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ABsTrRACT. The paper considers the brachistochronic motion of a variable
mass nonholonomic mechanical system [3] in a horizontal plane, between two
specified positions. Variable mass particles are interconnected by a lightweight
mechanism of the ‘pitchfork’ type. The law of the time-rate of mass variation
of the particles, as well as relative velocities of the expelled particles, as a
function of time, are known. Differential equations of motion, where the reac-
tions of nonholonomic constraints and control forces figure, are created based
on the general theorems of dynamics of a variable mass mechanical system
[5]. The formulated brachistochrone problem, with adequately chosen quan-
tities of state, is solved, in this case, as the simplest task of optimal control
by applying Pontryagin’s maximum principle [1]. A corresponding two-point
boundary value problem (TPBVP) of the system of ordinary nonlinear differ-
ential equations is obtained, which, in a general case, has to be numerically
solved [2]. On the basis of thus obtained brachistochronic motion, the active
control forces, along with the reactions of nonholonomic constraints, are deter-
mined. The analysis of the brachistochronic motion for different values of the
initial position of a variable mass particle B is presented. Also, the interval of
values of the initial position of a variable mass particle B, for which there are
the TPBVP solutions, is determined.

1. Introduction

A nonholonomic mechanical system [3] is composed of two variable mass par-
ticles, A and B, whose motion is constrained by the imposition of perpendicularity
of the velocities by means of the Chaplygin blades of negligible masses, as shown
in Figure la. In order to develop the differential equations of motion of a variable
mass nonholonomic mechanical system (henceforth referred to as ‘the system’),
as well as for the needs of further considerations, first, two Cartesian reference
coordinate systems must be introduced: the stationary coordinate system Ozyz,
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whose coordinate plane Ozy coincides with the horizontal plane of motion, and the
non-stationary coordinate system A¢&n¢ that is rigidly attached to point A of the
system, so that the coordinate plane A¢n coincides with the plane Ozy (refer to
Figure la). The axis of the non-stationary coordinate system A¢ is determined
by the direction AB, that is B € A, whereas unit vectors of the non-stationary
coordinate system axes are X, i1 and U, respectively. Variable mass particles A and
B are interconnected by a lightweight mechanism of the ’'pitchfork’ type, which al-
lows the distance AB = ¢ # const. to change. The configuration of the considered
system relative to the system Oxyz is defined by a set of Lagrangian coordinates
(¢4, 4%, ¢, q*) , where ¢! = 2 and ¢®> = y are Cartesian coordinates of the point
A, ¢ = ¢ is the angle between the axis Oz and the axis A¢, whereas ¢* = ¢ is
the relative coordinate of the variable mass point B relative to the non-stationary
coordinate system.
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FIGURE 1. Variable-mass nonholonomic mechanical system.

In accordance with the restriction of motion of the points A and B of the
system, homogeneous nonholonomic constraints can be written in the following
form [3, 4]

(1.1) Tcosp+ysing =0, —xsinp+ycosy+Ep=0.

The velocity of the variable mass point A relative to the system Oxyz, which
has the axis An direction, has the following form

(1.2) Va = &singp — g cos g,

where V4 = V_A - fi. The coordinates of the variable mass point B relative to the
coordinate system Oxyz are

(1.3) zp=x+E&cosp, yp=y+Esinp, zp=0~0.

