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Abstract. We propose a novel mathematical framework to examine the free
damped transverse vibration of a nanobeam by using the nonlocal theory of
Eringen and fractional derivative viscoelasticity. The motion equation of a
nanobeam with arbitrary attached nanoparticle is derived by considering the
nonlocal viscoelastic constitutive equation involving fractional order deriva-
tives and using the Euler–Bernoulli beam theory. The solution is proposed
by using the method of separation of variables. Eigenvalues and mode shapes
are determined for three typical boundary conditions. The fractional order

differential equation in terms of a time function is solved by using the Laplace
transform method. Time dependent behavior is examined by observing the
time function for different values of fractional order parameter and different
ratios of other parameters in the model. Validation study is performed by com-
paring the obtained results for a special case of our model with corresponding
molecular dynamics simulation results found in the literature.

1. Introduction

With the advent of nanoengineering and nanotechnology, nanotube like struc-
tures are now potential design candidates which are likely to play key roles in many
engineering devices or components at the nanometer scale. Nanobeams are nanos-
tructures that can be recognized in many nanomaterials grown from zinc-oxide,
boron nitride, carbon, silver or gold by various technological processes. Such nano-
material’s are having unique electrical, thermal and mechanical properties that
make nanobeams superior candidates for application in nano-electromechanical
(NEMS) and micro-electromechanical (MEMS) devices [1, 2]. Experimental re-
search on nanobeams and other nanostructures mechanical bechaviour was reported
in the literature [3]. However, it is not easy to perform such investigations on nano-
scale level due to the weak control of experimental parameters. Further, molecular
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dynamics (MD) simulation studies can be employed in order to investigate mechan-
ical performance of nanosturctures [4]. Nevertheless, this method is computation-
ally prohibitive for nanostructures with large number of atoms. An alternative to
mentioned methodologies is theoretical analysis of nanostructures using continuum
based theories. Still, classical continuum theories are not able to take into account
small-size effects that cannot be neglected on the nano-scale level. Thus, nonlocal
continuum field theory of Eringen, which is able to take into account nonlocal ef-
fects such as forces between atoms and the internal length scale via single material
parameter, has been widely accepted among scientists [5–10].

To consider internal structural damping of nanobeams, we can use some of the
available constitutive relations for viscoelastic bodies. Several definitions of vis-
coelastic models are commonly used in the literature such as Kelvin–Voigt, Maxwell
and Zener model. It was proven that in some cases, for classical integer order deriv-
ative models of viscoelasticity to many parameters are needed to fit experimental
curves. Accordingly, some authors suggested application of generalized models of
viscoelasticity with fractional order derivatives [11–13]. Such models can represent
the time dependent behavior of materials, which is in between the pure elastic and
pure viscous behavior with less parameters needed to fit experimental curves due
to the presence of fractional order derivative [14]. In numerous of papers [15–19],
fractional calculus is often applied in vibration studies of rods, beams, plates as
well as in other fields of mechanics.

