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TORSION OF ELLIPTICAL COMPOSITE BARS

CONTAINING NEUTRAL COATED CAVITIES

Xu Wang, Cuiying Wang, and Peter Schiavone

Abstract. Using complex variable methods and conformal mapping tech-
niques, we establish the existence of coated cavities of various shapes that do
not disturb the warping function in a host elliptical bar. These cavities are
known as ‘partly neutral cavities’. Our results show that the two axes corre-
sponding to the neutral elliptical coating are parallel to those of the host ellip-
tical bar and that the centre of the elliptical coating can be located arbitrarily
on the major axis of the host bar. Examples of neutral coated non-elliptical
cavities are provided.

1. Introduction

The construction of ‘neutral inhomogeneities’ in the Saint-Venant theory of
torsion of composite bars can be achieved through the introduction of a thin in-
terphase of low shear modulus (the LS-type interface) or a thin interphase of high
shear modulus (the HS-type interface) as well as through the introduction of a thick
coating [1,3]. A ‘neutral inhomogeneity’ will not disturb the warping function in a
host bar (partial neutrality) and in some cases will additionally not alter the origi-
nal torsional stiffness (complete neutrality) after its introduction in a homogeneous
cylindrical bar. Benveniste and Chen [1] discussed the neutrality of a soft elliptical
inhomogeneity with a variable HS-type interface embedded in a host bar of ellip-
tical cross section. They derived analytical expressions for the variable interface
parameter and discussed the neutrality of a stiff circular inhomogeneity with a con-
stant LS-type interface inserted in a host circular bar. Chen et al. [3] demonstrated
the existence of thickly coated neutral inhomogeneities of various shapes in a host
circular bar. In their discussion of a coated cavity, Chen et al. [3] noted that the
coating must be stiffer than the host bar. Investigations on neutral inhomogeneities
in various contexts other than in the Saint-Venant theory of torsion have been un-
dertaken by various authors in the literature (see, for example, [2,4–9]). In this
study, we focus on the partial neutrality of both thickly and thinly coated cavities
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of various shapes in the Saint-Venant torsion of a compound bar of elliptical cross
section. Using complex variable methods and conformal mapping techniques, we
demonstrate the existence of a rich class of coated elliptical or non-elliptical cav-
ities that leave the warping function in the host elliptical bar undisturbed. We
show that the coating can be stiffer as well as softer than the host bar in order to
achieve neutrality.

2. Neutral Coated Cavities

We establish a Cartesian coordinate system {xi} (i = 1, 2, 3) and consider
the Saint-Venant torsion problem of an elliptical cylindrical bar with homogeneous
shear modulus denoted by µm. The boundary of the elliptical bar is described
by the equation x21/a

2 + x22/b
2 = 1 with a and b being the semi-major and semi-

minor axes of the ellipse, respectively. We ask which shape of coated cavity will
not disturb the warping function in the elliptical bar when inserted into the host
elliptical bar (the matrix). In the following analysis, the subscripts c and m are
used to identify the respective quantities in the coating and the matrix.

It is well-known that the displacement field corresponding to Saint-Venant tor-
sion is characterized by

u1 = −ϑx2x3, u2 = ϑx1x3, u3 = ϑϕ(x1, x2),

where ϑ is the angle of twist per unit length of the bar and ϕ is the warping function.
The equilibrium condition σij,j = 0 (j = 1, 2, 3 and we sum over repeated indices)
requires that ϕ is harmonic throughout the cross-section of the cylinder. The two
shear stress components are given by

σ31 = ϑµ(ϕ,1 − x2), σ32 = ϑµ(ϕ,2 + x1),

where µ is the shear modulus.
Since ϕ is harmonic, we can construct the analytic function f(z) = ψ + iϕ of

the complex variable z = x1 + ix2 where ψ is the conjugate harmonic function.
Consequently, the shear stresses can be concisely expressed in terms of f(z) as
follows

σ32 + iσ31 = ϑµ[f ′(z) + z̄],

It is assumed that the coating and the surrounding matrix are perfectly bonded
at the interface Γ. The continuity conditions of displacement and traction across
the interface Γ can be expressed as

(2.1) ϕc − ϕm = 0, µcψc − µmψm =
1

2
(µm − µc)zz̄ + const, z ∈ Γ

The traction-free condition on the inner surface L of the coating is given by

(2.2) ϑc = −1

2
zz̄ + const, z ∈ L.