Now, based on the second nonholonomic constraint (1.1), and taking into ac-
count the relation (1.2), the angular velocity of the system is determined in the form

(1.4) =2
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The velocity of the variable mass point B relative to the system Ozyz, which
has the axis A¢ direction, is determined based on relations (1.1) and (1.3),

(1.5) V=& Ve=Vg-A

Differential equations of motion of the variable mass system will be developed
based on general theorems of the dynamics of variable mass system [5], that is,
based on the momentum change theorem as well as on the moment of momentum
theorem for the moving point A,

dE g q
= FR + (VA + UrEI)ThA + (Vg + Uéel)an,
(1.6) dd’f
L .
d—A +Vax K =M5+4 54 x (Va+0Nma+ s x (Vg + 75 mp,

—rel —rel

where 7} and U5 are relative velocities of the particles expelled from points A and
B of the system, whose directions coincide with the axes An and A respectively
(directions represented in Figure la), whereas p4 = 0 and pp = AB are relative
vectors of the variable mass points A and B relative to the orlgm of the non-
statlonary coordinate system A&n¢. Linear momentum system is K =m AVA +
mBVB, and angular momentum system is LA = pa X mAVA + pp X mBVB The
main force vector is Fi5, whereas the main moment of forces relative to the point
Ais M 3.

The law of the time-rate of masses variation of the particles A and B as a func-
tion of time are ma(t) = mp(t) = m(t) = moe *=*t where k,, is the determined
positive constant, whereas mg is a mass of the particles A and B at the initial time
moment ty = 0. Relative velocities of the particles expelled from points A and B
of the system are v'{! = vi$! = v, where v is the determined positive constant. For
vector relations (1.6) there are the following corresponding scalar differential equa-
tions relative to the axes of the defined non-stationary coordinate system Aénc,
which, after a brief rearrangement, can be written in the form as follows

m(Vap + Vi) = Fy — Ry + kpum,
(1.7) m(Vep —Va) = —F1 + Rp — kpum,

mVaVp = Rp¢,
where F} and F; are control forces. Now, based on the momentum change theorem,
differential equations of motion can be generated for the BC' segment of the system

(see Figure 1b), the rod BC being of negligible mass, relative to the axes of the
system A&n(

(1.8) mVg = Fy + kmvm, mVpp = Rp+ R,

where R is the projection of the resultant of a system of internal forces.

Solving the system of equations (1.7) and (1.8) determines the reactions of
nonholonomic constraints R4 and Rp, the control forces F; and F3, as well as the
resultant of a system of internal forces R, to realize motion as a function of defined
quantities of state and a corresponding derivative
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V2 VaVi
Ry =-m-2, Rp=m ,
(1.9) 4 ¢ v ¢
F = m(VA — kpmv), = m(VB — kpmv), R=0.

As it is known, the realization of the brachistochronic motion of the meachanical
systems can, in general, be accomplished by the control forces, whose total power
during brachistochronic motion equals zero, and which can be represented in the
form of active control forces, the reactions forces of constraints, or by their mutual
combinations. In our case, the brachistochronic motion is realized by the active
control forces Fy = Fy(t)ji and Fy = Fy(t)X whose power during brachistochronic
motion equals zero

(1.10) PY=F, - Vy+F, - Vg =0,
that is
(1.11) FiVa+ FoVp = 0.

2. Brachistochronic motion as the problem of optimal control

In this section, the problem of brachistochronic motion of the system is for-
mulated as the problem of optimal control [1]. In order to define the equations of
state which describe the motion of the considered system in the state space, first,
from conditions (1.11), taking into account the law of change in the control forces
Fy and F; given in (1.9), the following relation can be established

(21) (b = 2k'mv(VA + VB))
where
(2.2) o =V3i+ VA

Now, based on (1.1), (1.2), (1.4), (1.5) and (2.1), the equations of state can be
created in the form

1% . .