Nonlocal nanobeam or nanoplate models representing the carbon nanotubes
(CNT), zinc-oxide (ZnO) nanotubes, graphene sheets and other small-size beam like
structures are widely used to examine vibration response, critical buckling forces
and other physical phenomena’s [20,21]. Such theoretical studies can lead to impor-
tant data in the fabrication and exploitation of NEMS and MEMS
devices. Vibration responses of beams and nanobeams with attached mass are also
reported in the literature [22] often as mass sensors or for other applications [23].
Attached mass in nanosensors can represent e.g. carbon buckyballs or in the case
of biosensors it can represent some proteins, enzymes or bacteria. In paper by Lee
et al. [24], nonlocal elasticity theory is used to model a cantilever sensor with an
arbitrary attached mass. Different effects of varying mass and nonlocal parame-
ter on natural frequencies were examined. Murmu and Adhikari [25] derived ex-
plicit analytical expressions for frequencies of longitudinally vibrating single-walled
carbon nanotubes (SWCNTs) with an attached buckyballs at the tip. In addi-
tion, the authors have investigated frequency shifts for changes of different types
of buckyballs and changes in nonlocal parameter. Kiani et al. [26] have analyzed
a more general case of SWCNT based mass sensor for arbitrary attached nano-
objects. The authors modeled SWCNTs via nonlocal Rayleigh, Timoshenko, and
higher-order beam theories, considering a wide range of boundary conditions and
observing nano-objects as rigid solids. They obtained discrete governing equation
for each model by employing the meshless technique and investigated the influ-
ence of parameters representing the nonlocal effect, mass weight of nano-objects,
slendermass ratio of SWCNT and number of nanoparticles on the frequency shift
ratio.
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All listed works regarding to mass sensing nanostructures are done within the
scope of elasticity and nonlocal elasticity theory. According to the best of au-
thors knowledge there is no work in the literature considering the free vibration of
fractional order viscoelastic model of nanobeam with attached mass. Since internal
damping of nanostructures is significant for theoretical analysis and practical use of
nanodevices, it is of great importance to apply improved viscoelastic models based
on fractional derivatives such as fractional Kelvin–Voigt or Zener model [12]. Here,
we limited our study to application of fractional order Kelvin–Voigt model, which is
introduced into the motion equation of nonlocal Euler–Bernoulli beam. Arbitrary
attached mass is taken into account via internal boundary conditions. Eigenvalues
and mode shapes are explored for different boundary conditions, different mass posi-
tions and nonlocal parameter. Time dependent behavior is investigated by finding
the solution of fractional order differential equation using the Laplace transform
method and the effect of change of fractional order derivative parameter is also
examined.

2. Preliminaries

2.1. Fractional order viscoelasticity. Fractional calculus is a branch of
mathematical analysis that has found many applications in mechanics. The base
of fractional calculus is study of an arbitrary real or complex order integrals and
derivatives. Various authors have proposed many different definitions of fractional
order integrals and derivatives. However, in our study we will consider only the
Riemann–Liouville’s definition of fractional derivative as follows

Definition 2.1. (cf. [12]) If x(·) is an absolutely continuous function in [a, b]
and 0 < α < 1, then

a) The left Riemann–Liouville fractional derivative of order α is of the form

(2.1) aD
α
t =

1

Γ(1− α)

d

dt

∫ t

a

x(τ)

(t− τ)α
dτ, t ∈ [a, b],

b) The right Riemann–Liouville fractional derivative of order α is of the form

aD
α
t =

1

Γ(1− α)

(

− d

dt

)

∫ t

a

x(τ)

(τ − t)α
dτ, t ∈ [a, b],

The well-known application of the given Riemann–Liouville’s definition of frac-
tional derivative is in rheology as well as in structural mechanics. It is used for
accurate modeling of structures when internal damping is considered via fractional
order viscoelastic models. In [11], it was shown that classical viscoelastic models
failed to describe damping of viscoelastic solid and that improved fractional deriv-
ative based models need to be considered. Such models have few advances. First,
they are based on molecular theories [14]. Second, such models are satisfying the
second law of thermodynamics. At last, they require just a few parameters to de-
scribe viscoelastic behavior that in some cases of classical viscoelastic models can
reach very high number of parameters needed to fit experimental curves.

The first time to introduce the modified Kelvin–Voigt model of viscoelastic
body with fractional order derivative was in the paper by Shermergor [31]. An
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interesting chronology of available constitutive relations of viscoelastic bodies based
on fractional order derivatives one may find in the review paper by Rossikhin [32].
For the one dimensional isothermal viscoelastic body, fractional Kelvin–Voigt type
model [32] is given as

(2.2) txx = E∞

(

εxx(t) + τασ 0D
α
t (εxx(t))

)

,

where txx is the stress in terms of the strain εxx, E∞ is the relaxed modulus of
elasticity, τασ is the retardation or creep time, and 0D

α
t is the operator of Riemann–

Liouville derivative (2.1) of real order α where 0 < α < 1 . The previous Eq. (2.2)
can be rewritten as

(2.3) txx = E∞εxx(t) + Eα0D
α
t (εxx(t)),

where Eα = E∞τ
α
σ . More about the restrictions on the value of coefficients E∞

and Eα that follow from the second law of thermodynamics one can find in [12].
Even though fractional Kelvin–Voigt model is applicable in the low frequency range
[11], it can be useful for the ”fast” dynamics applications or to describe the creep
behavior in materials.

