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Abstract. The buckling and post-buckling behavior of a nonlinear discrete
repetitive system, the discrete elastica, is studied herein. The nonlinearity
essentially comes from the geometrical effect, whereas the constitutive law of
each component is reduced to linear elasticity. The paper primarily focuses on
the relevancy of higher-order continuum approximations of the difference equa-
tions, also called continualization of the lattice model. The pseudo-differential
operator of the lattice equations are expanded by Taylor series, up to the sec-
ond or the fourth-order, leading to an equivalent second-order or fourth-order
gradient elasticity model. The accuracy of each of these models is compared
to the initial lattice model and to some other approximation methods based
on a rational expansion of the pseudo-differential operator. It is found, as
anticipated, that the higher level of truncation is chosen, the better accu-
racy is obtained with respect to the lattice solution. This paper also outlines
the key role played by the boundary conditions, which also need to be con-
sistently continualized from their discrete expressions. It is concluded that
higher-order gradient elasticity models can efficiently capture the scale effects
of lattice models.

1. Introduction

Euler [19, 20] gave the exact buckling load for a pinned ended, inextensible,
elastic column under a compressive axial load (see Oldfather et al. [39]). Lagrange
[34] obtained the geometrically nonlinear exact equations of the problem and in-
tegrated the elliptic integral using asymptotic expansion formula. Lagrange [34]
also investigated the higher-order buckling modes of simply supported inextensi-
ble elastic columns. Various elastica solutions are available for general boundary
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conditions and they are reported by Born [8], Love [37], Frisch-Fay [22], Antman
[3] or Atanackovic [5] among others. Kuznetsov and Levyakov [33] recently in-
vestigated this elastica problem extensively and characterized the stability of the
post-bifurcation branches.

The elastica problem, as already investigated by Euler [19] for the continuous
case, can be formulated using a discrete version, also referred to as a discrete elas-

tica. The linearized discrete elastica has been studied only in the beginning of the
1900s by Hencky [27] who considered a chain comprising elastically connected rigid
links. Hencky [27] gave the buckling solutions of the finite problem for a number
of links n such as n = 2, n = 3 and n = 4. Hencky [27] also observed that the
continuous elastica problem may be obtained from considering an infinite number
n of rigid links. The exact solution of this problem for arbitrary number of links
was analytically given by Wang [52, 53], who solved a boundary value problem of
second-order linear difference equations, whose solutions may be available in stan-
dard textbooks (such as Goldberg [25]). Silverman [46] remarked that this Hencky
bar problem was mathematically equivalent to the finite difference formulation of
the continuous problem when the length of the rigid link is made equal to the space
discretization. Recently, Challamel et al. [12] showed that this discrete problem
was mathematically similar to the vibrations equations of a discrete string, whose
exact solution was first given by Lagrange [35].

The discrete elastica in a geometrically exact framework is a recent field which
has emerged in the 1980s due to the interest of the research community in numer-
ical and theoretical aspects of structural mechanics modelling (see for instance El
Naschie et al. [17] or Gáspár and Domokos [23]). El Naschie et al. [17] numer-
ically quantified the initial post-buckling curvature of the Hencky-bar system and
compared the response with the local continuous problem. Gáspár and Domokos
[23] showed an unexpected rich behaviour of the bifurcation diagram for the dis-
crete elastica, which is not known for its continuum analogous. In fact, Gáspár and
Domokos [23], Domokos [14] or Domokos and Holmes [15] pointed out possible
spatial chaotic behavior of the Hencky bar-chain, a phenomenon originated from
the discreteness of the system. The mathematical equivalence of the finite differ-
ence formulation of the Euler problem and the Hencky bar system has been shown
in the linear range (Silverman [46]) and the equivalence can be also extended to the
nonlinear range (Domokos and Holmes [15]). Wang [54] revisited the study on the
post-buckling behaviour of the Hencky-bar chain for various boundary conditions.
More recently, Kocsis and Károlyi [28, 29] observed spatial chaotic behaviour for
discrete systems under non-conservative loads.

As mentioned by Bruckstein et al. [10], elastica curves may be also labelled
as nonlinear splines in an industrial context and have found industrial applications
in the field of computer graphics, or shape completion curves in image analysis.
In this context, Brusckstein et al. [10] numerically solved some discrete elastica

problems with various boundary conditions and additional constraints, and com-
pared the solution with respect to the local one (for infinite number of fictitious
links). The discrete elastica can be viewed as a numerical spatial discretization of
a continuous rod problem (Bergou et al. [7]) or the investigation of a true discrete
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mechanics problem (or lattice problem) that converges towards the continuous one
at the limit. When considering the discretization problem, an important feature is
the energy preserving property of the discrete spatial schemes. The discrete elas-

tica investigated herein is introduced from an energy functional and it has energy
preserving property. To the authors’ knowledge, the corresponding second-order
nonlinear difference equation has no available analytical solution although some
approximate asymptotic solutions have been recently obtained by Challamel et al.
[13]. We mention that alternative discrete schemes have been presented in the lit-
erature, which converge differently towards the continuous Euler elastica. Sogo [47]
established a discrete scheme for the discrete elastica, related to the discrete Sine–
Gordon equation (widely investigated for nonlinear wave propagation phenomena
- see Braun and Kivshar [9]), with possible exact solution of the nonlinear lattice
model. This scheme, however, differs from Hencky’s system, as we shall discuss
later. Kocsis [31] developed a section-based model for planar Cosserat rods, which
can be applied as an alternative discrete mechanical model to the elastica, and
which also differs from the Hencky chain.