(2.3) & =Vysing, y=—-Vacosp, ¢= ?A, E=Vp, ®=2k,v(Va+Vp).
The coordinates of the initial state x, y, ¢ and &, as well as the function of the
quadratic form of velocities @, are determined at the initial position of the system
on manifolds:

(24) to=0, z(to) =0, yl(to) =0, ¢(to) =0, &(to) =25, (to)= Do,

as well as the coordinates of the end state x,y, p and £ at the terminal position on
manifolds:

25)  t=ty x(ty)==zp ylty) =ysp, elty) =9 &ltr) =45,

where ty is the in advance unknown value of the final time moment corresponding
to the end state of the system on manifolds (2.5). The brachistochrone problem
of the system motion described by differential equations of state (2.3), consists
of determining the coordinates of optimal control V4 and Vp, as well as their
corresponding state coordinates x,y, ¢, and ®, so that the system starting from
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the initial state on manifolds (2.4) moves to the end state on manifolds (2.5) in
a minimum time. This can be expressed in the form of condition so that the

functional
ty
I = / dt,
to

on the interval [to,¢s] has a minimum value.

Suppose in advance the problem formulated in this way has a solution.

In order to solve the problem of optimal control, formulated by Pontryagin’s
maximum principle [1], the Pontryagin function is created in the form as follows

1%
(2.6) H =X+ AVasing — A\yVacos g + Ap— + AV + 2kmvre(Va + Vi),

where Ao = const. < 0, Az, Ay, Ay, A¢ and A are the conjugate vector coordinates,
where it can be taken that \g = —1, with the constraint relation p = ® — (Vi +V3)
corresponding to relation (2.2). Taking into account the boundary conditions (2.4)
and (2.5), as well as the fact that time does not figure explicitly in equations of state
(2.3), the defined problem of optimal control can be solved by a straightforward
application of [1, Theorem 22].

Based on the Pontryagin function (2.6), the conjugate system of differential
equations has the form

. OH op : 0H dp
Apg=—7—+2A—=0, \y=—F7—+A—=0,
Ox + ox Y dy + Jy
: H
(2.7) Ap = _2_@ + /\g—i = —Va(Agcosp + A\ysingp),
. OH dp Va . OH op
Ae=———F+A== =2 Ao = ——=—F A== A
T e T @ T T Thee T
where from it follows that A, = const. and A, = const., where is A Lagrange

multiplier.

Having in mind that the initial state (2.4) is completely defined, the transver-
sality conditions corresponding to the initial position of the system are identically
satisfied.

The transversality conditions at the terminal position of the system on mani-
folds (2.5) have the following form

(2.8) AeAw(ty) + AAy(ty) + Ap(Lr)Ap(tr) + Ae(tp)AL(tr) + Ao (ty)AD(ty) = 0,

whereas, in accordance with (2.5), the variations of coordinates corresponding to
the terminal position of the system are

(2.9) Ax(ty) =0, Ay(tp) =0, Ap(ty) =0, AL(ty) =0,

where A(-) represents the noncontemporaneous variation [6] of the quantity (-).
Taking into account the independence of variation A®(¢s), based on (2.8) and
(2.9), it is arrived at the following boundary condition

(2.10) Ao (ty) = 0.
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If controls belong to an open set, as in this case, the conditions based on which
the optimal control is defined can be expressed in the form [1]

OH Op
2.11 e el R )

When time t; is not determined in advance, as in this case, in solving the
system of equations (2.3) and (2.7) in the final form, the condition should be added,
following from a straightforward application of [1, Theorem 1], that the value of
the Pontryagin function on the optimal trajectory equals zero for V¢ € [to,tf]

(2.12) H(t) =0,
that is, in accordance with the Pontryagin function (2.6)
V)
(2.13) —1+ X Vasing — A, Vacosyp + )\@?A + AV + 2knvie(Va + Vp) = 0.

