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Abstract. This paper investigates the effect of non-Newtonian material ef-
fect on the thermal stability of a reactive fluid flow through a channel saturated
with porous medium by using Brinkman model. Approximate solution of the
dimensionless nonlinear ordinary differential equation governing the fluid flow

is obtained by using Adomian decomposition method together with special
Hermite–Pad e approximant. Effects of various non-Newtonian fluid parame-
ters on both the velocity and temperature fields are constructed and discussed.

1. Introduction

In recent times, studies on non-Newtonian fluids are on the increase due to its
numerous applications in a number of engineering and industrial applications. For
instance, it occurs during polymer extrusion, fuel processing in refineries, recovery
of heavy oil by in-situ combustion and in petro-chemical products like lubricating
grease. With these applications in mind, the classical Navier-Stokes equations
cannot accurately describe the rheological behavior of these complex fluids. To this
end, the third grade fluid model has been used to model the flow of non-Newtonian
fluids [1–24] undergoing strongly exothermic chemical reaction due to its ability to
explain the shear thickening/thinning properties of these fluids.

Motivated by a recent study by Makinde [10] in which the flow of a reactive
fluid through a channel filled with saturated porous medium was investigated, the
specific objective of this work is to extend the result obtained in [10] to a wide
range of non-Newtonian fluid which have many industrial and engineering appli-
cations especially in fluid flow undergoing exothermic chemical reactions. Several
other applications could be found many geophysics, petrochemical industries during
fractional distillation of combustible non-Newtonian fluids like crude oil at a very
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high temperature in refineries, heat transfer during recovery of heavy oil, bitumen,
polymer extrusion etc. In all the above cases spontaneous heating (thermal igni-
tion) of the fluid could occur giving out huge amount of heat that is dangerous to
both lives and properties. The essence of thermal stability analysis is to introduce
a control measure so as to improve safety of working environment and the quality
of products in the petro-chemical industries.

The problem under discussion is nonlinear due to the presence of exponential
temperature dependent internal heat generation arising from Arrhenius kinetics
within the channel. Therefore, approximate solution will be obtained using the
combination of Adomian decomposition method (see [15–27]) together with Padé
approximant to enhance the accuracy and the domain of convergence of the se-
ries solution. The rest of the paper consists of the following: in Section 2, the
Mathematical analysis of the flow and the non-dimensionalization of the governing
equation are presented. The dimensionless problem is solved in the Section 3. Re-
sults are presented and discussed in Section 4 while Section 5 concludes the paper.

2. Mathematical Analysis

Consider the steady flow of a viscous incompressible third grade fluid through
infinite parallel isothermal plates of distance 2a apart. The channel is assumed to
be saturated with porous material as shown in the geometry below. The channel
walls are kept constant at temperature Ta .

Reactive fluid

u
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X
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Figure 1. Flow Geometry

Neglecting the reactant consumption, the equations governing the hydrody-
namically and thermally developed flow can be written as [1,10].
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Subject to the appropriate boundary conditions

u′ = 0, T = Ta on y′ = a,

u′ = 0, T = Ta on y′ = −a,

where u′ is the fluid velocity, P ′ is the fluid pressure, β3 is the material coeffi-
cient, k the thermal conductivity, µ is the dynamic viscosity, γ is the dimensionless
third grade material parameter, T is the fluid temperature, U is the characteristic
velocity, Ta the wall temperature Q the heat of reaction, A the rate constant, E
the activation energy, R the universal gas constant, C0 the initial concentration of
the reactant species, a the channel width, y the distance measured in the normal
direction and µ the fluid dynamic viscosity coefficient. Additional term in (2.1)
and (2.2) is the third grade material effect due to [2–9]. Introducing the following
dimensionless parameters
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we obtain the dimensionless equations with appropriate boundary conditions as
follows

(2.3)
d2u
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+ 6γ
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dy2
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− β2u = −M ; u(−1) = 0 = u(1),
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= 0; θ(−1) = 0 = θ(1)

Where α viscous heating parameter, θ is the dimensionless temperature, u is the
dimensionless velocity, M is the dimensionless pressure gradient, β2 is the porous
permeability parameter, Da is the Darcy parameter, K porous permeability, a is
the half width of the channel, λ is the Frank–Kameneskii parameter and ε = 0 at
extremely high temperature.