In this paper, the discrete elastica will be investigated numerically and through
an enriched continuum (or quasi-continuum) obtained by a continualization proce-
dure. The continualization process approximates the finite difference operators of
the lattice model by differential operators using Taylor-based expansion (Kruskal
and Zabusky [32]) or rational-based expansion (Rosenau [42]). This methodol-
ogy has been applied to the so-called FPU system, a nonlinear elastic axial chain
with nonlinear restoring force studied by Fermi et al. [21]. The reader can refer
to Maugin [38] for a historical perspective on the link between the Fermi-Pasta-
Ulam lattice model (FPU system) and the continualized wave propagation equa-
tion. Kruskal and Zabusky [32] used a Taylor expansion of the second-order finite
difference operator arising in the discrete lattice up to the fourth-order spatial de-
rivative. The work of Triantafyllidis and Bardenhagen [49] may be mentioned for
the static behaviour of a nonlinear elastic axial chain (including FPU chain) and
its link to gradient elasticity model using Taylor asymptotic expansion of the dif-
ference operators. Triantafyllidis and Bardenhagen [49] applied continualization to
the governing equations and to the energy functional.

We have recently shown from a rational expansion that the discrete elastica may
behave as a nonlocal continuous elastica, both in the buckling (Wang et al. [51];
Challamel et al. [11]) and the post-buckling regimes (Challamel et al. [13]). The
nonlocality is here understood as an Eringen’s type nonlocality or stress gradient
model (Eringen [18]). This nonlocal model has been considered for bending of
nonlocal beams by Peddieson et al. [41] (see also Sudak [48]). Eringen’s model
applied at the beam scale may be formulated from the lattice spacing of Hencky
bar chain model:

(1.1) M −
a2

12

d2M

ds2
= EIκ

where M is the bending moment, EI is the bending stiffness, κ is the curvature
and a is the lattice spacing with a = L/n for a beam of length L composed of n
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rigid links. The nonlocal length scale has been identified from the lattice spacing;
thereby giving a kind of physical support for justifying nonlocal beam mechanics.

In this paper, we explore a gradient-type curvature driven law, first expressed
by the second-order curvature constitutive law:

(1.2) M = EI

[

κ+
a2

12

d2κ

ds2

]

and then we shall investigate a higher-order gradient constitutive law given by:

(1.3) M = EI

[

κ+
a2

12

d2κ

ds2
+

a4

360

d4κ

ds4

]

It will be shown that the pseudo-differential operator of the lattice equations can
be expanded by Taylor expansions, up to the second or fourth-order, leading to an
equivalent second-order or fourth-order gradient model. The accuracy of each of
these models is compared first to the initial lattice model and then to some other
approximation methods based on a rational expansion of the pseudo-differential
operator. It is found, as anticipated, that when a higher level of truncation is
chosen, a better accuracy is achieved with respect to the lattice solution. The
key role played by the boundary conditions is also outlined, which need to be
consistently continualized from their discrete expression. Higher-order gradient
elasticity models can efficiently capture the scale effects of lattice models.

2. Discrete elastica

Consider a Hencky’s bar-chain (or discrete elastica system) with pinned-pinned
ends as shown in Figure 1. The column, composed of n repetitive cells of size a,
is axially loaded by a concentrated force denoted by P . The discrete column of
length L is modelled by some finite rigid segments and elastic rotational springs of
stiffness k = EI/a, where EI is the bending rigidity of the local Euler-Bernoulli
column asymptotically obtained for an infinite number n of rigid links.

It is possible to introduce the energy function of this problem as:

U =

n−1
∑

i=1

EI

4

[

(θi+1 − θi
a

)2

+
(θi − θi−1

a

)2
]

× a(2.1)

+
EI

4

(θ1 − θ0
a

)2

× a+
EI

4

(θn − θn−1

a

)2

× a− P × a

n−1
∑

i−1

(1− cos θi)

which can be equivalently reformulated as:

U =

n
∑

i=0

EI

2

(θi+1 − θi
a

)2

× a− P × a

n−1
∑

i=1

(1 − cos θi)

The stationarity of this energy function δU = 0 leads to the nonlinear difference
equation of the discrete elastica:

(2.2) EI
θi+1 − 2θi + θi−1

a2
+ P sin θi = 0
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Figure 1. Hencky’s chain: n rigid links are connected by hinges
and rotational springs.

The discrete elastica equations can be equivalently obtained from the following
system of nonlinear difference equations:

(2.3) Mi = EI
θi+1 − θi

a
and

Mi −Mi−1

a
+ P sin θi = 0

Here Mi is the bending moment in the rotational spring at hinge i, and θi is the
angle of the ith link from the line of action of compressive force P . In other words,
θi is the rotation angle of the segment i connecting the (i − 1)th node and the
ith node.