Equation (2.1) can be equivalently expressed in terms of the two analytic func-
tions fc(z) defined in the coating and fm(z) defined in the matrix as follows

fc(z)− fc(z) = fm(z)− fm(z),(2.3)
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fc(z) + fc(z) = λ
[

fm(z) + fm(z)
]

+ (λ− 1)zz̄ + const, z ∈ Γ,

where λ = µm/µc. Similarly, condition (2.2) can be expressed in terms of fc(z) as

(2.4) fc(z) + fc(z) = −zz̄ + const, z ∈ L.

Adding the two conditions in Eq. (2.3) together, we obtain

(2.5) fc(z) =
λ+ 1

2
fm(z) +

λ− 1

2
zz̄ + const, z ∈ Γ.

Since the analytic function fm(z) in the host bar is not disturbed by the coated
cavity, we have [10]

(2.6) fm(z) = − m

1 +m2
z2,

where m = (a− b)/(a+ b). When the host bar has a circular cross section (a = b),
we obtain from Eq. (2.6) that fm(z) ≡ 0. This is simply the case of a vanishing
warping function discussed by Chen et al. [3].

Substitution of Eq. (2.6) into Eq. (2.5) leads to

(2.7) fc(z) =
λ− 1

2
zz̄ − m(λ+ 1)

2(1 +m2)
z2 +

m(1 − λ)

2(1 +m2)
z̄2 + const, z ∈ Γ.

We now introduce the following conformal mapping function

(2.8) z = ω(ξ) =
∞
∑

n=−∞

anξ
n, r 6 |ξ| 6 1,

which maps the coating in the z-plane onto an annulus with inner radius r and
outer unit radius in the ξ-plane. In particular, the coating-matrix interface Γ is
mapped onto |ξ| = 1 and the inner surface L of the coating is mapped to |ξ| = r.
In order to ensure that the mapping is one-to-one (or conformal), we must have
ω′(ξ) 6= 0 for r 6 |ξ| 6 1. Our task below is to determine the complex coefficients
an so that the coating will not disturb the warping function in the host bar.

The analytic function fc(ξ) = fc(ω(ξ)) can be expanded in the following Lau-
rent series

(2.9) fc(ξ) =
∞
∑

n=−∞

bnξ
n, r 6 |ξ| 6 1,

where bn are unknown complex coefficients.
Inserting Eq. (2.9) into Eqs. (2.4) and (2.7) and equating like powers of ξ, we

arrive at the following relationships

bk =
λ− 1

2

∞
∑

n=−∞

anān−k −
m(λ+ 1)

2(1 +m2)

∞
∑

n=−∞

anak−n(2.10)

+
m(1 − λ)

2(1 +m2)

∞
∑

n=−∞

ānā−k−n, k 6= 0,
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(2.11) bk + r−2k b̄−k = −
∞
∑

n=−∞

r2(n−k)anān−k, for k 6= 0.

The compatibility condition between Eqs. (2.10) and (2.11) leads to the fol-
lowing constraints

1− λ

2
(rk + r−k)

∞
∑

n=−∞

an+kān +
m[r−k(λ− 1) + rk(λ+ 1)]

2(1 +m2)

∞
∑

n=−∞

anak−n(2.12)

+
m[rk(λ− 1) + r−k(λ+ 1)]

2(1 +m2)

∞
∑

n=−∞

ānā−n−k

=

∞
∑

n=−∞

r2n+kan+kān, k = 1, 2, . . . ,+∞.

Eq. (2.12) are restrictions on λ, r and ak which ensure that the warping function
in the host elliptical bar remains undisturbed after the introduction of the coated
cavity. When m = 0 for a host circular bar, Eq. (2.12) simply reduces to [3, Eq.
(2.16)].