Now, based on (2.6), (2.11) and (2.13), the value of the Lagrange multiplier \ is
determined, as well as of the control functions V4 and Vp in the following form

1 1
- T35 - x i - 2 m = (bv
(2.14) A 55 Va (/\ sinp — Ay cosp + 2k v)\<p+§/\¢)

Ve = (A¢ + 2kmvls)®.
Based on condition (2.12) defined at the initial time moment, as well as (2.4),

(2.13) and (2.14), the conjugate vector coordinate A, is determined at the initial
time moment

(215) )\go(tO)l/Q = f(fo) ()\y — 2km’l})\q>(t0) + \/%0 — ()\g(to) =+ 2km'l})\q>(t0))2)'

Now, based on (2.3), (2.7) and (2.14), the basic and conjugate system of dif-
ferential equations can be created in the form

_sinp[A, + (A sing — A, cos o + 2k, v\p)]| P

f )
~cosp[Ap +E(Aasing — Ay cosp + 2k 000 )P
= : ,
»sinp — 2k, d :
b= Ao +E(Azsing )\gyzcoscp+ EmvAa)] €= (e + 2kmude) D,
& — 2kmv[Ay + E(Ag sing — )\g cos ¢ + 4k, vie + Ag)]CI)’ =0, A, =0,
A= - (Azcos@ + Ay sing)[A, + E(Az sing — Ay cos o + 2k, vp )| P
6 )
C A+ Esing — A\, cos @ + 2k vde)]® 1
A¢ = ;A =5
I 20

whereas the state coordinates, as well as the conjugate vector coordinates, based
on (2.4) and (2.15), are determined at the initial time moment
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to=0, z(to) =0, y(to) =0, »(to) =0,
£(to) =&,  P(to) = Po, Aclto) = Ao, Aa(to) = Ao,

1
)‘80 (tO)l/Q =& <)‘U — 2k va0 £ \/(}TO — ()\50 + 2kmv)\¢0)2>.

Numerical procedure for solving the corresponding TPBVP of the system of
ordinary nonlinear differential equations of the first kind is based on the shooting
method [2]. The five-parameter shooting consists of determining the unknown
coordinates of the conjugate vector A, Ay, A¢o and Apo as well as a minimum
required time ;.

The TPBVP is solved for the following values of the parameters

m?2

Dy =2—,
(2.16) s

xf=15m, yf:—lm, pf = grad7 ff::’)m

1
mo=2kg, kn =022, v= 1?,

TABLE 1. TPBVP solutions for different values of &;.

Solutions  A;[s/m]  Ays/m]  Agofs/m]  Ago[s®/m?] tsls]

& =1m 0.710261  1.258352 -0.753975  0.387281  1.999254
& =08m 0.317475 0.413259 -0.290266  0.351329  1.888149
& =0.6m -0.121316 -0.543731 0.326574  0.344384  1.894710

Table 1 shows the TPBVP solutions for different values of the initial position
of the variable mass point B.

20F
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x[m]
FIGURE 2. Trajectories of variable mass points A and B.

Figures 2 to 6 show the laws of change in the state coordinates, the reactions
of nonholonomic constraints, and the control forces at different values of the initial
position of variable mass point B displayed in Table 1.



26 JEREMIC, RADULOVIC, AND OBRADOVIC
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F1GURE 3. Graphs of angle ¢ and relative coordinate &.
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FIGURE 4. Graphs of control functions V4 and V3.

It is evident from the analysis of the brachistochronic motion of the variable
mass point B, at different values of the initial position &, Figure 2, that point B at
values £y = 1m and &£, = 0.8m has one stopping point, whereas at the value of the
initial position &y = 0.6m point B has no stopping points. Now, it is logical that the
question is imposed, at which values of the initial position the variable mass point
B will not have stopping points. To answer this question it is necessary, first, to
determine the interval of values of the initial position at which there are solutions
to the corresponding TPBVP, and afterwards to determine the interval of values
of the initial position at which the variable mass point B does not have stopping
points. The boundary values of the interval of initial position can be determined
by analyzing the expression for the velocity of the variable mass point B at the
initial time moment given in (2.14)
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FIGURE 5. Graphs of reactions of nonholonomic constraints R 4
and RB.
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FIGURE 6. Graphs of control forces F; and F5.