As pointed out by Domokos and Holmes [15], the difference equations (2.3) can
be obtained from the differential equation system of the axially compressed, hinged-
hinged elastica, M = EI × dθ/ds and dM/ds+ P sin θ = 0, by using forward and
backward differences, respectively. This yields a semi-implicit Euler method, which
defines an area preserving map. It is worth mentioning that, except the discussion
on boundary conditions, the discrete elastica may be equivalently obtained from
the centred finite difference scheme expressed by:

Mi = EI
θi+1/2 − θi−1/2

a
and

Mi+1/2 −Mi−1/2

a
+ P sin θi = 0

To the authors’ knowledge, there is no available analytical solution for Eq. (2.2) in
the literature. Sogo [47] used an alternative scheme, also introduced via variational
arguments, which may be expressed as

4EI
sin

( θi+1−θi
2

)

− sin
( θi−θi−1

2

)

a2
(2.4)

+ P

[

sin
(θi + θi−1

2

)

+ sin
(θi + θi+1

2

)

]

= 0

Equation (2.4) may alternatively be written as:

(2.5) 4
EI

a2
sin

(θi+1 − 2θi + θi−1

4

)

+ P sin
(θi−1 + 2θi + θi+1

4

)

= 0

Sogo [47] obtained a closed-form solution for Eq. (2.5) by using elliptic functions.
Although Eq. (2.5) and Eq. (2.2) are different, both converge towards the contin-
uous elastica for a → 0 (or n → ∞):

EIθ′′ + P sin θ = 0
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The nonlinear difference equation (2.2) of the elastica can be reformulated in a
dimensionless form:

(2.6) θi+1 − 2θi + θi−1 = −
β

n2
sin θi

by using the dimensionless load β = PL2/EI. The nonlinear difference equation
can be equivalently reformulated with the following relations

θi+1 = θi +
κ̂i

n
and κ̂i+1 = κ̂i −

β

n
sin θi+1

where the dimensionless curvature κ̂i is defined as κ̂i = Lκi and the curvature
κi = Mi/EI (see Challamel et al. [13]). The boundary conditions of the pinned-
pinned column are obtained from the vanishing of the bending moments at both
ends, i.e. M0 = 0 and Mn = 0:

(2.7) θ1 = θ0 and θn+1 = θn

The analytical solution for the fundamental buckling load on the basis of the lin-
earization process, was calculated by Wang [52, 53] (see more recently by Chal-
lamel et al. [12]) for arbitrary number of links n. The reasoning is briefly presented
below. The linearization of Eq. (2.6) for computing the buckling load gives:

θi+1 +
( β

n2
− 1

)

θi + θi−1 = 0

The solution of this linear difference boundary value problem can be expressed with
the real basis as (Challamel et al. [13]):

(2.8) θi = A cos(φi) +B sin(φi) with φ = arccos
(

1−
β

2n2

)

The substitution of Eq. (2.8) into the first boundary condition given in Eq. (2.7)
(i.e. θ1 = θ0) leads to the following buckling mode:

θi = θ0
sin(φi)− sin(φ(i − 1))

sinφ
= θ0

cos
(

φi − φ
2

)

cos φ
2

Now, the consideration of the second boundary condition θn+1 = θn gives the kth

buckling load of the pinned-pinned Hencky chain:

sin(φn) = 0 ⇒ φn = kπ ⇒ cos
kπ

n
= 1−

β

2n2
⇒ βcrit = 4n2 sin2

(kπ

2n

)

The discrete boundary value problem defined by Eqs. (2.6) and (2.7) can be solved
by using the shooting method (see for instance Kocsis [30]). The solutions form
equilibrium paths and are shown in blue colour in Figure 2. As pointed out by
Gáspár and Domokos [23], Domokos [14] or Domokos and Holmes [15], the dis-
crete system possesses very rich structure inherent to the discrete property of the
structural system. The discrete system possesses a multiplicity of solutions ap-
pearing from the primary branches in saddle node bifurcation, a property which is
not observed for the continuous elastica system. These solutions are classified as
parasitic solutions. As well described in Domokos and Holmes [15], the number of
parasitic solutions increases with respect to the number of links n.
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Figure 2. Bifurcation diagrams of the nonlocal elastica with local
boundary conditions (red) for n = 4 and the Hencky chain of 4 links
(blue). The relative rotation of neighbouring links in the Hencky
chain is less than 2π.

3. Higher-order elasticity by continualization method

Now, a continuous approximation of the discrete elastica will be expressed by
using a so-called continualization approach. The nonlinear difference equations
can be continualized starting from the following relations between the discrete and
equivalent continuous systems θi = θ(s = ia) for a sufficiently smooth deflection
function:

θ(s+ a) =
∞
∑

k=0

akdks
k!

θ(s) = eadsθ(s) with ds =
d

ds

The methodology that aims to approximate a discrete system by a continuous one
is called a continualization procedure or the method of differential approximation
(Shokin [45]). The method involves finding the best enriched continuum associated
with a discrete model (or lattice model) and is based on the asymptotic expansion
of the difference operators using Taylor-based or some other asymptotic expansion.
By introducing the pseudo-differential Laplacian operator

θi−1 + θi+1 − 2θi
a2

=

[

eads + e−ads − 2
]

a2
θ(s) =

4

a2
sinh2

(a

2
ds

)

θ(s)

one obtains the following system of pseudo-differential equations for discrete elastica
problem defined by Eq. (2.2):

4
EI

a2
sinh2

(a

2
ds

)

θ + P sin θ = 0

A fourth-order Taylor-based asymptotic expansion of this pseudo differential oper-
ator leads to:
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4

a2
sinh2

(a

4
ds

)

= d2s +
a2

12
d4s +

a4

360
d6s + o(a6) . . .

The coefficients of the fourth-order asymptotic expansion were already given by
Rosenau [43], Wattis [55] or Askes et al. [4]. A similar second-order Taylor-based
asymptotic expansion was applied by Kruskal and Zabusky [32] for a nonlinear
discrete axial chain.

