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MOMENT CLOSURE HIERARCHIES FOR

RAREFIED GASES

Milana Pavić-Čolić and Srboljub Simić

Abstract. The paper proposes an approximate closure procedure for hierar-
chies of macroscopic equations for rarefied gases, derived as moment equations
from the Boltzmann equation in kinetic theory of gases. The procedure is
based upon application of the maximum entropy principle. If the exact min-
imizer is exploited, moments of the distribution function may diverge, unless
the restriction on the structure of the moments is introduced. In this paper,
a perturbative approach is proposed by restricting the set of admissible func-
tions in the variational problem. This leads to an approximate minimizer, but
the procedure can be applied to an arbitrary choice of the moments.

1. Introduction

Macroscopic models in continuum thermomecanics consist of the balance laws,
which express physical conservation laws, and the constitutive relations, which de-
scribe the response of the particular medium. In modern continuum theories, it is
mandatory that constitutive relations are compatible with the entropy inequality,
i.e. entropy inequality has to be satisfied for any thermodynamic process which
occurs in the medium. Typical examples are the constitutive relations for Newto-
nian viscous fluids and Fourier’s law of heat conduction, leading to the so-called
Navier-Stokes-Fourier (NSF) theory [1, 2].

Apart from the widespread acceptance of the NSF theory, there appears one
important shortcoming: it does not predict unconditionally the finite speeds of
propagation of disturbances. This paradox—often called the paradox of infinite
pulse speeds—was successfully overcome within the framework of extended ther-
modynamics (ET), where the list of usual state variables (mass, momentum and
energy density) was extended by the fluxes of momentum and energy [3]. Classical
conservation laws were adjoined with balance laws—evolution equations—for the
new state variables. The closure problem, which consists of determination of the
new non-convective fluxes and the source terms, was resolved by the application
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of the entropy principle in which the entropy flux was treated as constitutive quan-
tity, as well.

Later development revealed formal equivalence between ET and the kinetic the-
ory of monatomic gases [4]. Actually, extended models can be regarded as moment
equations-evolution equations for the moments of distribution function derived from
the Boltzmann equation. The closure, furnished through the application of entropy
principle, appeared to be equivalent to Grad’s closure procedure, obtained by ap-
proximating the distribution function in the form of Hermite polynomials [5].

The parallelism between continuum and kinetic theory can be transferred from
the balance laws to the entropy inequality, as well. For a properly defined kinetic
entropy, the celebrated H-theorem shows the dissipative character of the entropy
functional, thus presenting a kinetic counterpart of the entropy inequality. More-
over, it shows that equilibrium distribution maximizes the entropy functional. This
fact was extrapolated by Kogan [6] to non-equilibrium processes. To reach this
goal, Kogan relied on the maximum entropy principle (MEP): the actual velocity
distribution function is the one that maximizes the kinetic entropy, subject to the
constraints that actually correspond to the state variables taken into account. If the
state of the gas is described by the standard fields of mass, momentum and energy,
the MEP recovers the equilibrium distribution. If, in addition to equilibrium vari-
ables (mass, momentum and energy), one takes into account the non-equilibrium
ones—the stress tensor and the heat flux—the non-equilibrium velocity distribution
function is obtained. In such a way, Grad’s 13 moments distribution function was
recovered within the framework of MEP.

Further efforts within ET yielded a particular framework, called molecular
extended thermodynamics [3], which provided a general framework for the closure
by MEP in the context of ET [7]. Furthermore, it was shown [4, 8, 9] that Lagrange
multipliers, used to solve the constrained variational problem by MEP, correspond
to the main field components used in exploitation of the entropy principle in ET.
These findings were later put into a stringent mathematical form by Levermore [10].

Application of MEP in solving the moment closure led to an exact solution
which is not always convergent. Physically appropriate solution required an expan-
sion of the maximizer in the neighborhood of the equilibrium velocity distribution
function—the Maxwellian—in order to obtain the convergent moments. To develop
a non-perturbative procedure, Levermore [10] formalized the findings of [3] and in-
troduced the additional requirement which imposed restriction on the choice of the
moments. In such a way, some important cases were ruled out (e.g. the Grad’s
one). Since this closure appears to be too restrictive, our aim is to formalize (in
the spirit of [10]) a perturbative approach to MEP ab initio, which will circumvent
Levermore’s restriction and facilitate arbitrary choice of moments.

