its
final dynamics depend substantially on the position of the body’s supports. As a
tripod we consider a round solid cylinder of radius 𝑅 which slides on three point
supports (the radius of inertia is equal, accordingly, to 𝜌 = 𝑅√

2
). Let us compare

the results with those obtained previously in [11] for this system and in [6] for a
cylinder with a flat base (disk) under the assumption of linear pressure distribution
of the body on the plane of sliding.

In all cases considered, the linear velocity vector of the center of mass at the
initial instant of time is directed along the ordinate axis 𝑣(0) = (0, 𝑣0) and the
body rotates counterclockwise.
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Figure 7. Trajectories of the center of mass of the tripod de-
pending on the position of the supports relative to its radius of
inertia (a) and the corresponding dependences 𝑘(𝑡) (b). The sys-
tem parameters are 𝑓 = 0.23, ℎ = 0.022𝑚,𝑅 = 0.05𝑚,𝜇 =
0.14,𝑣(0) = (0, 2𝑚/𝑠), 𝜔(0) = 50 𝑠−1, 𝑘(0) = 1.13. 1. The sup-
ports lie inside the circle of the radius of inertia �̄�1 = 0.1, the as-
ymptotic motion is pure rotation 𝑘 = 𝑣

𝜌𝜔 → 0. 2. The supports lie
on the circle of the radius of inertia �̄�1 = 1, the asymptotic motion
implies simultaneous cessation of sliding and rotation 𝑘 = 𝑣

𝜌𝜔 → 1.
3. The supports lie outside the circle of the radius of inertia �̄�1 = 2,
the asymptotic motion is pure sliding 𝑘 = 𝑣

𝜌𝜔 → ∞.

Figure 7a shows the trajectories of the center of mass of three tripods, which,
all other factors being equal, differ only in the position of the supporting points
relative to the radius of inertia. The trajectory (1) relates to the tripod whose
supports lie inside the circle of the radius of inertia (�̄�1 = 0.1), as for the trajectory
(2), the supports lie on the circle of the radius of inertia (�̄�1 = 1), and in the
case of the trajectory (3) the supports lie outside the circle of the radius of inertia
(�̄�1 = 2). It can be seen from the graphs 7a that the trajectory of the center of
mass deviates in all cases in the direction opposite to the direction of rotation.
The value of deviation depends substantially on the position of the supports relative
to the radius of inertia: the closer the supports are to each other, the greater the
deviation.

Figure 7b shows the dependences of the parameter 𝑘(𝑡) = 𝑣(𝑡)
𝜌𝜔(𝑡) for these

tripods. For the tripod (1), 𝑘(𝑡) → 0, which corresponds to asymptotic pure
rotation of the tripod at the instant of stop. For the tripod (2), 𝑘(𝑡) → 1, which
corresponds to simultaneous cessation of sliding and rotation at the instant of stop.
For the tripod (3), 𝑘(𝑡) → ∞, which corresponds to asymptotic pure sliding of the
tripod at the instant of stop. Depending on the parameters �̄�1 and 𝜇, these regimes
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of final motion of the tripod are in good agreement with the results of classification
of asymptotic dynamics, which were obtained in the previous sections (see Fig. 6).

Let us construct the trajectories of the center of mass of the tripods. We shall
compare the results with those obtained previously for a tripod in [11] and for a
disk in [6].

Figure 8 shows the trajectories of the tripods for the case 𝑘(0) ≪ 1, which
corresponds to fast rotation at the initial instant of time. The tripods (1, 2, 3, 4)
differ from each other only in the position of the supports relative to the radius
of inertia. The dotted trajectory (5) relates to the motion of a disk under the
assumption of the linear law of pressure distribution on the plane of sliding. The
trajectory of the center of mass of the tripod (4) has been constructed for the
case where the supports are arranged according to the conditions of the numerical
experiment in [11] (the case 𝑠 = 10 in Fig.4 in [11]), and coincides with it.

Comparing the trajectories in Fig. 8, it is easy to draw the conclusion that the
length and the spiral twist at the final stage of motion depend substantially on the
position of the supports of the tripod: the closer the supports are to each other,
the greater the length and the deviation of the trajectory from the initial direction
of motion.