The second-order gradient elasticity model associated with the discrete elastica
then yields:

(3.1) EI
(

θ′′ +
a2

12
θ(4)

)

+ P sin θ = 0

whereas the fourth-order gradient elasticity model is obtained from a higher-order
asymptotic expansion:

(3.2) EI
(

θ′′ +
a2

12
θ(4) +

a4

360
θ(6)

)

+ P sin θ = 0

The prime denotes the spatial differentiation with respect to the curvilinear ab-
scissa, i.e. dsθ = θ′. In order to avoid higher-order derivatives, and due to the
specific property of the energy functional of these continualized models, a rational-
based asymptotic expansion has been also used in the literature (see for instance
Rosenau [42], Wattis [55], Andrianov et al. [1, 2] for axial wave applications):

4

a2
sinh2

(a

2
ds

)

=
d2s

1− a2

12d
2
s

+ . . .

Such a Padé approximation of the pseudo-differential operator leads to a second-
order nonlinear differential equation:

EIθ′′ + P sin θ − P
a2

12
(sin θ)′′ = 0

which is strictly equivalent to

(3.3)
(

EI − P
a2

12
cos θ

)

θ′′ + P
(

1 +
a2

12
θ′2

)

sin θ = 0

This last model can be classified as a nonlocal model of Eringen’s type applied
at the beam scale. In this paper, we will explore the capability of these three
higher-order models (approximated differential models or quasi-continuum models)
to capture the scale effects of the exact discrete elastica (or Hencky chain model).

4. Overview of nonlocal and discrete elastica

There is a strict equivalence between the nonlinear differential equation (3.3)
and the nonlocal moment gradient elasticity model of Eringen’s type as applied to
the beam and the governing equations may be written as:

(4.1) M − l2cM
′′ = EIθ′ and M ′ + P sin θ = 0 with l2c =

a2

12
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The first equation in Eq. (4.1) is exactly Eq. (1.1). In other words, the con-
tinualization of the discrete elastica based on a rational expansion of the pseudo-
differential operator is equivalent to the formulation of a nonlocal elastica, where
the length scale is calibrated with respect to the cell size of the Hencky bar system.
The nonlocality here arises as the stress gradient model of Eringen [18] as applied
at the beam scale. The nonlocal elastica, where nonlocality is of Eringen’s type,
has been recently investigated in details by Wang et al. [50], Shen [44], Xu et al.
[56] or Challamel et al. [13] for small scale structure applications. Atanackovic et
al. [6] found some new solutions for the optimization of nonlocal elastic columns.

For the continualized problem investigated herein, consistent continualized
boundary conditions should be considered as the continualization of the discrete
ones Eq. (2.7):

(4.2) θ(a) = θ(0) and θ(L+ a) = θ(L)

The following dimensionless parameters can be introduced as well:

β =
PL2

EI
, ξ =

s

L
and l̂c =

lc
L

The nonlocal elastica is then reduced to the resolution of the nonlinear second-order
differential equation expressed in dimensionless format:

(

1− βl̂2c cos θ
)d2θ

dξ2
+ β

[

1 + l̂2c

(dθ

dξ

)2
]

sin θ = 0

which can be converted into a first order differential equation system:

(4.3)
dθ

dξ
= κ̂ and

dκ̂

dξ
= −β sin θ

1 + l̂2c κ̂
2

1− βl̂2c cos θ

The boundary value problem defined by Eq. (4.3) with nonlocal boundary
conditions Eq. (4.2) can be solved numerically, as thoroughly discussed in Chal-
lamel et al. [13]. The bifurcation diagrams of the discrete and nonlocal elastica
(with uncentred nonlocal boundary conditions) are shown in Figures 4 and 5. For
comparison studies, results are also reported for the nonlocal problem with “local”
centred boundary conditions, given in a non-dimensional format as:

dθ

dξ
(0) = 0 and

dθ

dξ
(1) = 0

Figure 2 shows the bifurcation diagram of the nonlocal elastica with local
boundary conditions for n = 4, and that of the discrete elastica (Hencky chain)
of 4 links. Solutions where the relative rotation between neighbouring links of the
Hencky chain exceeds 2π are not shown. Figure 3 shows the first three bifurcation
branches of these models. Figure 4 shows the bifurcation diagram of the nonlocal
elastica with nonlocal boundary conditions for n = 4, and that of the Hencky chain
of 4 links, while Figure 5 shows the first three bifurcation branches of these two
models. It is clear that the nonlocal model is efficient in capturing the primary bi-
furcation branch up to large rotation values but it fails to capture the higher-order
branches. This observation is also detailed in Table 1. Furthermore, the need of
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Figure 3. The first three paths of the the Hencky chain (blue) and
the first three paths of the nonlocal elastica with local boundary
conditions (red) for n = 4. Bifurcation points of the paths are
denoted.

Figure 4. Bifurcation diagrams of the nonlocal elastica with non-
local boundary conditions (red) for n = 4 and the Hencky chain of
4 links (blue). The relative rotation of neighbouring links in the
Hencky chain is less than 2π.
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Figure 5. The first three paths of the the Hencky chain (blue)
and the first three paths of the nonlocal elastica with nonlocal
boundary conditions (red) for n = 4. Bifurcation points of the
paths are denoted.

introducing uncentred nonlocal boundary conditions is confirmed by the numerical
comparison of each nonlocal model and the reference lattice one. A closed-form
solution of the buckling load can be easily obtained for the nonlocal elastica with
centred or uncentred boundary conditions. For centred boundary conditions, the
buckling mode can be obtained as (Challamel et al. [13]):

θ(ξ) = θ0 cosπξ ⇒ β =
π2

1 + π2 l2
c

L2

with l2c =
a2

12

whereas for uncentred boundary conditions, the buckling mode is similar to the one
of the discrete problem that has been continualized, and leads to the same buckling
value obtained with the centred boundary conditions:

θ(ξ) = θ0
cos

[

π
(

ξ − a
2L

)]

cos πa
2L

⇒ β =
π2

1 + π2 l2
c

L2

with l2c =
a2

12

5. Second-order gradient elasticity models

Considering the Taylor-based asymptotic expansion of the pseudo-differential
operator, the nonlinear differential equation associated with a second-order gradient
elasticity model given by Eq. (3.1) is now investigated. This gradient elasticity
model has been obtained from continualization of the governing equations, but it
is also possible to continualize directly the energy function given in Eq. (2.1) by
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Table 1. Computation of first stable bifurcation branch β =
f(θ0) in case of n = 4; Local boundary conditions characterized by
θ′(0) = θ′(L) = 0; Uncentred nonlocal boundary conditions char-
acterized by θ(a) − θ(0) = 0 and θ(an + a) − θ(an) = 0; centered
higher-order boundary conditions obtained from θ′(0) = θ′(L) = 0
and θ′′′(0) = θ′′′(L) = 0.

θ(0) = θ0 0 0.25 0.5 0.75 1

β (Hencky system) 4n2 sin2
π

2n
≈ 9.3726 9.4589 9.7241 10.1883 10.8885

β (nonlocal
method; local
boundary
conditions)

π2

1 + π2/(12n2)
≈ 9.3871 9.4608 9.6872 10.0825 10.6772

β (nonlocal

method; uncentred
nonlocal boundary

conditions)

π2

1 + π2/(12n2)
≈ 9.3871 9.4735 9.7393 10.2043 10.9067

β (2nd order
gradient elasticity
method; centred

boundary
conditions)

π2

(

1−

π2

12n2

)

≈ 9.3623 9.4358 9.6618 10.0572 10.6541

β (2nd order
gradient elasticity
method; uncentred

boundary
conditions)

π2

(

1−

π2

12n2

)

≈ 9.3623 9.4484 9.7134 10.1770 10.8767

β (4th order
gradient elasticity
method; centred

boundary
conditions)

π2

(

1−

π2

12n2
+

π4

360n4

)

≈ 9.3727 9.4463 9.6725 10.0675 10.6621

β (4th order
gradient elasticity
method; uncentred

boundary
conditions)

π2

(

1−

π2

12n2
+

π4

360n4

)

≈ 9.3727 9.4590 9.7242 10.1886 10.8898

θ(0) = θ0 1.25 1.5 1.75 2

β (Hencky system) 11.8856 13.2771 15.2219 17.9929

β (nonlocal method; local boundary
conditions)

11.5216 12.6975 14.3420 16.6955

β (nonlocal method; uncentred nonlocal
boundary conditions)

11.9092 13.3149 15.2969 18.1626

β (2nd order gradient elasticity method;
centred boundary conditions)

11.5080 12.7145 14.4501 17.0855

β (2nd order gradient elasticity method;
uncentred boundary conditions)

11.8737 13.2686 15.2262 18.0342

β (4th order gradient elasticity method;
centred boundary conditions)

11.5073 12.6861 14.3372 16.7040

β (4th order gradient elasticity method;
uncentred boundary conditions)

11.8910 13.2959 15.2804 18.1632
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using the following energy functional:

U =

∫ L

0

EI

4

[

(θ(x+ a)− θ(x)

a

)2

+
(θ(x) − θ(x− a)

a

)2
]

− P (1− cos θ)dx

=

∫ L

0

EI

4

[

(

θ′ +
a

2
θ′′ +

a2

6
θ′′′

)2

+
(

θ′ −
a

2
θ′′ +

a2

6
θ′′′

)2

+ o(a4)

]

− P (1− cos θ)dx

where the boundary terms have been omitted. The internal energy functional can
also be presented in the following simplified form

π0 =

∫ L

0

EI

2

[

θ′2 +
a2

4
θ′′2 +

a2

3
θ′θ′′′ + o(a4)

]

dx

=

∫ L

0

EI

2

[

θ′2 −
a2

12
θ′′2

]

dx +

[

a2

3
θ′θ′′

]L

0

+ o(a4)

The continualized energy is not positive definite. The continualized model can be
classified as a second-order gradient elasticity model with some negative contribu-
tions of the small length scale terms, as shown below:

U =

∫ L

0

EI

2

(

θ′2 −
a2

12
θ′′2

)

− P (1 − cos θ)dx

The stationarity of this energy functional δU = 0 also leads to the same nonlin-
ear differential equation as Eq. (3.1) with the following higher-order boundary
conditions:

(5.1)

[

− EI
a2

12
θ′′δθ′

]L

0

+

[

EI
(

θ′ +
a2

12
θ′′′

)

δθ

]L

0

= 0

One recognizes a kind of gradient elasticity beam model with a negative sign af-
fecting the small length scale contribution (as opposed to gradient elasticity models
with positive definite energy - see Lazopoulos [36]; Papargyri-Beskou et al. [40]).
Note also that the natural boundary condition in Eq. (5.1) may define the bending
moment as:

M = EI
(

θ′ +
a2

12
θ′′′

)

Note that this equation is the same as Eq. (1.2). The second-order gradient elastic-
ity model can be reformulated in a dimensionless nonlinear fourth-order differential
equation:

(5.2)
d2θ

dξ2
+

1

12n2

d4θ

dξ4
= −β sin θ

The centred boundary conditions of this second-order gradient elasticity model may
be chosen from Eq. (5.1):

(5.3) θ′(0) = θ′(L) = 0 and θ′′′(0) = θ′′′(L) = 0
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The uncentred boundary conditions obtained by continualization of the discrete-
based boundary conditions Eq. (2.7) of this second-order gradient elasticity model
are chosen as:

(5.4) θ′
(a

2

)

= θ′
(

L+
a

2

)

= 0 and θ′′′
(a

2

)

= θ′′′
(

L+
a

2

)

= 0

The following asymptotic expansion lies behind this uncentred boundary condition:

θ(0) = θ(a) ⇒ θ
(a

2
−

a

2

)

= θ
(a

2
+

a

2

)

⇒ θ
(a

2

)

−
a

2
θ′
(a

2

)

+
1

2

(a

2

)2

θ′′
(a

2

)

+ . . .