The solution of the set of nonlinear algebraic equations for the coefficients λ, r
and ak is, in general, nontrivial. In the next section, we focus on a particular class
of mapping function to illustrate the theory.

3. Illustrative Examples

In this section we concentrate on the case in which a±n = 0 for n = h+ 1, h+
2, . . . ,+∞ in the mapping function (2.8). From Eq. (2.12), the 2h+ 3 parameters
(a−h, . . . , ah, λ, r) should satisfy the following 2h equations

[1− λ

2
(r2h + r−2h)− 1

]

ahā−h +
m
[

r−2h(λ− 1) + r2h(λ+ 1)
]

2(1 +m2)
a2h(3.1a)

+
m
[

r2h(λ− 1) + r−2h(λ+ 1)
]

2(1 +m2)
ā2−h = 0,

1− λ

2
(r2h−1 + r−2h+1)(ah−1ā−h + ahā−h+1)(3.1b)

+
m
⌊

r−2h+1(λ− 1) + r2h−1(λ + 1)
⌋

1 +m2
ah−1ah

+
m
[

r2h−1(λ− 1) + r−2h+1(λ+ 1)
]

1 +m2
ā−h+1ā−h

= r−1ah−1ā−h + rahā−h+1,

1− λ

2
(r2h−2 + r−2h+2)(ah−2ā−h + ah−1ā−h+1 + ahā−h+2)(3.1c)

+
m
[

r−2h+2(λ− 1) + r2h−2(λ+ 1)
]

2(1 +m2)
(ah−1ah−1 + 2ah−2ah)
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+
m
[

r2h−2(λ− 1) + r−2h+2(λ+ 1)
]

2(1 +m2)
(ā−h+1ā−h+1 + 2ā−h+2ā−h)

= (r−2ah−2ā−h + ah−1ā−h+1 + r2ahā−h+2),

...

1− λ

2
(r2 + r−2)(a−h+2ā−h + a−h+3ā−h+1 + · · ·+ ah−1āh−3 + ahāh−2)(3.1d)

+
m
[

r−2(λ− 1) + r2(λ+ 1)
]

2(1 +m2)
(aha−h+2 + ah−1a−h−3 + . . .

+ a−h+3ah−1 + a−h+2ah)

+
m
[

r2(λ − 1) + r−2(λ+ 1)
]

2(1 +m2)
(āh−2ā−h + āh−3ā−h+1 + . . .

+ ā−h+1ā−h−3 + ā−hāh−2)

= r−2h+2a−h+2ā−h + r−2h+4a−h+3ā−h+1 + . . .

+ r2h−4ah−1āh−3 + r2h−2ahāh−2,

1− λ

2
(r + r−1)(a−h+1ā−h + a−h+2ā−h+1 + · · ·+ ah−1āh−2 + ahāh−1)(3.1e)

+
m[r−1(λ− 1) + r(λ+ 1)]

2(1 +m2)
(aha−h+1 + ah−1a−h+2 + . . .

+ a−h+2ah−1 + a−h+1ah)

+
m[r(λ − 1) + r−1(λ+ 1)]

2(1 +m2)
(āh−1ā−h + āh−2ā−h+1 + . . .

+ ā−h+1āh−2 + ā−hāh−1)

=r−2h+1a−h+1ā−h + r−2h+3a−h+2ā−h+1 + . . .

+ r2h−3ah−1āh−2 + r2h−1ahāh−1.

In the following three subsections, we discuss the three specific cases corre-
sponding to h = 1, 2 and 3.

3.1. A confocally coated elliptical cavity. We consider a confocally coated
elliptical cavity with h = 1. We first examine the case in which the elliptical coating
is at the centre of the host bar (a0 = 0). In this case, it is deduced from Eq. (3.1a)
with h = 1 that

(3.2) η =
ā−1

a1
=

(1 +m2)[2− (1− λ)(r2 + r−2)]± P1

2m[r2(λ− 1) + r−2(λ + 1)]

where

P1 =
√

(1−m2)2[(1− λ)(r2 + r−2)− 2]2 + 8m2(1− λ)(r2 + r−2)(r − r−1)2.