The rest of the paper is organized as follows. First, a brief overview of Boltz-
mann equation, H-theorem and moment hierarchies will be given. After that,
formal closure by the maximum entropy principle will be presented in the case of
Euler’s and Grad’s equations. Levermore’s exact closure will then be presented.
Finally, the perturbative closure using MEP will be developed, which removes the
restrictions present in the exact approach.
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2. Boltzmann equation and moment hierarchies

In the kinetic theory of gases [11], the state of the gas is described statistically
by the velocity distribution function f : R × R

3 × R
3 → R

+, f(t,x,v), where
f(t,x,v) dxdv presents the number of atoms at time t in the infinitesimal volume
dxdv of the phase space. The evolution of the velocity distribution function is
described by the Boltzmann equation:

(2.1) ∂tf + v · ∇xf = Q(f, f).

where Q(f, f) represents the collision integral describing the mutual interaction
between the particles. It acts only on v-dependence of f locally, at each (t,x). In
the sequel, we shall use the velocity dependent functions φ(v) averaged over the
velocity space, thus introducing the following notation:

〈φ〉 =

∫

R3

φ(v) dv.

It will be assumed that all the functions are measurable in all variables, i.e. that
all integrals that appear in the sequel make sense.

An outstanding feature of the collision integral Q(f, f) is the existence of the
collision invariants :

(2.2) 〈Q(f, f)〉 = 0, 〈vQ(f, f)〉 = 0, 〈|v|2Q(f, f)〉 = 0.

They express conservation properties of the macroscopic quantities—the mass den-
sity, the momentum density and the energy density, respectively:

〈f〉, 〈vf〉,
〈1

2
|v|2f

〉

.

which are interpreted as moments of the distribution function. This leads to the
recovery of macroscopic conservation laws of mass, momentum and energy from
the Boltzmann equation (2.1):

∂t〈f〉+∇x · 〈vf〉 = 0,(2.3)

∂t〈vf〉 +∇x · 〈v ⊗ vf〉 = 0,

∂t

〈1

2
|v|2f

〉

+∇x ·
〈1

2
|v|2vf

〉

= 0

Along with the reconstruction of macroscopic conservation laws, the Boltz-
mann equation recovers the entropy inequality, as well. For the entropy production
functional D(f):

D(f) := 〈log f Q(f, f)〉 6 0,

celebrated H-theorem claims that D(f) 6 0 for any non-negative f , and that the
following three statements are equivalent:

(1) for any v ∈ R
3, Q(f, f) = 0;

(2) entropy production vanishes, D(f) = 0;
(3) there exists n > 0, θ > 0 and u ∈ R

3, such that:

(2.4) f =
n

(2πθ)3/2
exp

{

−
|v − u|2

2θ

}

=: fM ,
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where fM denotes the equilibrium velocity distribution (the so-called
Maxwellian).

An immediate consequence of the entropy production inequality is the dissipa-
tion inequality:

∂t〈f(log f − 1)〉+∇x〈vf(log f − 1)〉 = 〈Q(f, f) log f〉 6 0.

Taking into account the mass balance law (4)1, and defining the entropy density
H(f) and the entropy flux J(f):

H(f) := 〈f log f〉, J(f) := 〈v f log f〉,

the macroscopic entropy inequality can be recovered:

∂tH +∇xJ = D 6 0.

An important distinction between the entropy inequality in continuum theories
and the dissipation inequality in kinetic theory has to be stressed: in continuum
theories the dissipation inequality is a postulate, while in kinetic theory it is a
theorem drawn from the basic principles.

Our main concern will not be the Boltzmann equation itself, but the so-called
moment hierarchies [4, 5, 10]. Let M be the finite-dimensional linear subspace
of functions of v, usually assumed to be polynomials, and let M = dimM be its
dimension. The basis of M consists of functions mi(v), i = 1, . . . ,M , which can
be recast into the vector m(v) = (m1(v), . . . ,mM (v))T , and used to define the
moments of the distribution function:

〈mf〉 = (〈m1f〉, . . . , 〈mMf〉)T .

Evolution of the moments of the distribution function is determined by the transfer
equations for moments—moment equations :

(2.5) ∂t〈mf〉+∇x · 〈vmf〉 = 〈mQ(f, f)〉,

obtained by averaging the Boltzmann equation (2.1) over the velocity space, against
the vector of basis functions of M. They are often called the moment hierarchies
since, in most physically relevant situations, the basis functions are polynomials
with an increasing degree of velocities. In such a way, the Boltzmann equation
is replaced, and in a certain sense approximated, by a finite set of macroscopic
balance equations, i.e., the moment equations (2.5). Evolution of the state of the
gas is then tracked by the evolution of the finite number of moments in the physical
space, rather than the evolution of the distribution function itself in the phase
space. In (2.5), 〈mf〉 represent the densities, 〈vmf〉 = (〈vm1f〉, . . . , 〈vmMf〉)T

are the fluxes, and 〈mQ(f, f)〉 = (〈m1Q(f, f)〉, . . . , 〈mMQ(f, f)〉)T are the source
terms (productions).