= θ
(a

2

)

+
a

2
θ′
(a

2

)

+
1

2

(a

2

)2

θ′′
(a

2

)

+ . . .

which implies that:

θ′
(a

2

)

= θ′′′
(a

2

)

= 0

The reasoning is identical at the other boundary.
Eq. (5.2) can be transformed in a first order differential equation system:

θ′ = κ(5.5)

κ′ = γ

γ′ = α

α′ = −12n2(γ + β sin θ)

This ordinary differential equation system, written in the short form x′ = f(x),

where x = [θ, κ, γ, α]T , can be solved numerically with the simplex algorithm. In
case of centred boundary conditions, according to Eq. (5.3), the close-end boundary
conditions are κ0 = 0 and α0 = 0. There is one parameter, i.e. the load β, and
there are two variables, i.e. θ0 and γ0. They span a 3D global representation
space (GRS). For each point in this space Eq. (5.5) is solved by a time-stepping
algorithm, where the dimensionless, unit rod length is discretized in m parts. It
yields the far-end values of κ and α. Owing to the far-end boundary conditions,
κm = 0 and αm = 0 should fulfill, and these are the error functions of the simplex
scanning algorithm (Gáspár et al. [24]).

Figures 6 and 7 show the bifurcation diagrams for n = 2, 3, 4, 5, 6 and 7. The
scanned domain of the global representation space is θ0 ∈ (−1, 1), γ0 ∈ (−16π, 16π),
and β ∈ (0, 200). The grid of the GRS is 300 × 5000 × 2000, while the rod is
discretized in m = 1000 parts with a predictor-corrector time-stepping algorithm,
which predicts the solution in the next time step with the Euler method and correct
it with the second-order Adams-Moulton method (Hairer et al [26]). The output of
the scanning algorithm is refined by the Newton-Raphson method. Figure 8 shows
the bifurcation diagram of the second-order gradient elasticity model Eq. (5.2) with
centred boundary conditions Eq. (5.3) for n = 4, and that of the Hencky chain
of 4 links. Solutions where the relative rotation between neighbouring links of the
Hencky chain exceeds 2π are not shown.
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Figure 6. Bifurcation diagrams of the second-order gradient
elasticity model, Eq. (5.2), with centred boundary conditions,
Eq. (5.3), for n = 2, 3, 4, 5, 6 and 7. Projection of the equilib-
rium paths on the subspaces of (θ0, β) are shown, the values of n
are indicated on the top of the figures. The scanned domain of
the global representation space is β ∈ (0, 200), θ0 ∈ (−1, 1) and
γ0 ∈ (−16π, 16π), and the rod is discretized in m = 1000 parts
with the stepping algorithm.

An equilibrium path can also be followed by the simplex algorithm (Domokos
and Gáspár [16]). For that a known point on the path is required. The first three
paths of the Hencky chain and the first four paths of the second-order gradient
elasticity model Eq. (5.2) with centred boundary conditions Eq. (5.3) are com-
puted for n = 4, starting from the corresponding bifurcation points of the trivial
equilibrium path. These paths are shown in Figure 9. Note that the first paths of
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Figure 7. Bifurcation diagrams of the second-order gradient
elasticity model, Eq. (5.2), with centred boundary conditions,
Eq. (5.3), for n = 2, 3, 4, 5, 6 and 7. Projection of the equilib-
rium paths on the subspaces of θ0, γ0 are shown, the values of n
are indicated on the top of the figures. The scanned domain of
the global representation space is β ∈ (0, 200), θ0 ∈ (−1, 1) and
γ0 ∈ (−16π, 16π), and the rod is discretized in m = 1000 parts in
the stepping algorithm.

the two models are very close to each other. In this respect, the second-order gra-
dient elasticity model with centred boundary conditions approximates the discrete
model very well. However, the second path of the gradient elasticity model is far
away from being a good estimate of the second path of the discrete model. Rather
the third and the fourth paths of the gradient elasticity model seem to correspond
better to the second and third paths of the discrete model.
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Figure 8. Bifurcation diagrams of the second-order gradient elas-
ticity model with centred boundary conditions (red) for n = 4 and
the Hencky chain of 4 links (blue). The relative rotation of neigh-
bouring links in the Hencky chain is less than 2π.

Figure 9. The first three paths of the the Hencky chain (blue) and
the first four paths of the second-order gradient elasticity model
with centred boundary conditions (red) for n = 4. Bifurcation
points of the paths are denoted.
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Figure 10. Bifurcation diagrams of the second-order gradient
elasticity model with uncentred boundary conditions (red) for
n = 4 and the Hencky chain of 4 links (blue). The relative ro-
tation of neighbouring links in the Hencky chain is less than 2π.

