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OPTIMAL SHAPE OF A COLUMN WITH

CLAMPED-ELASTICALLY SUPPORTED ENDS

POSITIONED ON ELASTIC FOUNDATION

Branislava Novaković

Abstract. We determine optimal shape of an elastic column positioned on
elastic foundation of Winkler type. The Euler-Bernoulli model of beam is con-
sidered. The column is loaded by a compressive force and has one clamped

end and the other elastically supported end. In deriving the optimality con-
ditions, the Pontryagin’s principle was used. The optimality conditions for
the case of bimodal optimization are derived. Optimal cross-sectional area is
obtained from the solution of a non-linear boundary value problem. A first
integral (Hamiltonian) is used to monitor accuracy of integration. This system
is solved by using standard Math CAD procedure. New numerical results are
obtained.

1. Introduction

The problem of determining the shape of a rod of a given volume that is the
strongest against buckling was first formulated by J.-L. Lagrange in 1773 (see [1])
and is now known as the Lagrange problem. However, the solution obtained by
him proved to be incorrect. Clausen in [2] found the first optimal solution for
the case of a cantilever column analytically. The optimization of the column with
simply supported ends was derived in latter works (see [3,4]). Optimal solutions
for clamped–clamped and clamped–hinged columns was obtained analytically in
[5]. All the mentioned solutions are unimodal, i.e. possessing a single buckling
mode. Olhoff and Rasmussen (see [6]) found that the solution obtained in [5] for
the clamped–clamped case is incorrect and determined the bimodal solution to
the problem i.e. there are two buckling modes of the rod at the same buckling
load. They obtained the optimal solution by numerical procedure. The same
problem was treated in [7]. In both works it was assumed that second moment
of inertia I is proportional to the square of the cross-sectional area A, that is
I = αA2, α = const. The bimodal optimality conditions were derived in [8,9] for
the column with clamped–clamped ends. It was found that analytical expressions of
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these conditions are in the form of elliptic integrals. The optimal shapes of elastic
columns on elastic foundation of Winkler type was treated in [10–12] with the
minimum compliance as optimization criteria. The columns on elastic foundation
for different boundary conditions were treated in [13]. The optimization leaded
to unimodal and bimodal solution. The optimal shape of an elastic column with
clamped ends positioned on elastic foundation of Winkler type was determined in
[14]. The optimal shape of a column on elastic foundation subjected to restrictions
on minimum and maximum cross-sectional area was treated in [15]. It is shown
that in this case the optimization can be both bimodal and unimodal.

2. Mathematical formulation

Consider an elastic rod of length L loaded by an axial force F with the action
line coinciding with the x axis of a rectangular coordinate system x-B-y (see Fig-
ure 1). The column is positioned on a Winkler type of foundation has one clamped
end and the other elastically supported end. We use the following notation: H
and V are components of the contact force (i.e. the resultant force in an arbitrary
cross-section) along x and y axes, respectively, M is the bending moment, θ is the
angle between the tangent to the column axis and the x axis, S is the arc-length
of the column axis measured from the origin of the coordinate system B, E is the
modulus of elasticity.
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Figure 1. Coordinate system and load configuration

Also we assume that the axial moment of inertia I and the cross-sectional
area A are connected as I = αnA

n where αn is a constant that depends of n
and n = 1, 2, 3. The governing equations: equilibrium equations, geometrical and
constitutive relations (see [16]) are

(2.1)

dH

dS
= 0,

dV

dS
= −qy,

dM

dS
= −V cos θ +H sin θ,

dx̄

dS
= cos θ,

dȳ

dS
= sin θ, M = EI

dθ

dS
.

where qy = −µy and µ > 0 is a constant stiffness of the foundation. In (2.1)4,5
we use x̄ and ȳ to denote coordinates of an arbitrary point on the column axis.
Boundary conditions are

ȳ(0) = 0, θ(0) = 0, M(L) = 0, V (L) = −cȳ(L), H(L) = −F,
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where c is a spring constant of the support.
The volume of the column is

W =

∫ L

0

A(S)dS,

where A(S) is the cross-sectional area. By introducing the dimensionless quantities

t =
S

L
, a =

A

L2
, ζ =

x̄

L
, η =

ȳ

L
, w =

W

L3
, b =

c

αnEL2n−3

λ1 =
µ

αnEL2n−4
, λ2 =

F

αnEL2n−2
, v =

V

αnEL2n−2
, m =

M

αnEL2n−1
,

and after linearization of equations (2.1) we have (see [17])

(2.2) v̇ = λ1η, ṁ = −v − λ2θ, ζ̇ = 0, η̇ = θ, θ̇ =
m

an
,

subject to

(2.3) η(0) = 0, θ(0) = 0, m(1) = 0, v(1) = −bη(1),

where
.