3. Method of Solution

To obtain the solution of (2.3)-(2.4), we first convert it to the integral form
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If we assume a series solution in the form

u(y) =

∞
∑

n=0

un(y), θ(y) =

∞
∑

n=0

θn(y)

Then by successive approximation, each term of the series can be obtained by using
the recurrence relation.
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Here a0 = du(0)
dY

, b0 = dθ(0)
dY

are to be determined using the boundary condition
u(1) = 0, θ(1) = 0 respectively. The nonlinear terms represented by
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are decomposed into Adomian polynomial as follows
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The approximate solution are obtained by the partial sum

(3.2) θ =

m
∑

n=0

θn, u =

m
∑

n=0

un.

Invoking the convergence analysis in [14], the iteration (3.1) and (3.2) is repeated
until convergence is reached as presented in Table 1.

4. Bifurcation Study

Taking advantage of the quadratic Shafer approximant, it is easy to construct
the upper and the lower branches of the solution. Assuming the condition λ < λc

holds, by obtaining the first d − 1 derivative of θ(λ). Let d ∈ N and let the
d+ 1 series

θ0(λ), θ1(λ), θ2(λ), θd−1(λ), . . . , θd(λ)
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be given. Then, given the (d+ 1)-tuple polynomial

A
(0)
0N , A

(d)
1N , . . . , A

(d)
2N

Then the Hermite–Padé polynomial is defined by

Fd(λ, θN−1) = A
(0)
N +A

(d)
iN (λ)θi(λ) as λ → ∞,

where d > 1, i = 1, 2, 3 while the condition

(4.1) A
(0)
0N (λ) = 1, AiN (λ) =

d+i
∑

j=1

bijλ
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ensure that the order of the series AiN (λ) increases with increase in i, d. Then the
algebraic approximant defined by

d > 2, θ0(λ) = 1, θ1(λ) = θ(λ), θ2(λ) = θ2

gives the cubic Padé approximant which allows us to examine the solution branches.
Assuming the condition λ > λc holds, then a sufficient condition for the non-
existence of solution will be to determine the dominant behavior of the partial sum
(4.1) such that the accuracy of the λc will determine the accuracy of the solution.
It is well known that the dominant behavior of a solution of a linear ordinary
differential equation can be written as

u(λ) =

{

f(λc − λ)α for α 6= 0, 1, 2, . . .

f(λc − λ)α ln |λc − λ| for α = 0, 1, 2, . . .

As λ → λc , where λc is the critical point with critical exponent α and f is a
constant. It then follows that the differential approximant can be obtained by
setting

d > 2, θ0(λ) = 1, θ1(λ) = θ(λ), θ2(λ) = Dθ, . . . , θd(λ) = Dd−1θ,

where the differential operator is defined by D := d
dλ

. Assuming an algebraic type,
the exponent may be computed by using

αN = 1−
A2N (λCN )
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The physical quantities of interest in this problem are the skin-friction parameter
(Cf ) and the Nusselt number (Nu) which are defined by
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5. Results and discussions

Table 1 showing convergence for the velocity profile when m = 6, γ = 0. Table 2
shows that the thermal criticality values λC decrease with increasing pressure gra-
dient (M) and Brinkman number (α) but increases with increasing non-Newtonian
parameter (γ) and activation energy parameter (ε). This implies that thermal sta-
bility is enhanced with increasing γ and ε, while an increase in M and α may lead
to early occurrence of thermal runaway in the flow field. Figure 2 shows the effect
of the non-Newtonian parameter on the velocity profile, as observed from the plot
an increase in the non-Newtonian material parameter has a decreasing effect on the
velocity profile due to fluid thickening. Similarly, rise in the porous permeability
parameter implies a decrease in the porous permeability of the channel.

This eventually leads to decrease in the flow velocity as observed in Figure 3.
Moreover, Figure 4 depicts the variation of activation energy parameter with the
temperature distribution within the channel. From the graph, it is observed that
fluid temperature decreases with rise in the fluid activation energy parameter.

Table 1. Convergence for the velocity profile when m = 6, γ=0

y β uExact uAdomian Absolute Error

0 1 0 0 0
0.1 1 0.0412846 0.0412846 2.60625 ×10−14

0.2 1 0.072941 0.072941 5.25968×10−14

0.3 1 0.0953855 0.0953855 7.95197×10−14

0.4 1 0.108743 0.108743 1.07123×10−13

0.5 1 0.113181 0.113181 1.35905×10−13

0.6 1 0.108743 0.108743 1.65895×10−13

0.7 1 0.0953855 0.0953855 1.96593×10−13

0.8 1 0.0729741 0.0729741 2.20796×10−13

0.9 1 0.0412846 0.0412846 2.03795×10−13

1.0 1 0 0 0

Table 2. Thermal criticality values for β=1.