3. Formal closure by the maximum entropy principle

The moment hierarchy (2.5) can be regarded as a system of governing equa-
tions for the densities. However, this system is not closed and the moment closure
problem arises—one has to express the densities, the fluxes and the productions
as functions of M variables, usually chosen to be the densities themselves. This
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problem is equivalent to the problem of derivation of constitutive relations in con-
tinuum theories.

It is a well known fact that physical entropy, either in macroscopic or in kinetic
sense, attains the maximum in equilibrium. Moreover, it was shown by Boltzmann
that the equilibrium distribution is the one which has the highest probability to
occur. On the other hand, the velocity distribution function determines the state of
the gas in the kinetic theory, but all the information we acquire about the system
is the macroscopic one. The maximum entropy principle synthesizes these facts
into a unifying procedure, and appears as a tool which resolves the moment closure
problem. In the sequel, we shall demonstrate the application of MEP to the moment
closure problem in equilibrium case, yielding the Euler’s gas dynamics equations,
and non-equilibrium 13 moments case, yielding the Grad’s moment equations.

3.1. Euler’s equations: the local equilibrium closure. Consider the
physical entropy:

(3.1) h = −k〈f log f〉,

and assume that the state of the gas is determined by the so-called equilibrium
variables—the mass density ρ, the momentum density ρu and the internal energy
density ρε, defined as moments of the distribution function:

(3.2) ρ = 〈mf〉; ρu = 〈mvf〉; ρε =
〈1

2
m|C|2f

〉

.

In (3.1) and (3.2) k is the Boltzmann constant, m is the atomic mass of the gas,
u is the mass average velocity, ε is the internal energy, and C = v − u is the
peculiar velocity. Transfer equations for the moments (3.2) are, actually, the con-
servation laws of mass, momentum and energy (presented using index notation and
summation convention):

∂ρ

∂t
+

∂

∂xi
(ρui) = 0(3.3)

∂

∂t
(ρuj) +

∂

∂xi
(ρujui + pji) = 0

∂

∂t

(1

2
ρ|u|2 + ρε

)

+
∂

∂xi

{(1

2
ρ|u|2 + ρε

)

ui + pjivj + qi

}

= 0

In (3.3)2,3 the non-convective fluxes appear:

pij = 〈mCiCjf〉; qi =
〈1

2
m|C|2Cif

〉

,

that have the physical meaning of pressure (stress) tensor and heat flux, respec-
tively. They are subject to the closure procedure, which will be achieved through
MEP.

The maximum entropy principle emerges from the extremal property of the en-
tropy in equilibrium. It can be expressed as a variational problem with constraints:
find the distribution function f which maximizes the physical entropy, h → max,

subject to constraints (3.2). The exact solution f̂E of the problem is obtained using
the method of Lagrange multipliers and reads:
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f̂E = exp
{

− 1−
m

k

[

λ
(0)
E + λ

(1)
iE Ci +

1

2
λ
(2)
E |C|2

]}

,

where subscript E indicates that solution corresponds to the equilibrium con-
straints, while superscripts suggest the order of the moment (degree of velocity)
corresponding to the multiplier. The multipliers are determined by the compat-

ibility of f̂E with the constraints (3.2), and eventually expressed in terms of the
moments ρ, u and the kinetic temperature T = (3m/2k)ε. The final form of the
distribution function as solution of the variational problem is:

(3.4) f̂E =
ρ/m

(2π(k/m)T )3/2
exp

{

−
|C|2

2(k/m)T

}

.

This solution resolves the closure problem such that:

pij = 〈mCiCj f̂E〉 = p δij , p = ρ
k

m
T ; qi =

〈1

2
m|C|2Cif̂E

〉

= 0,

where p is the pressure and δij the Kronecker delta.
Two important remarks are in order. First, taking into account the definition of

the peculiar velocity C and the relations n = ρ/m and θ = (k/m)T , by comparison

of (3.4) and (2.4) it becomes evident that formally f̂E = fM . In other words,
the equilibrium distribution function is recovered by MEP. However, ρ, u and T
need not be constants—they may be the functions of (t,x). In such a way, the
distribution function (3.4) is not an exact equilibrium distribution, but rather the
local one (the local Maxwellian). This means that the state of the gas is locally,
at every (t,x), described by the Maxwellian distribution with ρ, u and T changing

with t and x. Consequently, f̂E does not satisfy the Boltzmann equation (2.1)
identically, and moments of the distribution function (3.2) can not be arbitrary.
They have to satisfy Euler’s equations (3.3).