2.2. Nonlocal theory. In the nonlocal elasticity theory the stress at a point
x is a function of strains at all other points of an elastic body. The integral form
of nonlocal constitutive relation for a three-dimensional structure is

σij(x) =

∫

α(|x− x′|, τ)tij(x′)dV (x′), ∀x ∈ V,

where σij is the nonlocal stress tensor, tij is the local or classical stress tensors at
a point x′, α(|x − x′|, τ) denotes attenuation function which incorporates nonlocal
effects into the constitutive equation, |x− x′| is a distance in Euclidean norm and
τ = e0a/l is the nonlocal parameter where l is the external characteristic length
(crack length or wave length), a is internal characteristic length (lattice parameter,
granular etc.) and e0 is a material constant that can be determined from molecular
dynamics simulations or by using dispersive curve of the Born-Karman model of
lattice dynamics. Later, by adopting an appropriate kernel function in the previous
integral form of equation, Eringen [6] proposed a differential form of constitutive
relation (see also [33]) as

(2.4) (1− τ2l2∇2)σij = tij ,

For one dimensional case and according to the Hooke’s law, the local stress txx
at a point x′ is related to the strain εxx at that point as

(2.5) txx(x
′) = Eεxx(x

′),

that yields the following differential form of nonlocal constitutive equation

σxx − µ
∂2σxx
∂x2

= Eεxx,

where E denotes elastic modulus of the elastic body, µ = (e0a)
2 is the nonlocal

parameter and σxx is the nonlocal stress. In order to obtain constitutive rela-
tion for a nonlocal viscoelastic body we can combine elasticity and viscoelasticity
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theory [27]. Therefore, for one-dimensional nonlocal viscoelastic solids, constitu-
tive relation for a classical integer order Kelvin-Voight viscoelastic model is given
by

σxx − µ
∂2σxx
∂x2

= Eεxx + τdε̇xx,

where τd is the viscous damping coefficient of nanobeam. In order to extend this
definition to the nonlocal fractional Kelvin-Voight model of viscoelastic body with
fractional derivative, based on Eq. (2.3) we propose the following form of constitu-
tive equation

(2.6) σxx − µ
∂2σxx
∂x2

= E∞εxx + Eα0D
α
t εxx,

Based on Eqs. (2.4)–(2.6) it can be concluded that behavior of nonlocal frac-
tional Kelvin–Voigt model in time domain is equivalent to the behavior of the local
fractional Kelvin–Voigt model (2.3). This will be more discussed in the validation
study. In addition, it can be observed that fractional derivative operator is a non-
local operator that can be used not only for non-locality in the time domain as in
our case but also to describe non-locality in the spatial domain (e.g. see [29]).

3. Governing equation

3.1. Derivation of the governing equation. Here, we review basic equa-
tions of nonlocal viscoelastic Euler–Bernoulli beam of length L, cross-sectional area
A, density ρ and transverse deflection w(x, t) in z direction (see Figure 1). We as-
sume that cross-sectional area is constant along x coordinate and that material of
a nanobeam is homogeneous. According to the Euler–Bernoulli beam theory that
assumes small deflection, the axial strain is given as

(3.1) εxx = −z ∂
2w

∂x2

After substituting Eq. (3.1) into Eq. (2.6), we obtain the following equation

(3.2) σxx − µ
∂2σxx
∂x2

= −E∞z
∂2w

∂x2
− Eα0D

α
t

(

z
∂2w

∂x2

)

,

The equation of motion for the transverse vibration of nanobeam can be ob-
tained from the second Newton law as