(·) = d
dt (·).

The dimensionless volume becomes

(2.4) w =

∫ 1

0

a(t)dt.

The multiplicity of an eigenvalue for the system (2.2) and (2.3) can be at most
two (see [14]). We assume that the cross-sectional area a(t) belongs to the set U
called the set of admissible cross-sectional area functions.

Suppose now that (λ1, λ2)∈ R
2 is given (for chosen b). We define the optimal

compressed column on an elastic foundation with clamped-elastically supported ends

as the column so shaped that any other column of same length (in our case equal
to one) and smaller volume will buckle under load and foundation characterized
by (λ1, λ2). Thus, the problem of determining the shape of the optimal column
may be stated as an optimal control problem as: given λ1, λ2 find a∗ ∈ U such
that the integral (2.4) is minimal when the system is subjected to constraints (2.2)
and (2.3).

3. Solution of the problem

In order to apply Pontryagin’s maximum principle, we introduce new dependent
variables as

x1 = η, x2 = θ, x3 = m, x4 = v.

Then, the system (2.2), (2.3) becomes

(3.1)
ẋ1 = x2, ẋ2 =

x3

an
, ẋ3 = −x4 − λ2x2, ẋ4 = λ1x1,

x1(0) = 0, x2(0) = 0, x4(1) = −bx1(1), x3(1) = 0.
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In terms of the optimal control, the problem now becomes: Given (λ1, λ2),
find the control a∗(t) ∈ U such that

min
a∈U

I = min
a∈U

∫ 1

0

a(t)dt =

∫ 1

0

a∗(t)dt.

under the state equations (3.1). We assume that a(t) is continuous function, i.e.,
a ∈ C(0, 1).

Suppose now that for given (λ1, λ2) and for the optimal a(t) = a∗(t) the linear
boundary value problem (3.1) has two linearly independent solutions, (x̄1, x̄2, x̄3, x̄4)
and (x̂1, x̂2, x̂3, x̂4), corresponding to two buckling modes. Since both solutions cor-
respond to the same (λ1, λ2) and a(t) = a∗(t) we have (see [18])

(3.2)

.
x1 = x2,

.
x2 =

x3

an
,

.
x3 = −x4 − λ2x2,

.
x4 = λ1x1,

.

x̂1 = x̂2,
.

x̂2 =
x̂3

an
,

.

x̂3 = −x̂4 − λ2x̂2,
.

x̂4 = λ1x̂1,

satisfying

(3.3)
x1(0) = 0, x2(0) = 0, x4(1) = −bx1(1), x3(1) = 0,

x̂1(0) = 0, x̂2(0) = 0, x̂4(1) = −bx̂1(1), x̂3(1) = 0.

The Pontryagin’s function H, taking into account that differential constraints
are given by (3.2) reads

H = a+ p1x2 + p2
x3

an
+ p3(−x4 − λ2x2) + p4λ1x1(3.4)

+ p̂1x̂2 + p̂2
x̂3

an
+ p̂3(−x̂4 − λ2x̂2) + p̂4λ1x̂1,

where the co-state variables pi, p̂i, i = 1, . . . , 4 satisfy

.
p1 = −

∂H

∂x1
= −p4λ1,

.
p2 = −

∂H

∂x2
= −p1 + λ2p3,

.
p3 = −

∂H

∂x3
= −

p2
an

,
.
p4 = −

∂H

∂x4
= p3,

.

p̂1 = −
∂H

∂x̂1
= −p̂4λ1,

.

p̂2 = −
∂H

∂x̂2
= −p̂1 + λ2p̂3,

.

p̂3 = −
∂H

∂x̂3
= −

p̂2
an

,
.

p̂4 = −
∂H

∂x̂4
= p̂3,

subject to

p4(0) = 0, p3(0) = 0, p1(1) = bp4(1), p2(1) = 0,

p̂4(0) = 0, p̂3(0) = 0, p̂1(1) = bp̂4(1), p̂2(1) = 0.