In addition, we require that |η| 6 r2 in order to ensure that the mapping
function is conformal. Our numerical results indicate that only the minus sign
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should be taken in Eq. (3.2) and that η is always real. The fact that η is real
implies that the two axes of the elliptical coating simply coincide with the two axes
of the host elliptical bar. The following three facts can also be obtained from Eq.
(3.1a) with h = 1:

(i) When λ = (r−2 − r2)/(r2 + r−2) < 1, we have η ≡ 0 always and the
neutral coating is a concentric circular ring.

(ii) When λ = 1, it can be rigorously deduced that η = mr2. The coating
and the host bar have identical shear modulus, and the aspect ratio of the
inner surface L of the coating is the same as that of the host elliptical bar.

(iii) As λ → ∞, η = m. The coating is vacuous and the aspect ratio of the
interface Γ is also the same as that of the host elliptical bar.

We illustrate in Figure 1 η as a function of λ for different values of m in the
case r =

√
0.6. The above three conclusions are clearly reflected in Figure 1. It

is also observed from Figure 1 that the coating can indeed be stiffer as well as
softer than the surrounding matrix, which is in contrast to the result obtained
by Chen et al. [3] which indicates a stiff elliptical coating when the host bar has
a circular cross section. In fact, when the host bar has a circular cross section
(m = 0), the shape of the neutral elliptical coating characterized η is independent
of λ = (r−1 − r)2/(r−2 + r2) 6 1 [3]. When the host bar has an elliptical cross
section (m 6= 0), our results indicate that the shape of the neutral elliptical coating
depends on λ, r and m. In addition, we note that the corresponding result of Chen
et al. [3] can be recovered from our present result by choosing an extremely small
value of m (e.g. m = 10−6).

(r -r )/(r +r )
-2 2 -2 2

Figure 1. Variation of η defined in Eq. (3.2) versus λ and m with

r =
√
0.6.

Next, we consider a non-centred coated elliptical cavity, i.e., a0 6= 0. In this
case condition (3.2) should also be satisfied. In addition, it is deduced from Eq.
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(3.1b) with h = 1 that

(3.3) χa0 − γā0 = 0,

where

χ = η
[1− λ

2
(r + r−1)− r−1

]

+
m⌊r−1(λ− 1) + r(λ + 1)⌋

1 +m2
,

γ = −1− λ

2
(r + r−1) + r − η

m[r(λ − 1) + r−1(λ+ 1)]

1 +m2
.

When |χ| 6= |γ|, we have from Eq. (3.3) that a0 = 0, which implies that the
elliptical coating must be placed at the centre of the host bar. On the other hand,
when |χ| = |γ|, the coefficient a0 can be chosen arbitrarily. Illustrated in Figure 2
are the calculated pairs (m,λ) which satisfy the condition χ = γ. In this case,
0 < λ < 1 and a0 is an arbitrary real number. The above fact implies that the
coating is stiffer than the matrix and that the centre of the coated elliptical cavity
can move arbitrarily along the major axis of the host elliptical bar (the x1-axis)
without disturbing the warping function.

Figure 2. The pairs (m,λ) which satisfy χ = γ.

3.2. h = 3 and a±2 = 0. If the mapping function takes the form

(3.4) z = ω(ξ) = a3ξ
3 + a1ξ + a−1ξ

−1 + a−3ξ
−3,

the following conditions are obtained from Eq. (3.1) with h = 3 and a±2 = a0 = 0

(3.5) η3 =
ā−3

a3
=

(1 +m2)[2 − (1− λ)(r6 + r−6)]− P2

2m[r6(λ− 1) + r−6(λ+ 1)]
,

where

P2 =
√

(1−m2)2[(1− λ)(r6 + r−6)− 2]2 + 8m2(1− λ)(r6 + r−6)(r3 − r−3)2

(3.6) η1 =
ā−1

a1
=

1−λ
2 (r4 + r−4)η3 − r−2η3 +

m⌊r−4(λ−1)+r4(λ+1)⌋
1+m2

r2 − 1−λ
2 (r4 + r−4)− m[r4(λ−1)+r−4(λ+1)]