(3.3) ρA
∂2w

∂t2
=
∂V

∂x
+ q(x)

where V is resultant shear force on the cross section and q(x) is distributed trans-
verse force along x axis which is assumed to be zero in case of the free transverse
vibration. From the moment equilibrium equation of Euler–Bernoulli beam we have

V =
∂M

∂x
,

whereM is resultant bending moment which is defined asM =
∫

A zσxxdA. Taking

into account Eq. (3.2) and that the second moment of inertia is I =
∫

A z
2dA, we
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Figure 1. Nanobeam with arbitrary attached nanoparticle
a) Simply supported nanobeam; b) Clamped-clamped nanobeam;
c) Cantilever nanobeam.

obtain moment equation expressed as

(3.4) M = µρA
∂2w

∂t2
− E∞I

∂2w

∂x2
− EαI0D

α
t

(∂2w

∂x2

)

and the shear force V as

V = µρA
∂3w

∂x∂t2
− E∞I

∂3w

∂x3
− EαI0D

α
t

(∂3w

∂x3

)

Finally, using Eq. (3.3) and (3.4) we can obtain equation of motion expressed in
terms of the deflection w(x, t) as

(3.5) ρA
∂2w

∂t2
− µρA

∂4w

∂x2∂t2
+ E∞I

∂4w

∂x4
+ EαI0D

α
t

(∂4w

∂x4

)

= 0.

In follow, we utilize Eq. (3.5) for the development of a mathematical model of
nonlocal fractional viscoelastic nanobeam with attached nanoparticle.

3.2. Solution of the governing equation. To investigate the free transverse
vibration of the nanobeam with attached nanoparticle it is necessary to introduce
boundary conditions properly into the solution. By introducing internal boundary
conditions [22] at the position of attached nanoparticle we split nanobeam on two
segments for which we have separate mode shape functions but with continuous
transition from one to another. By this concept, each new attached nanoparticle
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on the nanobeam introduces a new internal boundary and leads to twice as many
motion eqations and four new boundary conditions where each side of internal
boundary is observed as separate nanobeam. For the sake of simplicity, we will
limit our study only to the nanobeam system with a single arbitrary attached
nanoparticle where we have only one internal boundary. Following this, we have
two motion equations of the same form as Eq. (3.5) but with different deflections
w1(x, t) and w2(x, t) that are given in dimensionless form as

∂2w̄1

∂τ2
− µ̄

∂4w̄1

∂x̄2∂τ2
+
∂4w̄1

∂x̄4
+ γ · 0Dα

t

(∂4w̄1

∂x̄4

)

= 0.(3.6)

∂2w̄2

∂τ2
− µ̄

∂4w̄2

∂x̄2∂τ2
+
∂4w̄2

∂x̄4
+ γ · 0Dα

t

(∂4w̄2

∂x̄4

)

= 0.(3.7)

and the following dimensionless internal boundary conditions

w̄1 = w̄2,

∂w̄1

∂x
=
∂w̄2

∂x
,

M̄1 = M̄2,

V̄1 − V̄2 + δ
∂2w̄2

∂τ2
= 0,

where dimensionless quantities are

w̄1 =
w1

L
, w̄2 =

w2

L
, x̄ =

x

L
, x̄m =

xm
L
, c = L2

√

ρA

E∞I
,

µ̄ =
µ

L
, γ =

Eα
E∞cα

, τ =
t

c
, δ =

mAL

E∞Ic
.