The optimality condition is

∂H

∂a
= 1− np2

x3

an+1
− np̂2

x̂3

an+1
= 0,

or

a = a∗(t) =
[
n(p2x3 + p̂2x̂3)

]1/(n+1)
.
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In order to reduce the dimension of the system, we proposed in [17, 18] the
identification of state and co-state variables as

(3.5)

p1 = β11x4 + β12x̂4, p2 = β11x3 + β12x̂3,

p3 = −β11x2 − β12x̂2, p4 = −β11x1 − β12x̂1,

p̂1 = β21x4 + β22x̂4, p̂2 = β21x3 + β22x̂3,

p̂3 = −β21x2 − β22x̂2, p̂4 = −β21x1 − β22x̂1,

where βij , i, j = 1, 2 are constants.
Note that with (3.5) cross-sectional area becomes

(3.6) a = a∗(t) =
[
n(γ11(x3)

2 + 2γ12x3x̂3 + γ22(x̂3)
2)
]1/(n+1)

,

where γ11 = β11, γ12 = (β12+β21)/2, γ22 = β22. The relevant system of equations is

(3.7)

.
x1 = x2,

.
x2 =

x3
[
n
(
γ11(x3)2 + 2γ12x3x̂3 + γ22(x̂3)2

)]n/(n+1)
,

.
x3 = −x4 − λ2x2,

.
x4 = λ1x1,

.

x̂1 = x̂2,
.

x̂2 =
x̂3

[
n
(
γ11(x3)2 + 2γ12x3x̂3 + γ22(x̂3)2

)]n/(n+1)
,

.

x̂3 = −x̂4 − λ2x̂2,
.

x̂4 = λ1x̂1,

subject to (3.3). Note that doesn’t depend on t explicitly therefore on the solution
of (3.2), (3.3) we have H = const. We substitute (3.6) and (3.5) into (3.4) to get

H =
[
n(γ11(x3)

2 + 2γ12x3x̂3 + γ22(x̂3)
2)
]1/(n+1)

+
γ11(x3)

2 + 2γ12x3x̂3 + γ22(x̂3)
2

[
n(γ11(x3)2 + 2γ12x3x̂3 + γ22(x̂3)2)

]n/(n+1)

+ (β11x4 + β12x̂4)x2 + (β11x2 + β12x̂2)(x4 + λ2x2)

− (β11x1 + β12x̂1)λ1x1 + (β21x4 + β22x̂4)x̂2

+ (β21x2 + β22x̂2)(x̂4 + λ2x̂2)− (β21x1 + β22x̂1)λ1x̂1

4. Numerical results

1. First, we consider the column clamped on one end and simply supported on
the other on elastic foundation. Thus, we take in this example n = 2, λ1 = 300,
λ2 = 51.34 and γ11 = 1, γ22 = 3.6, γ12 = 1. The value of dimensionless volume
is w = 1. We assume first that the optimization is bimodal (we use system (3.7))
because we can not decide, which optimization procedure (uni or bi modal) leads to
optimal shape. Buckling modes are shown in Figure 2. The cross-sectional area is
shown on the right side of Figure 2 and the maximum value is amax = 1.4138645281.
In this case the first integral is H = 1.1315387174 (for β12 = 1.4, β21 = 0.6) in the
whole interval t ∈ (0, 1) to within 10−10.

2. Next we treat the column (n = 2) with parameter λ1 = 300 and λ2 = 51.34.
The column has one clamped end and the other elastically supported end. We



196 NOVAKOVIĆ

Figure 2. Buckling modes and cross-sectional area of the column
n = 2, λ1 = 300, λ2 = 51.34

used γ11 = 1, γ22 = 3.6, γ12 = 1, b = 103. The value of dimensionless volume is
w = 1.034537. Optimization is bimodal and buckling modes are shown in Figure 3.
Displacements on the right end of the rod are η̄(1) = −1.350469271 · 10−3, η̂(1) =
3.3881631463 · 10−3. The cross-sectional area is shown in right side of Figure 3.
Maximum value of the cross-sectional area is amax = 1.4606307. In this case the

Figure 3. Buckling modes and cross-sectional area of the column
n = 2, λ1 = 300, λ2 = 51.34, b = 103

first integral is H = 1.2641907826 (for β12 = 1.4, β21 = 0.6) in the whole interval
t ∈ (0, 1) to within 10−10.