Figure 8. Trajectories of the center of mass of the tripod de-
pending on the position of the supports relative to the radius
of inertia for 𝑘 << 1. The parameters of the system are 𝑓 =
0.5, ℎ = 0.625𝑚,𝑅 = 0.6𝑚,𝜇 = 0.74,𝑣(0) = (0, 2.5𝑚/𝑠), 𝜔(0) =
400 𝑠−1, 𝑘(0) = 0.015. 1. The supports lie inside the circle of the
radius of inertia �̄�1 = 0.5. 2. The supports lie on the circle of
the radius of inertia �̄�1 = 1. 3. The supports lie on the circle of
radius 𝑅, �̄�1 =

√
2. 4. The experiment of Shegelski, the supports

lie inside the circle of the radius of inertia �̄�1 ≈ 0.12. 5. Body with
a flat base (dotted line).
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Figure 9. Trajectories of the center of mass of the tripod
depending on the position of the supports relative to the ra-
dius of inertia for 𝑘 >> 1. The parameters of the system
are 𝑓 = 0.25, ℎ = 0.0625𝑚,𝑅 = 0.14𝑚,𝜇 = 0.15,𝑣(0) =
(0, 5𝑚/𝑠), 𝜔(0) = 8 𝑠−1, 𝑘(0) = 6.3 1. The supports lie inside
the circle of the radius of inertia �̄�1 = 0.5. 2. The supports lie on
the circle of the radius of inertia �̄�1 = 1. 3. The supports lie on
the circle of radius 𝑅, �̄�1 =

√
2. 4. The experiment of Shegelski,

the supports lie inside the circle of the radius of inertia �̄�1 ≈ 0.63.
5. Body with a flat base (dotted line).

Moreover, the trajectory of the disk (5) calculated under the condition of linear
pressure distribution differs essentially from all trajectories and even from the tra-
jectory (3) constructed for a tripod that slides on supports lying along the perimeter
of the cylinder on the circle of radius 𝑅.

Figure 9 shows the trajectories of the center of mass of the tripod for the case
𝑘(0) > 1, which corresponds to slow rotation at the initial instant of time. The
trajectory of the center of mass of the tripod (4) has been constructed for the
case where the supports are arranged according to the conditions of the numerical
experiment in Fig. 5 in [11]. As in the previous experiments, the length and the
value of deviations of the trajectories of the center of mass from the initial direction
decreases as the distance between the tripod’s supports increases. We note that in
this case the trajectory of the center of mass of the tripod with supports on the
circle of the radius of inertia (2) coincides with the trajectory of the center of mass
of the disk (5).

Of interest is the case of "serpantine" (undulatory) trajectory shown in Fig.6
in [11]. In this case, the center of mass can deviate in both directions in the course
of motion. Numerical calculation of the trajectories for different positions of the
supports relative to the radius of inertia (see Fig. 10a) has shown the presence of
an undulatory effect irrespective of the configuration of supports. As expected, the
trajectory of the disk (5) deviates in the direction opposite to rotation. We note
that in case (1) the asymptotic final dynamics is a pure rotation of the tripod, and
in cases (2), (3) and (4) we observe simultaneous cessation of rotation and sliding
(see Fig. 10b).
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Figure 10. Undulatory trajectories of the center of mass of the
tripod depending on the position of the supports relative to the
radius of inertia of the body (a) and corresponding to the depen-
dence 𝑘(𝑡) (b). The parameters of the system are 𝑓 = 0.1, ℎ =
0.0044𝑚,𝑅 = 0.069𝑚,𝜇 = 0.009,𝑣(0) = (0, 1𝑚/𝑠), 𝜔(0) =
7.2 𝑠−1, 𝑘(0) = 2.85 1. The supports lie inside the circle of the
radius of inertia �̄�1 = 0.5, the asymptotic motion is pure rotation
𝑘 = 𝑣

𝜌𝜔 → 0. 2. The supports lie on the circle of the radius of
inertia �̄�1 = 1, the asymptotic motion implies simultaneous ces-
sation of sliding and rotation 𝑘 = 𝑣

𝜌𝜔 → 1. 3. The supports lie
on the circle of radius 𝑅, �̄�1 =

√
2, the asymptotic motion implies

simultaneous cessation of sliding and rotation 𝑘 = 𝑣
𝜌𝜔 → 4.7. 4.