1+m2 η3
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(3.7)
a3
a1

e−2iθ =
2η1 − (1− λ)(r2 + r−2)η1 − P3

(1 − λ)(r2 + r−2)(1 + η1η3)− 2(r4 + r−4η1η3) + P4

where θ = arg a1,

P3 =
m{r−2(λ − 1) + r2(λ+ 1) + η21 [r

2(λ− 1) + r−2(λ+ 1)]}
1 +m2

,

P4 =
2m{η1[r−2(λ − 1) + r2(λ+ 1)] + η3[r

2(λ− 1) + r−2(λ+ 1)]}
1 +m2

.

Without loss of generality, we can select a1 = 1. Consequently, for given values
ofm, r and λ, the parameter a3 can be obtained from Eq. (3.7) while the remaining
two parameters a−3 and a−3 can be obtained from Eqs. (3.5) and (3.6), respectively.

Remark 3.1. It is seen from Eqs. (3.5)–(3.7) that if we choose a1 = exp(i θ), the
resulting shape of the coating is identical to that obtained by choosing a1 = 1.

a b

Figure 3. Neutral coated cavities in a host elliptical bar with
m = 0.8 and λ < 1 described by Eq. (3.4).

Figure 4. Neutral coated cavities in a host elliptical bar with
m = 0.8 and λ > 1 described by Eq. (3.4).

The allowable shapes of coated cavities are shown in Figures 3 and 4 with
m = 0.8 and the resulting parameters a3, a−3 and a−3 are listed in Table 1. As
is seen from Figures 3 and 4, the geometry has a two-fold symmetry. It is also
observed from Figures 3 and 4 that the coating can be stiffer as well as softer than
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the matrix. This result is quite different from that for the case of a host circular
bar [3]. Chen et al. [3] observed that the non-elliptical coating must be stiffer than
the host circular bar. The parameter r can be used to characterize the thickness
of the coating, and it is seen from Figure 3 that the stiff coating can be very thick
(r ≪ 1) or extremely thin (r → 1). However, it is observed from Figure 4 that the
soft coating is allowed only to be relatively thin (our detailed results indicate that
r > 0.75). In order to ensure that the mapping is one-to-one, the two parameters
r and λ cannot be chosen arbitrarily. As illustrated in Figure 5, the pair (r, λ)
should lie in the two disjointed permissible regions for λ < 1. In fact the chosen
pairs (r, λ) in Figure 3(a) lie in the central permissible region in Figure 5 (see the
four squares), and the chosen pairs (r, λ) in Figure 3(b) lie in the right permissible
region in Figure 5 (see the four circles). It is also observed from Figure 6 that the
parameter λ(> 1) can be chosen arbitrarily when r > 0.93855. The four circles in
Figure 6 correspond to the chosen pairs (r, λ) in Figure 4.

Table 1. The three parameters a3, a−1 and a−3 with m = 0.8
and a1 = 1

a3 a−1 a−3

r = 0.2, λ = 0.99 −3.3371× 10−4 −0.0320 2.5414× 10−5

r = 0.4, λ = 0.9 −0.0036 −0.0778 0.0010
r = 0.6, λ = 0.7 −0.0255 −0.0448 0.0143
r = 0.85, λ = 0.2 −0.1493 −0.1056 0.1384
r = 0.8, λ = 0.99 −0.1418 0.5287 −0.0263
r = 0.86, λ = 0.93 −0.1707 0.5999 −0.0405
r = 0.9, λ = 0.85 −0.1483 0.6417 −0.0445
r = 0.95, λ = 0.6 −0.1273 0.6857 −0.0482
r = 0.8, λ = 1.005 0.2060 0.4868 0.0464
r = 0.88, λ = 1.03 0.1543 0.5955 0.0627
r = 0.95, λ = 0.2 0.1091 0.7307 0.0799
r = 0.98, λ = 2 0.0093 0.7815 0.0071

If the mapping function is represented by the following five-term expression

(3.8) z = ω(ξ) = a3ξ
3 + a1ξ + a0 + a−1ξ

−1 + a−3ξ
−3,

the following two constraints should also be simultaneously imposed in addition to
Eqs. (3.5)–(3.7)

χ1a0 − γā0 = 0, χ3a0 − γ3ā0 = 0.