External boundary conditions are prescribed depending of the type of supports.
Here, we consider three characteristic types of nanobeam supports: simply sup-
ported nanobeam, clamped-clamped and cantilever nanobeam. However, before
further consideration of nanobeam boundary conditions, we first suggest the solu-
tion of motion equations (3.6) and (3.7) by separating the variables on time and
amplitude functions in the form

w̄1(x̄, τ) =W1(x̄)T1(τ),(3.8)

w̄2(x̄, τ) =W2(x̄)T2(τ),(3.9)

where in the follow, it will be assumed that time functions are equal for both parts
of nanobeam T1 = T2 = T . If we substitute Eqs. (3.8) and (3.9) into the Eqs. (3.6)
and (3.7), respectively, then we obtain the following differential equations in terms
of time function T and amplitude functions W1 and W2 as

T̈ + γk40D
α
t (T ) + k4T = 0,(3.10)

W
(IV )
1 + µ̄k4W

(II)
1 − k4W1 = 0,(3.11)

W
(IV )
2 + µ̄k4W

(II)
2 − k4W2 = 0,(3.12)
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where k is an arbitrary constant and W
(II)
i = d2Wi/dx̄

2, W
(IV )
i = d4Wi/dx̄

4 for
i = 1, 2. In order to solve fourth order differential equations (3.11) and (3.12) for
amplitude functions, we propose solutions of the form Wi = Aeλx̄, i = 1, 2. Substi-
tuting assumed solutions into Eqs. (3.11) and (3.12) we obtain the characteristic
equation as

λ4 + µ̄k4λ2 − k4 = 0,

We have four solutions of characteristic equation which are λ1,2 = ±λe and λ3,4 =
±λf where λe and λf are

λe = ±k

√

√

4 + µ̄2k4 − µ̄k2

2
,(3.13)

λf = ±k

√

√

4 + µ̄2k4 + µ̄k2

2
,(3.14)

Rearranging constants, we can write solutions of Eqs. (3.11) and (3.12) as

W1 = C1 sinh (λex̄) + C2 sin (λf x̄) + C3 cosh (λex̄) + C4 cos (λf x̄)(3.15)

W2 = C5 sinh (λex̄) + C6 sin (λf x̄) + C7 cosh (λex̄) + C8 cos (λf x̄)(3.16)

where Ci, i = 1, 2, . . . , 8 are unknown constants. In the above equations, k denotes
non-dimensional flexural wave number of the classical Euler–Bernoulli beam and it
is related to λf and λe through the Eqs. (3.13) and (3.14). When the influence of
nonlocal parameter is neglected µ̄ = 0, than we have λf = λe = k. Further, we find
eigenvalues of nanobeam with arbitrary attached nanoparticle for three different
external boundary conditions.

3.3. Case I: Simply supported nanobeam. For the simply supported
boundary conditions we assume external boundary conditions at x̄ = 0 and x̄ = 1 as

W1 =W2 = 0,(3.17)

W
(II)
1 + µ̄k4W1 =W

(II)
2 + µ̄k4W2 = 0,(3.18)

and rewrite internal boundary conditions in terms of amplitude function at
x̄ = x̄m as

W1 =W2,(3.19)

W
(I)
1 =W

(I)
2 ,(3.20)

W
(II)
1 + µ̄k4W1 =W

(II)
2 + µ̄k4W2,(3.21)

W
(III)
1 + µ̄k4W

(I)
1 − (W

(III)
2 + µ̄k4W

(I)
2 ) + δk4W1 = 0,(3.22)

whereW
(I)
i = dWi/dx̄ andW

(III)
i = d3Wi/dx̄

3 for i = 1, 2. By taking into account
the solutions from Eqs. (3.15) and (3.16) and boundary conditions from Eqs.
(3.17) and (3.18), we obtain eight equations in terms of eight unknown constants
Ci, i = 1, 2, . . . , 8. These equations can be rewritten in the matrix form as

[A]{C} = 0,
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or in the form
























0 0 1 1 0 0 0 0
0 0 a23 a24 0 0 0 0
0 0 0 0 a35 a36 a37 a38
0 0 0 0 a45 a46 a47 a48
a51 a52 a53 a54 −a51 −a52 −a53 −a54
λea53 λfa54 λea51 −λfa52 −λea53 −λfa54 −λea51 λfa52
a71 a72 a73 a74 −a71 −a72 −a73 −a74
a81 a82 a83 a84 −λea73 −λfa74 −λea71 λfa72

















