(2.17) Vi (to) = (Aeo + 2kmvAao) Do,

27

where, based on (2.2), the quadratic form of the velocities at the initial time moment

is given in the form

(2.18) ®y = V3(to) + V3(to),

where @ is a known positive constant given in (2.16). The interval of values of the
initial velocities of points A and B of the system can be given based on quadratic

form (2.18) in the form

-V P < Valto) < VPo, —vPo < Vi(to) </ Po.
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Case 1. Firstly, considerations will involve the first boundary-value case when
the velocity of the variable mass point B at the initial time moment equals zero

(2.19) Vi(to) = 0,

where, taking into account (2.17) and (2.19), the coordinate A¢o can be expressed
in the form as follows

(2.20) )\50 = —kav)\q)o.

The conjugate vector coordinate A, at the initial time moment, taking into account
(2.15) and (2.20), now has the form

* 1
)\W(to)l/Q = 50 <)\y - 2]€m’l})\q>0 4 \/;O)’

where £; is an unknown value of the initial position of the variable mass point B
at which the condition (2.18) is fulfilled. The velocity of the variable mass point
A, in this case, taking into account (2.18), has the value

Val(to) = \/(}TO

Case 2. Now, the second boundary-value case is considered, when the velocity
of the variable mass point B at the initial time moment equals

(2.21) Vi(to) = v/ ®o,
where, now, based on (2.17) and (2.21), the coordinate A¢o can be expressed in the
form

(222) )\50 = — 2km’l})\q>0.

1
V&
The conjugate vector coordinate \A,, taking into account (2.15) and (2.22), now,
has the form

Ap(to)1/2 = &5 (Ay — 2kmvAa0).
The velocity of the variable mass point A, in this case, in accordance with (2.18),
has the value
Va(to) = 0.

Case 3. The third boundary-value case is when the velocity of the variable
mass point B at the initial time moment equals

(2.23) Va(to) = —/®0,

the coordinate A¢o, based on (2.17) and (2.23), can be expressed in the form

)\go = — — 2km’l})\q>0.

1
V&
The conjugate vector coordinate Ay, as well as the velocity of the variable mass
point A at the initial time moment, has the same form as in Case 2.

Now, the TPBVP consists of determining the unknown coordinates of conjugate
vector Ay, Ay, Ago, the initial position & of the variable mass point B, as well as
a minimum required time .
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TABLE 2. TPBVP solutions for boundary-value cases.

Solutions ~ Ag[s/m] A s/m]  Ago[s?/m?] &S [m] trls]

Case 1 0.204624 0.164933  0.347044 0.754055 1.878268
Case 2 -0.284007 -0.872005 0.360113  0.389082 1.997665
Case 3 0.854759  1.547967  0.454692  1.24971 2.210363

Table 2 displays the TPBVP solutions for the boundary-value cases presented
in the above section.
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FIGURE 7. Trajectories of variable mass points A* and B* for
boundary-value cases.
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F1GURE 8. Graphs of control functions V4 and Vp for boundary-
value cases.
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Figures 8 to 10 show the laws of change in the state coordinates, the reactions of
nonholonomic constraints, and the control forces for boundary-value cases displayed
in Table 2.

oF< T T T T ] 3 T T T T 3

R4[N]
Rz [N]
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fs]

FIGURE 9. Graphs of reactions of nonholonomic constraints R4
and Rp for boundary-value cases.
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F1GURE 10. Graphs of control forces F} and F; for boundary-value cases.

From the solutions given in Table 2, the interval of values of the initial position
of the variable mass point B at which the TPBVP solutions exist can be determined

0.389082m < & < 1.24971m,

whereas the interval of values of the initial position at which the variable mass
point B has no stopping points is determined by

0.389082m < &; < 0.754055m.
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From the above analysis of the brachistochronic motion of the system it is also
noticeable, Table 1 and Table 2, that a minimum value of the final time moment
ty = 1.878268s actually corresponds to Case 1, when the velocity of the variable
mass point B at the initial time moment equals zero, that is, at the initial position
of the varibale mass point £; = 0.754055m.