3. Next we treat the same column (n = 2) but now we have different parameter
of foundation λ1 = 450 and parameter of the axial force λ2 = 51.34. The column
has one clamped end and the other elastically supported end. We used γ11 = 1,
γ22 = 3.6, γ12 = 1, b = 103. Optimization is bimodal and buckling modes
are shown in Figure 4. Displacements on the right end of the rod are η̄(1) =
−6.0627949841 · 10−3, η̂(1) = −3.0732283646 · 10−4. The value of dimensionless
volume is w = 0.8513223241. The cross-sectional area is shown in Figure 4 and
maximum value of the cross-sectional area is amax = 1.2156145. In this case the
first integral is H = 0.8026847591 (for β12 = 1.4, β21 = 0.6) in the whole interval
t ∈ (0, 1) to within 10−10.

4. In next example we treated the column (n = 2) on elastic foundation for
λ1 = 450 and the parameter of axial force λ2 = 66. We used γ11 = 1, γ22 = 3.6,
γ12 = 1, b = 103. Optimization is bimodal and buckling modes are shown in
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Figure 4. Buckling modes and cross-sectional area of the column
n = 2, λ1 = 450, λ2 = 51.34, b = 103

Figure 5. Buckling modes and cross-sectional area of the column
n = 2, λ1 = 450, λ2 = 66, b = 103

Figure 5. Displacements on the right end of the rod are η̄(1) = 4.1663590135 ·10−4,
η̂(1) = 3.969859862 · 10−3 The value of dimensionless volume is w = 1.1126706682.
The cross-sectional area is shown in Figure 5. The cross-sectional area maximum
is amax = 1.5790753. The first integral H(t) was constant with the value H =
1.1609679684± 10−10 (for β12 = 1.4, β21 = 0.6).

5. In the last example we treated the column on elastic foundation for λ1 = 300
and parameters are n = 2, λ2 = 51.34. We used γ11 = 1, γ22 = 3.6, γ12 = 1,
b = 500. Optimization is bimodal and buckling modes are shown in Figure 6.

Figure 6. Buckling modes and cross-sectional area of the column
n = 2, λ1 = 300, λ2 = 51.34, b = 500
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Displacements on the right end of the rod are η̄(1) = −1.5325193879 · 10−3, η̂(1) =
6.4062502507 · 10−3. The value of dimensionless volume is w = 1.0678660003. The
cross-sectional area is shown in Figure 6 and amax = 1.50521745. The first integral
is H = 1.3912644928 (for β12 = 1.4, β21 = 0.6) in the whole interval t ∈ (0, 1) to
within 10−10.

5. Conclusions

We analyzed the optimization problem for an elastic rod on elastic foundation
which is clamped on one end and elastically supported on the other. The system of
equations (3.7) and (3.3) has a solution which determines the cross-sectional area of
the optimal column through equation (3.6). We found optimal shapes for columns,
for different values of the stiffness of foundation and the spring constant. In all
cases we have bimodal optimization.

We concluded that by increasing the stiffness of foundation for the same axial
force we have decreasing of the volume and the maximum cross-sectional area.

By increasing the value of the spring constant we have decreasing of the volume
and the maximum cross-sectional area, for the same value of the axial force and
the same value of constants γ11, γ12, γ22.

By increasing the value of the axial force we have increasing of the volume and
the maximum cross-sectional area for the same value of foundation stiffness and
the same value of constants γ11, γ12, γ22.
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OPTIMALNI OBLIK XTAPA NA ELASTIQNOJ PODLOZI

UKLEXTENOG NA JEDNOM I ELASTIQNO OSLOǋENOG

NA DRUGOM KRAJU

Rezime. Odre�en je optimalni oblik elastiqnog xtapa koji se nalazi na
elastiqnoj podlozi Vinklerovog tipa. Razmatran je Ojler–Bernulijev
model xtapa. Xtap je optere�en silom pritiska i na jednom kraju je
uklexten, a na drugom je elastiqno osloǌen. U izvo�eǌu uslova opti-
malnosti korix�en je Pontrijaginov princip. Dobijeni su uslovi opti-
malnosti za sluqaj bimodalne optimizacije. Optimalna povrxina popre-
qnog preseka je odre�ena iz rexeǌa nelinearnog problema graniqnih
vrednosti. Prvi integral (Hamiltonijan) je korix�en za proveru taqno-
sti integracije. Sistem je rexen korix�eǌem standardnog Math CAD
postupka. Dobijeni su novi numeriqki rezultati.
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