C1

C2

C3

C4

C5

C6

C7

C8

























= 0,

a23 = λ2e + µ̄k4, a24 = µ̄k4 − λ2f , a35 = sinh (λe), a36 = sin (λf ), a37 = cosh (λe),

a38 = cos (λf ), a45 = a23a35, a46 = a24a36, a47 = a23a37, a48 = a24a38,

a51 = sinh(λex̄m), a52 = sin(λf x̄m), a53 = cosh(λex̄m), a54 = cos(λf x̄m),

a51 = sinh(λex̄m), a52 = sin(λf x̄m), a53 = cosh(λex̄m), a54 = cos(λf x̄m),

a71 = a23a51, a72 = a24a52, a73 = a23a53, a74 = a24a54,

a81 = (λ3e + λeµ̄k
4)a53 + δk4a51, a82 = (λf µ̄k

4 − λ3f )a54 + δk4a52,

a83 = (λ3e + λeµ̄k
4)a51 + δk4a53, a84 = −(λf µ̄k

4 − λ3f )a51 + δk4a54,

In that way, we can obtain characteristic transcendental equation N(δ, k) by
finding the determinant of matrix A as

(3.23) N(δ, k) = det[A] = 0.

From Eq. (3.23) we can obtain an infinite number of roots kn, n = 1, 2, . . . ,∞
for the nonlocal viscoelastic nanobeam with attached nanoparticle of certain mass.
Using the known algebra rule that ratios of unknown constants Ci, i = 1, 2, . . . ,∞
and cofactors K8i of matrix A are equal to some constant Cn as

C1

K81
=

C2

K82
=

C3

K83
=

C4

K84
=

C5

K85
=

C6

K86
=

C7

K87
=

C8

K88
= Cn,

we can write mode shape functions in the following forms

(3.24) W1n=Cn

(

sinh(λex̄) +
K82

K81
sin(λf x̄) +

K83

K81
cosh(λex̄) +

K84

K81
cos(λf x̄)

)

(3.25) W2n=Cn

(K85

K81
sinh(λex̄)+

K86

K81
sin(λf x̄)+

K87

K81
cosh(λex̄)+

K88

K81
cos(λf x̄)

)

where λe and λf are calculated from Eqs. (3.13) and (3.14) for the corresponding
n-th eigenvalue kn.

3.4. Case II: Cantilever nanobeam. For the cantilever boundary condi-
tions, we assume external boundary conditions at x̄ = 0 and x̄ = 1 as

W1 =W
(I)
1 = 0,(3.26)

W
(II)
2 + µ̄k4W2 =W

(III)
2 + µ̄k4W

(I)
2 ,(3.27)
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Internal boundary conditions are of the same form as in Eqs. (3.19)–(3.22).
Using the solutions from Eqs. (3.15) and (3.16), internal boundary conditions from
Eqs. (3.19)–(3.22) and boundary conditions of cantilever nanobeam (3.26) and
(3.27), we obtain the matrix form of equation as

[B]{C} = 0,

or in matrix form as
























0 0 1 1 0 0 0 0
λe λf 0 0 0 0 0 0
0 0 0 0 b35 b36 b37 b38
0 0 0 0 λeb37 λfb38 λeb35 λf b36
b51 b52 b53 b54 −b51 −b52 −b53 −b54
λeb53 λfb54 λeb51 −λfb52 −λeb53 −λfb54 −λeb51 λf b52
b71 b72 b73 b74 −b71 −b72 −b73 −b74
b81 b82 b83 b84 −λeb73 −λfb74 −λeb71 λf b72

















