The experiment of Shegelski, the supports lie outside the circle
of the radius of inertia �̄�1 ≈ 1.3, the asymptotic motion implies
simultaneous cessation of sliding and rotation 𝑘 = 𝑣

𝜌𝜔 → 4.2. 5.
Body with a flat base (dotted line).
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Figure 11. Example of an increase in the angular velocity of a
tripod which asymptotically tends to pure rotation. The param-
eters of the system are 𝑓 = 0.23, ℎ = 0.022𝑚,𝑅 = 0.05𝑚, �̄�1 =
0.1, 𝜇 = 0.14,𝑣(0) = (0, 20𝑚/𝑠), 𝜔(0) = 0.1 𝑠−1, 𝑘(0) = 5656.

Moreover, an interesting case of increase in the angular velocity was found for
a tripod whose asymptotic motion regime is pure rotation (see Fig. 11). This case
corresponds to the dynamics of a reduced system, as shown in Fig. 6a. The initial
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conditions were chosen to be close to pure sliding. In the course of motion the tripod
deviated in the direction opposite to rotation, and the kinetic energy, linear velocity
and the relation 𝑘(𝑡) decreased, but the angular velocity monotonically increased,
albeit only slightly, and rapidly decreased to zero immediately before stopping.
This fact contradicts the statement that the absolute value of the spinning velocity
obtained in [2] decreases, no matter what the direction of sliding. Such an example
of translational motion arising from rotational motion was shown for a bipod as far
back as 1970 by Wittenburg [13].

5. Discussion

We have shown that the motions of a tripod can be asymptotic stable trans-
lational motions, which depends on the position of the tripod’s supports relative
to its radius of inertia 𝜌 and the coefficient of effective friction 𝜇 = 𝑓 ℎ

𝜌 . For the
case where the supports lie at the apices of an equilateral triangle, the regime of
asymptotic motion can be pure rotation, pure sliding, or sliding and rotation can
terminate simultaneously. The final dynamics is determined by the position of the
supports of the tripod relative to the radius of inertia and by the parameter 𝜇. The
conclusions qualitatively agree with the results obtained previously for composite
disks and bodies with ring supports in [10,12].

In absolute space, as a rule, the trajectory of the center of mass of the tripod
deviates in the direction opposite to rotation, and its length and the value of devi-
ation decrease as the distance between the tripod’s supports increases. However,
under some conditions the trajectories of the center of mass of the tripods can be
undulatory, which was pointed out previously in [11].

Comparison of the trajectories of the tripods with those of the disk has not led
to any satisfactory results. The coincidence observed in one of the experiments is
accidental, and the calculated trajectories of the center of mass of the disk do not
demonstrate undulatory motion, no matter what the conditions.

Nevertheless, many interesting problems remain open: explanation of the fact
why undulatory trajectories of the tripod arise for certain system parameters, anal-
ysis of the dynamics of a bipod and a tripod on an inclined plane (an interesting
trajectory of the bipod (dumbbell) on an inclined plane is presented in [13]), prepa-
ration and implementation of a natural experiment and comparison of its results
with the results of this paper and those obtained in [6,7].
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ДИНАМИКА КЛИЗАЊА ТЕЛА ПО ХРАПАВОJ
ПОВРШИ КОJЕ СЕ ОСЛАЊА У ТРИ ТАЧКЕ

Резиме. У раду се проучава кретање крутог тела (трипода) коjе се ослања
у три тачке на хоризонталну површ и на коjе делуjу силе сувог трења. Пока-
зано jе да режим асимптотског кретања трипода може бити чиста ротациjа,
чисто клизање или ротациjа и клизање може да се десе истовремено, што jе
одређено позициjом ослонаца трипода у односу на радиjус инерциjе. Проуча-
вана jе и зависност траjекториjе центра маса од параметара система. Дата jе
и компаративна анализа са до сада познатим теориjским и експерименталним
студиjама кретања тела са равном основом.
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