Figure 11. The first three paths of the the Hencky chain (blue)
and the first three paths of the second-order gradient elasticity
model with uncentred boundary conditions (red) for n = 4. Bifur-
cation points of the paths are denoted.
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The uncentred boundary conditions (or continualized boundary conditions),
according to Eq. (5.4) are: κm/(2n) = κm+m/(2n) = 0 and αm/(2n) = αm+m/(2n) =
0. We can make use of the result for the centred boundary conditions as β → β,
θ0 → θm/(2n), κ0 → κm/(2n), γ0 → γm/(2n) and α0 → αm/(2n). Then, Eq. (5.5)
is numerically iterated backwards to obtain the initial values for the uncentered
boundary conditions, θ0, κ0, γ0 and α0. Figure 10 shows the bifurcation diagram
of the second-order gradient elasticity model Eq. (5.2) with uncentred boundary
conditions Eq. (5.4) for n = 4, and that of the Hencky chain of 4 links. Solutions
where the relative rotation between neighbouring links of the Hencky chain exceeds
2π are not shown. Figure 11 shows the first three paths of the the Hencky chain and
the first three paths of the second-order gradient elasticity model Eq. (5.2) with
uncentred boundary conditions Eq. (5.4) for n = 4. These results are calculated
using the numerical outcomes for the second-ordered gradient elasticity model with
centred boundary conditions. It is worth noting that the second bifurcated branch
of the original model with centred boundary conditions (Figure 9) disappears as
the uncentred boundary conditions are introduced (Figure 11). This path can
be regarded as a parasitic solution that vanishes as the boundary conditions are
uncentred. Hence, the third and fourth paths of the previous model become the
second and third paths of the current model. Comparing Figures 9 and 11 suggests
that the second-order gradient elasticity model with uncentred boundary conditions
approximates the Hencky chain better than the second-order gradient elasticity
model with centred boundary conditions.

A closed-form solution of the buckling load can be also obtained for the second-
order gradient elastica with centred or uncentred boundary conditions. For centred
boundary conditions, the buckling mode can be obtained as:

θ(ξ) = θ0 cosπξ ⇒ β = π2
(

1− π2 l2c
L2

)

with l2c =
a2

12

whereas for uncentred boundary conditions, the buckling mode is similar to the one
of the discrete problem that has been continualized, and leads to the same buckling
load obtained with the centred boundary conditions:

θ(ξ) = θ0
cos

[

π
(

ξ − a
2L

)]

cos πa
2L

⇒ β = π2
(

1− π2 l2c
L2

)

with l2c =
a2

12

6. Fourth-order gradient elasticity models

The fourth-order gradient elasticity model Eq. (3.2) is governed by the follow-
ing higher-order differential equation:

(6.1)
d2θ

dξ2
+

1

12n2

d4θ

dξ4
+

1

360n4

d6θ

dξ6
= −β sin θ

The centred boundary conditions of this fourth-order gradient elasticity model
are:

(6.2) θ′(0) = θ′(L) = 0, θ′′′(0) = θ′′′(L) = 0 and θ(5)(0) = θ(5)(L) = 0
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These conditions may be derived from variational arguments starting from the
functional:

U =

∫ L

0

EI

2

(

θ′2 −
a2

12
θ′′2 +

a4

360
θ′′′2

)

− P (1− cos θ)dx

The stationarity of this energy functional δU = 0 also leads to the same non-
linear differential equations Eq. (3.2) with the following higher-order boundary
conditions:

[

(

EI
a4

360
θ′′′

)

δθ′′
]L

0

+

[

(

− EI
a2

12
θ′′ − EI

a4

360
θ(4)

)

δθ′
]L

0

(6.3)

+

[

EI
(

θ′ +
a2

12
θ′′′ +

a4

360
θ(5)

)

δθ

]L

0

= 0

Note also that the natural boundary condition in Eq. (6.3) may define the bending
moment as:

M = EI
(

θ′ +
a2

12
θ′′′ +

a4

360
θ(5)

)

which is identical to Eq. (1.3). Following the reasoning of the second-order gradient
elasticity model, the uncentred boundary conditions of this fourth-order gradient
elasticity model are:

θ′
(a

2

)

= θ′
(

L+
a

2

)

= 0 and θ′′′
(a

2

)

= θ′′′
(

L+
a

2

)

= 0 and(6.4)

θ(5)
(a

2

)

= θ(5)
(

L+
a

2

)

= 0

The differential equation of the fourth-order gradient elasticity model, Eq. (6.1),
can be transformed in six first order ordinary differential equations using the Cauchy
reformulation:

θ′ = κ(6.5)

κ′ = γ

γ′ = α

α′ = ϕ

ϕ′ = ω

ω′ = −360n4(γ + 1/12/n2ϕ+ β sin θ)

This ODE system, written in the short form x′ = f(x), where x = [θ, κ, γ, α, ϕ, ω]T ,
can be solved numerically with the simplex algorithm, similarly to the case of the
second-order gradient elasticity models.

For centred boundary conditions, according to the close-end centered boundary
conditions Eq (6.2), κ0 = 0, α0 = 0, and ω0 = 0. There is one parameter, the load β,
and there are three variables, θ0, γ0, and ϕ0. They span a 4D global representation
space. For each point in this space Eq. (6.5) can be solved by the predictor-corrector
time-stepping algorithm, where the dimensionless, unit rod length is discretized in
m parts. It yields the far-end values of θ, γ, and ϕ. Owing to the far-end centered
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boundary conditions, Eq. (6.2), κm = 0, αm = 0, and ωm = 0 should fulfill, and
these are the error functions of the simplex algorithm. In this case, only the
first three post-buckling paths are searched for with the simplex path following
algorithm. Figure 12 shows the first three paths of the Hencky chain and the first
three paths of the fourth-order gradient elasticity model Eq. (6.1) with centred
boundary conditions Eq. (6.2) for n = 4.