C1

C2

C3

C4

C5

C6

C7

C8

























= 0,

where elements of matrix B are

b35 = (λ2e + µ̄k4) sinh (λe), b36 = −(µ̄k4 − λ2f ) sin (λf ), b37 = (λ2e + µ̄k4) cosh (λe),

b38 = (µ̄k4 − λ2f ) cos (λf ), b51 = sinh(λex̄m), b52 = sin(λf x̄m), b53 = cosh(λex̄m),

b54 = cos(λf x̄m), b71 = (λ2e + µ̄k4)b51, b72 = (µ̄k4 − λ2f )b52, b73 = (λ2e + µ̄k4)b53,

b74 = (µ̄k4−λ2f)b54, b81=(λ3e + λeµ̄k
4)b53 + δk4b51, b82 = (λf µ̄k

4−λ3f )b54 + δk4b52,

b83 = (λ3e + λeµ̄k
4)b51 + δk4b53, b84 = −(λf µ̄k

4 − λ3f )b51 + δk4b54,

In this case, characteristic transcendental equationM(δ, k) is obtained by find-
ing the determinant of matrix B as

(3.28) M(δ, k) = det[B] = 0.

Further, mode shape functions are obtained from Eqs. (3.17) and (3.25) by
considering the new eigenvalues kn determined from Eq. (3.28).

3.5. Case III: Clamped-clamped nanobeam. For the clamped-clamped
boundary conditions, external boundary conditions at x̄ = 0 and x̄ = 1 are

W1 =W I
1 = 0.(3.29)

W2 =W I
2 = 0.(3.30)

Internal boundary conditions are of the same form as in Eqs. (3.19)–(3.22).
Considering the assumed solutions and boundary conditions from Eq. (3.29) and
(3.30) in the same manner as in two previous cases, we obtain the following matrix
form of equation

[D]{C} = 0,

or in the form
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0 0 1 1 0 0 0 0
λe λf 0 0 0 0 0 0
0 0 0 0 d35 d36 d37 d38
0 0 0 0 λed37 λfd38 λed35 λfd36
d51 d52 d53 d54 −d51 −d52 −d53 −d54
λed53 λfd54 λed51 −λfd52 −λed53 −λfd54 −λed51 λfd52
d71 d72 d73 d74 −d71 −d72 −d73 −d74
d81 d82 d83 d84 −λed73 −λfd74 −λed71 λfd72
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C6

C7
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= 0,

where elements of matrix B are

d35 = sinh (λe), d36 = − sin (λf ), d37 = cosh (λe), d38 = cos (λf ),

d51 = sinh(λex̄m), d52 = sin(λf x̄m), d53 = cosh(λex̄m), d54 = cos(λf x̄m),

d71 = (λ2e + µ̄k4)d51, d72 = (µ̄k4 − λ2f )d52, d73 = (λ2e + µ̄k4)d53,

d74 = (µ̄k4−λ2f )d54, d81=(λ3e + λeµ̄k
4)d53 + δk4d51, d82=(λf µ̄k

4−λ3f)d54+δk4d52,
d83 = (λ3e + λeµ̄k

4)d51 + δk4d53, d84 = −(λf µ̄k
4 − λ3f )d51 + δk4d54,

Finally, characteristic transcendental equation R(δ, k) is obtained by finding
the determinant of matrix B as

(3.31) R(δ, k) = det[D] = 0,

where again, mode shape functions can be obtained from Eqs. (3.24) and (3.25)
taking into account eigenvalues kn determined from Eq. (3.31).

4. Time dependent behavior of damped nanobeam

In the literature [12,15–17], there are many analytical and numerical methods
available to find the solution of fractional order differential equations. We can notice
that solution of Eq. (3.10) for an infinitive number of modes with corresponding
eigenvalues kn and time functions Tn is the part of assumed solution given in the
form of infinite series

wj =

∞
∑

n=1

WjnTn, j = 1, 2.

In the follow, we will examine the solution of fractional order differential equa-
tion. Let as rewritten Eq. (3.10) as

(4.1) T̈n + βTαn + ω2Tn = 0

where β = γk4, ω2 = k4 and Tαn = 0D
α
t Tn is a fractional derivative of time function.