3.2. Grad’s equations: the non-equilibrium closure. Grad [5] developed
the moment method and constructed the hierarchy of governing equations of bal-
ance type. One of the aims was to derive the set of equations which will capture
the non-equilibrium processes (for other features, like hyperbolicity, one may con-
sult [4]). The central role was played by the non-equilibrium approximation of the
distribution function which comprised the finite number of moments.

Kogan [6] showed that the same distribution function can be obtained using
MEP. The main difference with respect to the approximation at the Euler’s level
is concerned with the state variables—it is assumed that this set is extended with
the pressure tensor pij and the heat flux qi. In such a way, the complete set of
constraints is consisted of 13 moments (the number of moments is reduced by 1
due to relation pii = 2ρε valid for monatomic gases):

ρ = 〈mf〉; ρu = 〈mvf〉; ρε =
〈1

2
m|C|2f

〉

;(3.5)

pij = 〈mCiCjf〉; qi =
〈1

2
m|C|2Cif

〉

.

Transfer equations for the moments (3.5) consist of mass, momentum and energy
conservation laws (3.3) and the balance laws for pressure tensor and heat flux:
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∂

∂t
(ρvivj + pij) +

∂

∂xk
{ρvivjvk + vipjk + vjpki + vkpij + pijk} = Pij ;(3.6)

∂

∂t

{(1

2
ρ|v|2 + ρε

)

vi + pijvj + qi

}

+
∂

∂xj

{(1

2
ρ|v|2 + ρε

)

vivj

+ vivkpjk + vjvkpik +
1

2
ρ|v|2pij + qivj + qjvi + pijkvk + qij

}

= Qi.

Note that in (3.6) the new non-convective fluxesappear , as well as the source terms:

pijk = 〈mCiCjCkf〉; qij =
〈1

2
m|C|2CiCjf

〉

;

Pij = 〈mCiCjQ(f, f)〉; Qi =
〈1

2
m|C|2CiQ(f, f)

〉

,

which are the subject of the closure procedure. The MEP now postulates that
the actual non-equilibrium distribution function is the one which maximizes the
physical entropy (3.1), h → max, subject to constraints (3.5).

The exact solution of the variational problem expressed by the MEP reads:

(3.7) f̂13 = exp
{

− 1−
m

k

[

λ(0) + λ
(1)
i Ci +

1

2
λ(2)|C|2 +λ

(2)
ij CiCj +

1

2
λ
(3)
i |C|2Ci

]}

.

The most important shortcoming of the exact solution (3.7) comes from the fact
that the highest degree of velocity in the exponent is odd, thus the integrals over the

velocity space diverge. The problem is resolved by the formal expansion of f̂13 in
the neighborhood of local Maxwellian (3.4), leading to the following approximation:

f̂13 ≈ f̂E

{

1−
m

k

[

λ̃(0) + λ̃
(1)
i Ci +

1

2
λ̃(2)|C|2 + λ̃

(2)
ij CiCj +

1

2
λ̃
(3)
i |C|2Ci

]}

,

where tilde denotes the difference between actual and equilibrium multiplier, e.g.

λ̃
(1)
i = λ

(1)
i − λ

(1)
iE , and likewise for the others. It can be shown that 13 moments

approximation of the distribution function then reads:

(3.8) f̂13 ≈ f̂E

{

1 +
2

ρ

( m

2kT

)2[

p〈ij〉CiCj +
4

5
qiCi

( m

2kT
|C|2 −

5

2

)]}

,

where p〈ij〉 = pij−(1/3)pkkδij is the deviatoric part of the pressure tensor. In such a
way, approximate solution (3.8) of the variational problem becomes a perturbation
of the equilibrium solution (3.4). Therefore, its validity is, in a certain sense,
restricted to a neighborhood of local equilibrium state.

Taking the approximate non-equilibrium distribution (3.8), non-convective
fluxes can be computed:

pijk = 〈mCiCjCk f̂13〉 =
2

5
(qiδjk + qjδki + qkδij);

qij =
〈1

2
m|C|2CiCj f̂13

〉

=
7

2

p

ρ
pij −

p2

ρ
δij .