For the continualized uncentred boundary conditions, according to Eq. (6.4),
the boundary conditions are: κm/(2n) = κm+m/(2n) = 0, αm/(2n) = αm+m/(2n) = 0,
and ωm/(2n) = ωm+m/(2n) = 0. The result for the centred boundary conditions can
be utilized as β → β, θ0 → θm/(2n), κ0 → κm/(2n), γ0 → γm/(2n), α0 → αm/(2n),
and ϕ0 → ϕm/(2n). Eq. (6.5) is iterated backwards to obtain the initial values for
the uncentered boundary conditions, θ0, κ0, γ0, α0, and ϕ0.

In this case also the first three post-buckling paths are detailed. Figure 13 shows
the first three paths of the Hencky chain and the first three paths of the fourth-
order gradient elasticity model Eq. (6.1) with uncentred boundary conditions Eq.
(6.4) for n = 4.

A closed-form solution of the buckling load can be also obtained for the fourth-
order gradient elastica with centred or uncentred boundary conditions. For centred
boundary conditions, the buckling mode can be obtained as:

θ(ξ) = θ0 cosπξ ⇒ β = π2
(

1−
π2

12n2
+

π4

360n4

)

Figure 12. The first three paths of the the Hencky chain (blue)
and the first three paths of the fourth-order gradient elasticity
model with centred boundary conditions (red) for n = 4. Bifurca-
tion points of the paths are denoted.
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Figure 13. The first three paths of the the Hencky chain (blue)
and the first three paths of the fourth-order gradient elasticity
model with uncentred boundary conditions (red) for n = 4. Bifur-
cation points of the paths are denoted.

whereas for uncentred boundary conditions, the buckling mode is similar to the one
of the discrete problem that has been continualized, and leads to the same buckling
value obtained with the centred boundary conditions:

θ(ξ) = θ0
cos

[

π
(

ξ − a
2L

)

]

cosπa
2L

⇒ β = π2
(

1−
π2

12n2
+

π4

360n4

)

Table 1 summarizes the results obtained for the first stable bifurcation branch of
the nonlocal elastica (Challamel et al. [13]) with local and nonlocal boundary
conditions, that of the second-order gradient elasticity model, Eq. (5.2), with
centred and uncentred boundary conditions, Eq. (5.3) and Eq. (5.4), and that of
the fourth-order gradient elasticity model Eq. (6.1), with centred and uncentred
boundary conditions Eq. (6.2) and Eq. (6.4) for n = 4.

7. Concluding Remarks

In this paper, higher-order gradient elasticity models have been developed from
a geometrically nonlinear lattice system. The discrete elastica (Hencky chain)
served as a reference model for calibration of the quasi-continuum models. We
then tried to capture the main bifurcation branches of the discrete system using an
equivalent nonlocal continuum. The quasi-continuum, classified as nonlocal or gra-
dient elasticity continuum, is built from the discrete equations (nonlinear difference
equations) by using a continualization method.
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It has been shown that neither the nonlocal nor the gradient models are able
to capture the overall complex post-buckling nature of the Hencky chain, which
is the source of spatially chaotic behavior of the discrete system. However, the
first bifurcated branch of the discrete elastica, which may be of primary interest
for engineering applications, can be efficiently approximated by the nonlocal or
the gradient elastica even for large rotation values. The higher-order gradient
elasticity models are also shown to be efficient for capturing the scale effect of some
higher-order post-buckling branches. However, we keep in mind that the prize
for the accuracy of the higher-order gradient elasticity models is the additional
computational cost due to the higher order of the differential equation that needs
to be solved.
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GRADIJENTNI ELASTIQNI MODELI VIXEG REDA

PRIMEǋENI NA GEOMETRIJSKI NELINEARNI

DISKRETNI SISTEM

Rezime. Razmatrano je ponaxaǌe u izvijaǌu i posle izvijaǌa neline-
arnog diskretnog sistema na rexetki - diskretne elastike. Nelinear-
nost u suxtini dolazi od geometrijskog efekta, dok se konstitutivni
zakon svake komponente svodi na linearnu elastiqnost. Qlanak se prve-
nstveno fokusira na relevantnost aproksimacija vixeg reda difere-
ncnih jednaqina kontiniuumom, tzv. kontiniualizaciji modela rexetke.
Pseudo-diferencijalni operator jednaqina rexetke se razvije u Tejlo-
rov red, do drugog ili qetvrtog reda, xto dovodi do ekvivalentnog
gradijentno elastiqnog modela drugog ili qetvrtog reda. Taqnost svakog
od ovih modela je pore�ena u odnosu na poqetni model rexetke i u odnosu
na neke druge metode aproksimacija zasnovane na osnovu racionalnog
proxireǌa pseudo-diferencijalnog operatora. Kako se i oqekivalo,
utvr�eno je da xto je izabran vixi nivo skra�ivaǌa, da je dobijena boǉa
taqnost u odnosu na rexeǌe bazirano na modelu rexetke. Ovaj qlanak
tako�e opisuje kǉuqnu ulogu koju imaju graniqni uslovi, koji se tako�e
trebaju dosledno kontiniualizirati iz ǌihovih diskretnih izraza. Za-
kǉuqeno je da model gradijenta elastiqnosti vixeg reda efikasno opisuje
efekte skaliraǌa modela rexetke.
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