3. Conclusions

This paper considers the brachistochronic planar motion of a variable mass
nonholonomic mechanical system, with specified initial and final positions. The
procedure for creating differential equations of motion based on the general theo-
rems of dynamics of a variable-mass mechanical system is presented. The formu-
lated brachistochrone problem, along with adequately chosen quantities of state, is
solved as a task of optimal control by applying Pontryagin’s maximum principle.
Numerical procedure for solving the TPBVP is based on the shooting method. Af-
terwards, the reactions of nonholonomic constraints as well as the control forces are
determined to realize the brachistochronic motion. The analysis of brachistochronic
motion at different values of the initial position of the variable mass point B is per-
formed. The interval of values of the initial position for which the TPBVP solutions
exist is determined, as well as the interval of values of the initial position for which
the variable mass point B has no stopping points. Authors consider that the results
obtained in this work can be extended to the general case of brachistochronic mo-
tion of a variable mass nonholonomic mechanical system, which will be the subject
of further investigations.
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AHAJIN3A BPAXNCTOXPOHOTI' KPETAIbA HEXOJIOHOMHOT
MEXAHMNYKOI' CUCTEMA ITPOMEHJBUBE MACE

PE3UME. ¥ oBoMm pajy anaau3upa ce OpaxmuCTOXpPOHO KPETarhe HEXOJIOHOMHOT
MeXaHWIKOr cucrema [3| mpoMeHs/bMBE Mace y XOPM30HTAJHO] paBHU m3Mely mBa
3ajiaTa rmosoxKaja. Marepujasine Tadke TPOMEH/bUBE Mace Be3aHe Cy JaKHM MeXa-
HU3MOM Tula “Bujia”. 3aKOH IIPOMEHEe Maca MaTepPUjaTHIX Ta9aKa, Kao U PeJIaTUBHE
O6p3uHe oJIBajama JecTurla, y MyHKIHjU 0o BpeMeHa mnosuare cy. ludepeniujamae
jenHauMHe Kperama, y KojuMma (hUTYPHUIy peakiiije HEXOJOHOMHHUX Be3a M yIpa-
BJBAYKHUX CUJIA, (DOPMUPAHE Cy HA OCHOBY OIIITHX TEOPEMa JTMHAMIKE MATEPHUjAJTHOT
cucrema pomesbuie Mace [5]. @opMynmcaH GpaxXUCTOXPOHN TPOBIEM, Y3 OJIr0OBa-
pajyhu u360p BeMYnHA CTamba je PEIleH Kao, HajjeIHOCTABHUJU Y OBOM CJIyUajy,
3aJaTaK ONTHUMAJIHOI yIIPaB/batba MPUMEHOM Pontryagin-oBor mpUHIUNA MAKCHU-
myma [1]. obujen je omrosapajyhm gsoraukactu rpaamaan npobaem (TPBVP)
crcTeMa OOMIHUX HeJUHeAPHUX TMEpEeHIjaTHuX jeIHaTNHA, KOJU je y OIIITeM
catyuajy HeomnxoiHo Hymepmukn pemmtn [2]. Ha ocHoBy Tako mobujenor Gpaxwu-
CTOXPOHOT KpeTamwa ojipelyjy ce akTUBHE yIpaBjbadKe CHJIe, & YjeIHO U PeaKIuje
HEXOJIOHOMHUX Be3a. Jlara je anajm3a OPaxXUCTXPOHOT KPETama MPU PA3IUIUTUAM
BPEIHOCTUMA, TIOYETHOT MOJI0XKaja Tadke B mpoMen/buBe mace. Takohe je ompehen
WHTEPBAJ BPEIHOCTU IIOYETHOI' I10JI0YKaja Tadke B IpOMEHJ/bUBE Mace IIpU KOjeM
roctoje perea TPBVP.
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