The source terms can also be computed:

Pij = 〈mCiCjQ(f̂13, f̂13)〉 ≈ −
1

τ
p〈ij〉; Qi =

〈1

2
m|C|2CiQ(f̂13, f̂13)

〉

≈
2

3τ
qi,

which completes the solution of the closure problem. Note that the source terms
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are given above in the linearized form and that the structure of the term τ depends
upon the model of interaction between the atoms (see [12] for the details, as well
as for the nonlinear form of source terms).

Final remark about the formal application of MEP is concerned with the na-
ture of the closure procedure. Although the objective is closure of the moment
equations, i.e. the closure at macroscopic level, it is actually achieved at the ki-
netic level through approximation of the non-equilibrium distribution function. The
approximate velocity distribution function has to contain finite number of parame-
ters, equal to M—the dimension of the linear subspace M. The finite-dimensional
approximation of f can be obtained in different ways, MEP being one of the pos-
sibilities.

4. Maximum entropy principle and the exact moment closure

It was the intention of molecular extended thermodynamics to develop a sys-
tematic moment closure procedure, based upon the maximum entropy principle,
that goes beyond Grad’s 13 moments approximation. Basis of this approach was
laid by Dreyer [7], while systematic exposition was given in [3]. Later development
of the subject was rounded up mathematically by Levermore [10] with an emphasis
on exact closure. In this section we shall recall the core ideas of the exact moment
closure by MEP using Levermore’s notation.

Formal closure procedure based upon MEP, although illustrated by particular
examples, reveals certain general features of the approach, and of the method of
moments itself as well. First, the basis of the linear subspace M in the case of
Euler’s equations is consisted of collision invariants (2.2), which corresponds to the
equilibrium solution of the Boltzmann equation. Further inspection shows that
linear space of Grad’s equations contains the linear space of Euler’s equations as
a subspace—so-called equilibrium subspace. Second, it can be shown that moment
equations in both cases are invariant with respect to Galilean transformations,
just as Boltzmann equation is. Therefore, it is required that crucial properties of
the Boltzmann equation—the existence of equilibrium solution and invariance with
respect to Galilean transformations—have to be preserved and transferred to the
moment equations (2.5) in general case. These requirements can be expressed as
restrictions on the structure of M:

(1) M contains the equilibrium subspace E: E = span{1,v, |v|2} ⊂ M;
(2) M is invariant under Tu and To,

where Tu and To denote the groups of translations and orthogonal transforma-
tions. Note that equilibrium subspace E produces the equilibrium macroscopic
moments—mass, momentum and energy density (2.3)—which are contained in the
local equilibrium velocity distribution (3.4). In the special case of Grad’s 13 mo-
ments approximation, the linear subspace can be expressed as:

(4.1) M13 = span{1,v,v ⊗ v, |v|2, |v|2v},

and obviously E ⊂ M13.
As presented in previous Section, the core idea of MEP is to put the extremal

properties of the kinetic entropy into a variational setting, taking into account



MOMENT CLOSURE HIERARCHIES 269

macroscopic information about the system. To put it in a general form, consider
the linear subspace M of functions of v and let m(v) ∈ R

M be the vector of its
basis functions. Therefore, MEP can be formulated as follows:

The actual approximate velocity distribution function for any process is the one

which brings the entropy functional minimal value:

(4.2) 〈f log f − f〉 → min,

and which is compatible with macroscopic information, taken as constraints, avail-

able through the moments of the distribution function:

(4.3) 〈mf〉 = ρ(t,x) ∈ R
M .

The variational problem (4.2)-(4.3) has an exact solution:

(4.4) f̂ = exp(m(v)); m(v) = α ·m, α(t,x) ∈ R
M

where α(t,x) are the Lagrange multipliers, determined by the constraints (4.3):

(4.5) 〈mf̂〉 = 〈m exp(m(v))〉 = ρ,

i.e. by the compatibility with macroscopic variables. However, the moments of the
exact solution (4.4) may not be finite at all—the fact well-known from the earliest
applications of the MEP. To avoid this problem, Levermore [10] introduced an
additional requirement:

(4.6) 〈exp(m(v))〉 < ∞,

which restricts the structure of the linear subspace M. Levermore’s condition (4.6)
has the following important consequences:

• m(v) = α(t,x) ·m → −∞ as |v| → ∞
• linear spaces of polynomials must have even maximal degree; some exam-
ples of the admissible linear spaces are the following (more examples are
given in [10]):

M = span{1,v, |v|2} ≡ E; M = span{1,v,v ⊗ v};

M = span{1,v,v⊗ v, |v|2v, |v|4}.

These consequences imply that the moment closure, restricted by (4.6), has non-
perturbative character. However, weak point of this restriction is that it rules
out some important linear subspaces, like Grad’s one (4.1), since they have odd
maximal degree.