Here

χ1 = η1

[1− λ

2
(r + r−1)− r−1

]

+
m[r−1(λ− 1) + r(λ + 1)]

1 +m2
,

γ1 = −1− λ

2
(r + r−1) + r − η1

m[r(λ − 1) + r−1(λ + 1)]

1 +m2
,
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χ3 = η3

[1− λ

2
(r3 + r−3)− r−3

]

+
m[r−3(λ − 1) + r3(λ+ 1)]

1 +m2
,

γ3 = −1− λ

2
(r3 + r−3) + r3 − η3

m[r3(λ− 1) + r−3(λ+ 1)]

1 +m2

We illustrate in Figure 7 the calculated triples (m, r, λ) which simultaneously
satisfy χ1 = γ1 and χ3 = γ3. It has been verified that the mappings obtained
by using these triples are indeed one-to-one. In this case, a0 can be an arbitrary
real number. This fact implies that the centre of the coated non-elliptical cavity
can move arbitrarily along the major axis of the host elliptical bar (the x1-axis)
without disturbing the warping function. The case λ < 1 in Figure 7 indicates
that the coating is stiffer than the matrix. The shapes of the non-centred neutral
non-elliptical coatings are shown in Figure 8.

Figure 5. The two permissible regions of r, λ with m = 0.8 and
λ < 1 satisfying a conformal mapping.

3.3. h = 2. If we assume that the mapping function takes the following al-
ternative five-term form

(3.9) z = ω(ξ) = a2ξ
2 + a1ξ + a0 + a−1ξ

−1 + a−2ξ
−2,

and the coefficients in Eq. (3.9) are assumed to be real, the following conditions
can be obtained from Eq. (3.1) with h = 2



TORSION OF ELLIPTICAL COMPOSITE BARS... 43

Figure 6. The permissible region of r, λ with m = 0.8 and λ > 1
satisfying a conformal mapping.

(3.10) η2 =
a−2

a2
=

(1 +m2)[2 − (1− λ)(r4 + r−4)]± P5

2m[r4(λ− 1) + r−4(λ+ 1)]
,

where

P5 =
√

(1−m2)2[(1− λ)(r4 + r−4)− 2]2 + 8m2(1− λ)(r4 + r−4)(r2 − r−2)2,

(3.11) η1 =
a−1

a1
=

1−λ
2 (r3 + r−3)η2 − r−1η2 +

m⌊r−3(λ−1)+r3(λ+1)⌋
1+m2

r − 1−λ
2 (r3 + r−3)− m[r3(λ−1)+r−3(λ+1)]

1+m2 η2
,

0.65 0.75 0.85

Figure 7. The calculated triples (m, r, λ) which simultaneously
satisfy χ1 = γ1 and χ3 = γ3.
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Figure 8. Neutral non-centred coated non-elliptical cavities de-
scribed by Eq. (3.8).

Figure 9. Neutral coated cavities described by Eq. (3.9) with
m = 0.8 and a1 = 1.