M α γ ε λc

0.1 0.1 0.1 0 0.8780610
1.0 0.1 0.1 0 0.8725029
2.0 0.1 0.1 0 0.8579873
0.1 0.5 0.1 0 0.8778254
0.1 1.0 0.1 0 0.8775309
0.1 0.1 0.5 0 0.8780611
0.1 0.1 0.1 0 0.8780613
0.1 0.1 0.1 0.1 0.9877247
0.1 0.1 0.1 0.2 1.1613088
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Figure 5. Effect of viscous heating parameter on temperature profile
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Figure 8. Effect of Frank–Kameneskii parameter on temperature profile

This is due to the fact that activation energy of the fluid decreases with rise in
fluid viscosity. In Figure 5, fluid temperature is observed to increase with increase
in the viscous heating parameter as a result of rise in the kinetic energy of the
fluid. This is physically true since viscous dissipation is an additional heat source
within the channel. A plot showing the effect of porous permeability on the fluid
temperature is shown in Figure 6. From the result, it is observed that rise in the
porous permeability enhances rise in the fluid temperature. Physically, this is true
due to decrease in the porous permeability of the channel. This means a reduced
flow and more heat will be generated due to accumulation. While Figure 7 shows
that the non-Newtonian material parameter is a decreasing function of temperature.
In Figure 8, it is observed that for small parameter values, an increase in the Frank–
Kameneskii parameter leads to rise in the fluid temperature due to internal heat
generation as a result of the exothermic chemical reactions. It is important to
remark here that spontaneous heating of the fluid (thermal ignition) could occur if
the rate at which heat is generated is greater than heat dissipation rate i.e., as the
Frank–Kameneskii parameter becomes large.

6. Conclusion

In this paper, the reactive third grade fluid flow through a porous channel
is studied by using rapidly convergent Adomian decomposition method together
with special Hermite–Pade approximant. Convergence analysis is conducted and
presented in Table 1 so as to justify the accuracy of the approximation made. The
main contribution to knowledge in this paper are as follows:

(a) an increase in the non-Newtonian material parameter is decreases both the
fluid flow velocity and temperature distribution within the flow channel.

(b) an increase in the non-Newtonian material effect has destabilizing effect
on the fluid flow.
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ADOMIAN–HERMITE–PADÉ APPROXIMATION APPROACH TO THERMAL... 143

23. T. Hayat, R. Ellahi, F. M. Mahomed, Exact solutions for thin film flow of a third grade fluid

down an inclined plane, Chaos Solitons Fractals 38(5) (2008), 1336–1341.
24. R. Ellahi, S. Afzal, Effects of variable viscosity in a third grade fluid with porous medium: an

analytical solution, Commun. Nonlinear Sci. Numer. Simul. 14(5) (2009), 2056–2072.
25. S. O. Adesanya, Linear stability analysis of a Plane–Poiseuille hydromagnetic flow using Ado-

mian decomposition method, Sci. Bull., Politeh. Univ. Buchar., Ser. A 75 (2013), 99–106.
26. S. O. Adesanya, J.A. Falade, O. D. Makinde, Pulsating flow through vertical porous channel

with viscous dissipation effect, Sci. Bull., Politeh. Univ. Buchar., Ser. D 77(1) (2015), 25–36.
27. S. O. Adesanya, O.D. Makinde, Thermodynamic analysis for a third grade fluid through a

vertical channel with internal heat generation, J. Hydrodyn., Ser. B 27(2) (2015), 264–272.
28. S. O. Adesanya, O.D. Makinde, Effects of couple stresses on entropy generation rate in a

porous channel with convective heating, Comput. Appl. Math. 34 (2015), 293–307.



144 ADESANYA, FALADE, UKAEGBU, AND MAKINDE

ADOMIAN–HERMITE–PADÉ АПРОКСИМАЦИJА ЗА

ТЕРМИЧКУ КРИТИЧНОСТ ТОКА РЕАКТИВНОГ

ФЛУИДА КРОЗ ПОРОЗНИ МАТЕРИJАЛ

Резиме. Испитуjе се утицаj не-Њутновских материjалних ефеката на
термичку стабилност тока реактивног флуида кроз канал испуњен порозним
материjалом користећи Бринкманов модел. Апроксимативно решење безди-
мензионе нелинеарне диференциjалне jедначине коjом се описуjе ток флу-
ида добиjа се применом методе Adomain-декомпозиjе заjедно са специjалном
Hermite–Pade апроксимациjом. Изведени су и дискутовани ефекти различитих
не-Њутновских параметара флуида на брзину и температурно поље.
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