Odd maximal degree of the linear subspace M leads to divergent moments of
the distribution function (4.5). This physically inadmissible result can be avoided
by expansion of the exact solution (4.4) in the neighborhood of local equilibrium
velocity distribution (3.4). Strictly speaking, this kind of solution assumes decom-
position of the linear subspace M = E⊕P, where E is the equilibrium subspace and
P is the non-equilibrium, perturbative part of M. The vector of basis functions can
then be split in two parts:

m(v) = (mE(v),mP (v))
T ; mE(v) = (1,v, |v|2)T ,

which also leads to splitting of the exact solution (4.4):
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f̂ = exp(mE(v)) exp(mP (v));

mE(v) = αE ·mE , mP (v) = αP ·mP .

The first element in the product, exp(mE(v)), recovers the equilibrium distribution
(3.4). Thus, convergence of the moments (4.5) is achieved by expansion of the sec-
ond element in power series. Usually, the second element is linearized over P [6, 7].
This corresponds to Grad’s solution of the moment closure problem. One may
also go beyond the linear terms in power series and obtain the higher order macro-
scopic models [13]. In any case, power series expansion over P gives perturbative
character to the solution obtained by MEP, and restricts it to the neighborhood
of equilibrium one. On the other hand, it does not rule out the solutions obtained
with constraints over the linear subspaces with odd maximal degree.

5. Perturbative moment closure

Non-perturbative moment closure does not impose restrictions on the set of ad-
missible functions in the variational problem (4.2)-(4.3), but restricts the structure
of the linear subspace M. Since it is too restrictive, due to condition (4.6), the idea
is to establish a framework for a perturbative solution of the variational problem
which will avoid this restriction. Namely, instead of expanding the non-equilibrium
part of the solution a posteriori, one may restrict the set of admissible functions
over which the solution of the variational problem is sought and obtain convergent
moments (4.3). This procedure is akin to the Ritz direct method of the calculus of
variations [14]. It will be shown that restriction on the set of admissible functions,
along with suitable smallness assumption, removes the necessity for the condition
(4.6), and removes the restrictions on the linear subspace M, as well.

The framework for the perturbative moment closure will be developed in three
steps. The first step establishes the equilibrium solution. The second one constructs
the perturbative non-equilibrium solution over suitably chosen set of admissible
functions. To obtain the explicit form of the velocity distribution function, one has
to determine the Lagrange multipliers as a part of the variational problem with
constraints. This is made possible in the third step, by introducing the appropriate
smallness assumption on the entropy functional.

5.1. Equilibrium solution. To determine the equilibrium solution, we shall
formulate the variational problem in the equilibrium linear subspace E. Find the
velocity distribution function f , that minimizes the entropy functional:

(5.1) 〈f log f − f〉 → min,

such that it is compatible with the macroscopic variables:

(5.2) 〈mEf〉 = ρE(t,x) ∈ R
5, mE = (1,v, |v|2)T .

The vector of equilibrium macroscopic (state) variables ρE comprises the mass
density, the momentum density and the energy density:

ρE = (ρ, ρu, ρ|u|2 + 2ρε)T .
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The variational problem with constraints (5.1)-(5.2) is solved using the method of
Lagrange multipliers, and introducing the extended functional:

(5.3) 〈f log f − f − λE ·mEf〉 → min,

where λE is the vector of Lagrange multipliers. Exact solution of the variational
problem (5.3) is:

(5.4) 〈log fE − λE ·mE〉 = 0 ⇒ fE = exp(λE ·mE),

while the multipliers are determined from the constraints (5.2):

(5.5) 〈mE exp(λE ·mE)〉 = ρE .

The equilibrium solution (5.4), with Lagrange multipliers which satisfy (5.5), can
be expressed in traditional form (3.4) [3, 6].

Note that (5.4)-(5.5) recovers the local Maxwellian distribution which does not
satisfy the Boltzmann equation (2.1). However, fE (or, actually, ρE) satisfies the
moment equations (2.5) that are reduced to:

∂t〈mEfE〉+∇x · 〈vmEfE〉 = 0.

5.2. Perturbative non-equilibrium solution. The non-equilibrium veloc-
ity distribution function is determined as solution of the variational problem:

(5.6) 〈f log f − f〉 → min,

subject to:

(5.7) 〈mf〉 = ρ(t,x) ∈ R
M = R

5 × R
M−5.