(3.12)
a0a2
a21

=
2η1 − η1(1− λ)(r2 + r−2)− P6

(1− λ)(1 + η2)(r2 + r−2)− 2(r2 + η2r−2) + P7

where

P6 =
m{r−2(λ− 1) + r2(λ+ 1) + η21⌊r2(λ − 1) + r−2(λ+ 1)⌋}

1 +m2

P7 =
2m{r−2(λ− 1) + r2(λ+ 1) + η2[r

2(λ− 1) + r−2(λ + 1)]}
1 +m2
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(3.13)
a2
a0

=
2(r + η1r

−1)− (1 − λ)(r + r−1)(1 + η1)− P8

(1− λ)(r + r−1)(1 + η1η2)− 2(r3 + η1η2r−3) + P9
,

where

P8 =
2m{r−1(λ− 1) + r(λ + 1) + η1⌊r(λ − 1) + r−1(λ+ 1⌋}

1 +m2

P9 =
2m{η1[r−1(λ− 1) + r(λ + 1)] + η2[r(λ − 1) + r−1(λ+ 1)]}

1 +m2

It follows from Eqs. (3.12) and (3.13) that

(3.14)
(a2
a1

)2

=

(

2η1 − η1(1 − λ)(r2 + r−2)− P10

)

× P11
(

(1− λ)(r2 + r−2)(1 + η2)− 2(r2 + η2r−2) + P12

)

× P13

where

P10 =
m{r−2(λ− 1) + r2(λ+ 1) + η21 [r

2(λ− 1) + r−2(λ+ 1)]}
1 +m2

P11 = 2(r + η1r
−1)− (1− λ)(r + r−1)(1 + η1)

− 2m{r−1(λ− 1) + r(λ + 1) + η1[r(λ − 1) + r−1(λ+ 1)]}
1 +m2

P12 =
2m{r−2(λ− 1) + r2(λ+ 1) + η2[r

2(λ− 1) + r−2(λ+ 1)]}
1 +m2

P13 = (1− λ)(r + r−1)(1 + η1η2)− 2(r3 + η1η2r
−3)

+
2m{η1[r−1(λ− 1) + r(λ+ 1)] + η2[r(λ − 1) + r−1(λ + 1)]}

1 +m2

We can set a1 = 1, and the remaining coefficients a2, a−2, a−1, a0 can be ob-
tained from Eqs. (3.10), (3.11), (3.13) and (3.14) for assigned values of m, r and λ.
In contrast to the discussions in Subsections 3.1 and 3.2, a0 cannot be arbitrary. We
show in Figure 9 the neutral coated cavities described by Eq. (3.9) with m = 0.8
and a1 = 1. The geometry in Figure 9 has a one-fold symmetry, and the coating
must be stiffer than the surrounding matrix.

4. Conclusions

We have successfully designed partly neutral coated cavities for the Saint-
Venant torsion of composite cylindrical bars of elliptical cross section. Our analysis
is based on complex function theory and conformal mapping. The mapping func-
tion (2.8) introduced here maps the coating in the physical z-plane onto a circular
annulus in the ξ-plane. Through satisfaction of the continuity conditions across
the coating-matrix interface and the traction-free condition along the inner bound-
ary of the coating, a set of non-linear algebraic equations for the coefficients is
obtained. We demonstrate partial neutrality of a confocally coated elliptical cavity
and coated non-elliptical cavities using a four-term mapping function in Eq. (3.4)
and five-term mapping functions in Eqs. (3.8) and (3.9). It is of particular inter-
est to apply the results found here for neutral coated cavities to the study of the
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Saint-Venant torsion of a bar of elliptical cross section, in which the bar is filled
with neutral coated cavities of the same shape but of varying size.
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TORZIJA ELIPTIQKIH KOMPOZITNIH POLUGA KOJE

SADRЖE NEUTRALNE OBLOЖENE XUPǈINE

Rezime. Koriste�i metod kompleksnih promenǉivih i tehniku konfo-
rmalnih preslikavaǌa, utvr�ujemo postojaǌe obloжenih xupǉina ra-
zliqitih oblika koje ne remete funkciju savijaǌa u eliptiqnoj poluzi.
Ove xupǉine su poznate kao “delimiqno neutralne xupǉine”. Naxi re-
zultati pokazuju da su dve ose koje odgovaraju neutralnom eliptiqnom
omotaqu paralelne osama eliptiqne poluge i da centar eliptiqne obloge
moжe biti lociran proizvoǉno na glavnoj osi poluge. Dati su i primeri
neutralnih obloжenih ne-eliptiqnih xupǉina.
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