As indicated in the constraints (5.7), the basis ofM and the vector of state variables
are split into equilibrium and non-equilibrium part:

m = (mE , m̃), ρ = (ρE , ρ̃),

where m̃ is the basis of the non-equilibrium part of M, while ρ̃ denotes the non-
equilibrium state variables. The extended functional then reads:

(5.8) 〈f log f − f − λ ·mf〉 → min,

where the vector of Lagrange multipliers λ = (λE , λ̃) is also split into equilibrium
and non-equilibrium part.

The principal novelty of our study consists of the introduction of the set of
admissible functions D. Namely, solution of the variational problem is usually
sought in the whole space of measurable non-negative functions. Here, we restrict
the solution space to the set of admissible functions of the form:

(5.9) D = {f = fE(1 +α ·m) : 〈fE(1 +α ·m)〉 < ∞, α ∈ R
M},

where fE is the equilibrium function (5.4), and the vector α is determined such
that (5.8) is satisfied. First, it is obvious that fEα · m can be regarded as a
perturbation of the equilibrium solution (5.4). Second, since M is usually the space
of polynomials, the restriction 〈fE(1 + α ·m)〉 < ∞, which replaces the condition
(4.6), is practically always satisfied.
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The variational problem (5.8) over the set of admissible functions (5.9) can be
written as follows:

φ(α) = 〈fE(1 +α ·m) log[fE(1 +α ·m)]

− fE(1 +α ·m)− λ ·mfE(1 +α ·m)〉 → min .

It may be noticed that the variational problem (5.6)-(5.7) over the infinite-dimen-
sional space of measurable functions is replaced by the finite-dimensional extremal
problem over RM . In other words, one has to determine α∗(t,x) ∈ R

M such that
φ(α∗) = φmin. Since φ(α) is smooth, the necessary condition for extremum reads:

(5.10)
∂φ

∂α
= 〈fE{log[fE(1 +α ·m)]− λ ·m}m〉 = 0.

The critical value of α is determined by (5.10) only implicitly. Therefore, explicit
form of the non-equilibrium velocity distribution can be obtained only if some
additional assumptions are introduced.

5.3. The smallness assumption. The additional assumption, which will fa-
cilitate the construction of the explicit solution of the variational problem, is the
smallness assumption. It was mentioned that fEα ·m can be regarded as a pertur-
bation of the equilibrium solution. It will be assumed now that this perturbation
is small:

〈fE log[fE(1 +α ·m)]〉 = 〈fE log fE〉+O(ǫ), ǫ ≪ 1

or, equivalently:

(5.11) 〈fE log(1 +α ·m)〉 = O(ǫ).

Taking (5.11) into account, we may approximate the log function:

〈fE log(1 +α ·m)〉 = 〈fE α ·m〉+ o(ǫ),

and rewrite the necessary condition (5.10) in the approximate form:

(5.12)
∂φ

∂α
= 〈fE{log fE +α ·m− λ ·m}m〉+ o(ǫ) = 0.

To exploit the equilibrium velocity distribution (5.4), we must embed the equilib-
rium Lagrange multipliers into the whole space R

M :

fE = exp(λE ·mE) ≡ exp(λ̃E ·m), λ̃E = (λE ,0),

so that (5.12) now reads:

(5.13) 〈fE{[α− (λ− λ̃E)] ·m}m〉+ o(ǫ) = 0.

From (5.13) one obtains the explicit form of the approximate critical value of α:

α = λ− λ̃E + o(ǫ),

which leads to the approximate velocity distribution function in D as solution of
the variational problem (5.7), (5.8):

(5.14) f̃ = fE[1 + (λ − λ̃E) ·m] ∈ D.
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The non-equilibrium part of the minimizer (5.14) is expressed in terms of Lagrange
multipliers, i.e. their non-equilibrium part. The non-equilibrium Lagrange multi-
pliers have to be compatible with constraints (5.7), which can be rewritten in terms
of non-equilibrium macroscopic variables:

(5.15) 〈m̃f̃〉 = 〈m̃fE[1 + (λ − λ̃E) ·m]〉 = ρ̃(t,x).

Thus, perturbative solution (5.14)-(5.15) replaces the exact solution (4.4)-(4.5).
For polynomial basis functions of M it always produces convergent moments—
macroscopic variables. The restrictions on the linear subspace are removed at the
expense of constructing the approximate non-equilibrium solution.

Like in the case of equilibrium solution (5.4)-(5.5), the non-equilibrium pertur-
bative solution (5.14)-(5.15) does not satisfy the Boltzmann equation (2.1). How-

ever, f̃ (actually, the corresponding moments ρ determined by (5.7)) satisfies the
moment equations (2.5), which read:

∂t〈mf̃〉+∇x · 〈vmf̃〉 = 〈mQ(f̃ , f̃)〉.

5.4. A note on linearization. The perturbative moment closure is obtained
over the space D of functions (5.9), that can be regarded as perturbations of the
local Maxwellian. Further restriction, i.e. the smallness assumption (5.11), turns
the perturbation fEα ·m into a “small perturbation”, leading to a certain kind of
linearization in the neighborhood of local Maxwellian.

Linearization around equilibrium distribution has certain drawbacks of both
mathematical and physical nature. They become especially important when one
faces the problem of convergence to equilibrium (nice account on this problem
was given by Villani [15, 16]; for the results of quantitative character consult
Desvillettes and Villani [17]). How do we cope with this problem?

Our aim was to construct an explicit perturbative moment closure, without
restriction on the maximal degree of polynomials in linear spaces M. Linearization
is the price we pay for that. However, the solution obtained using MEP, either in
equilibrium or in non-equilibrium, is the one which does not satisfy the Boltzmann
equation. However, its moments satisfy the Euler equations (in equilibrium case),
as well as extended hierarchy of moment equations in non-equilibrium case. The
goal of linearization around local Maxwellian obtained in MEP, is not directed
towards the Boltzmann equation and convergence to local equilibrium. It rather
comprises the information about non-equilibrium (of small magnitude) through
higher order moments in the distribution function, and brings the explicit fluid
dynamic limit through the closed set of moment equations. Valuable information
about formal derivation of fluid dynamic limits at Euler and Navier-Stokes level
can be found in [18].

Finally, the role of MEP must not be overlooked. The principle is exact as long
as we deal with global equilibrium. When considered as constrained variational
problem in which the moments are assumed to be variable in space and time, like
in constraints (5.2) or (5.7), it only mimics the behaviour of f at global equilibrium
by applying entropy maximization to the chosen set of moments.
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6. Conclusions

In this study we analyzed the moment closure hierarchies—hierarchies of the
macroscopic equations—derived from the Boltzmann equation. The moment clo-
sure problem can be regarded as a kinetic counterpart for determination of the
constitutive relations in classical continuum mechanics. Our main concern was the
application of the maximum entropy principle to derivation of the approximate
non-equilibrium velocity distribution function, which resolves the closure problem.

Our motif was to remove the restriction on the linear subspace M, over which
the solution is sought, which emerged from the Levermore’s condition (4.6). This
condition imposes severe restrictions onM, and rules out some physically important
subspaces at the expense of retaining the exact entropy minimizer. In this study, a
perturbative moment closure was proposed. It imposed restriction on the form of
admissible functions, rather than the linear subspace itself. The main benefit is the
boundedness of the moments of any order for the minimizer which belongs to the
set of admissible functions. Moreover, this permitted us to incorporate the classical
solutions of the moment closure problem (e.g. Grad’s one) into this perturbative
moment closure scheme.

There are still interesting open problems for the perturbative moment closure.
First, it is well-known that exact closure permits symmetric Godunov form of mo-
ment hierarchy [3, 9] and that Lagrange multipliers in MEP correspond to the main
field in symmetric hyperbolic systems of balance laws. This property yet remains
to be proven for the perturbative moment closure. Moreover, it is of interest to
perform a formal extension of this scheme to polyatomic gases, which comprises
more microscopic variables. Some recent studies reveal persisting interest in this
field [19, 20, 21], but mathematical framework yet remains to be delineated.
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HIJERARHIJE ZATVORENIH SISTEMA JEDNAQINA

MOMENATA ZA RAZRE�ENE GASOVE

Rezime. U radu je izloжena aproksimativna procedura formiraǌa za-
tvorenog sistema makroskopskih jednaqina koje poseduju hijerarhijsku
strukturu. Ove jednaqine imaju primenu u dinamici razre�enih gasova
i izvode se, polaze�i od Bolcmanove jednaqine kinetiqke teorije gasova,
kao jednaqine za momente funkcije raspodele. Procedura se zasniva
na primeni principa maksimuma entropije. Zanimǉivo je da momenti
funkcije raspodele, odre�eni na osnovu taqnog rexeǌa varijacionog
problema, mogu biti divergentni, xto se moжe izbe�i ograniqeǌima u
pogledu strukture momenata koji se koriste prilikom maksimizacije en-
tropije. U ovom radu je predloжen perturbacioni metod u kom se uvode
restrikcije na skup dopustivih funkcija varijacionog zadatka. Ovaj
pristup nas dovodi do pribliжnog rexeǌa, ali zato omogu�uje proizvo-
ǉan izbor momenata kao ograniqeǌa u varijacionom zadatku.
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