Using the methodology similar to those applied in [12] to solve the fractional order
differential equation (4.1) when 0 < α < 1, we use the Laplace transform method.
Laplace transform of a function Tn(τ) is denoted by L(Tn). First, we write Laplace
transform of fractional derivative of a function Tn(τ) as

L(Tαn ) = sα L(Tn)− Tα−1
n (0) = 0,

where for the initial condition of fractional order we have

Tα−1
n (0) = 0,
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if Tn is bounded in the interval [0, ǫ] for ǫ > 0 [12]. Then, after performing the
Laplace transform of Eq. (4.1) we obtain

(4.2) L(Tn) =
sTn(0) + Ṫn(0)

s2 + βsα + ω2
.

In order to expand Eq. (4.2) into trigonometric series we rewrite the equation in
the following form

L(Tn) =
1

s

Tn(0)

1 + β
s2

(

sα + ω2

β

) +
1

s2
Ṫn(0)

1 + β
s2

(

sα + ω2

β

) .

After writing previous equation in terms of series as

L(Tn) = Tn(0)

∞
∑

k=0

(−1)kβk

s2k+1−αj

(

sα +
ω2

β

)k

+ Ṫn(0)

∞
∑

k=0

(−1)kβk

s2k+2

(

sα +
ω2

β

)k

,

and using binomial coefficients we can write solution in the form

L(Tn) = Tn(0)

∞
∑

k=0

(−1)k
k

∑

j=0

(

k

j

)

βjω2(k−j)

s2k+1−αj
(4.3)

+ Ṫn(0)

∞
∑

k=0

(−1)k
k

∑

j=0

(

k

j

)

βjω2(k−j)

s2(k+1)−αj
,

Finally, assuming that expansion leads to convergent series and applying the
inverse Laplace transform on Eq. (4.3), yields

Tn(τ) = Tn(0)

∞
∑

k=0

(−1)k
k

∑

j=0

(

k

j

)

βjω2(k−j)τ2k−αj

Γ[2k + 1− αj]
(4.4)

+ Ṫn(0)

∞
∑

k=0

(−1)k
k

∑

j=0

(

k

j

)

βjω2(k−j)τ2k+1−αj

Γ[2(k + 1)− αj]
.

Solution (4.4) is of the same form as the solution of linear vibrations equation
with the fractional dissipation term given in [12]. In addition, we should note that
we have two special cases of the solution of Eq. (4.4) like in [12], which for α = 0
and α = 1 are

(4.5) Tn=















Tn(0) cos (τ
√

ω2 + β) + Ṫn(0)
sin (τ

√
ω2+β)√

ω2+β
, α = 0

e−
βτ

2

[

Tn(0) cos (τ
√

ω2− β2

4 )+
Ṫn(0)+Tn(0)

β
2

√

ω2−
β2

4

sin (τ
√

ω2 + β2

4 )

]

, α=1

The first solution is the case of harmonic vibration when no damping occurs
in the system. The second case is the solution for damped vibration when classical
Kelvin–Voigt viscoelastic model is considered.
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5. Numerical results and discussion

In this section, validation of the obtained results is given by comparison with
the corresponding results in the literature. Numerical experiments are performed
for the transverse vibration of a viscoelastic nanobeam with arbitrary attached
nanoparticle of certain mass. Two different types of numerical analysis are per-
formed. Firstly, we give mode shapes of the nanobeam with attached nanoparticle
and examine the influence of the nonlocal parameter on them. Secondly, the effect
of fractional order parameter on time dependent behavior of the observed system is
analyzed. In this study, numerical analysis is carried out for three types of boundary
conditions, simply supported, clamped–clamped and cantilever nanobeam.

5.1. Validation with MD simulations. In order to validate our model,
we compare the results for complex roots of characteristic equation for the free
vibrating nanobeam without attached mass with the results from MD simulations
given in [35], in the similar manner as it was done in [34]. To find complex roots
of the characteristic equation obtained from governing equation (3.4), we use the
methodology described in [17] and assume the solution for the simply supported
nanobeam in the form

(5.1) w(x, t) =

∞
∑

n=1

Tn(t) sin(knx), kn =
nπ

L
.

After substituting Eq. (5.1) into (3.4), taking into account orthogonality con-
ditions and performing Laplace transformation yields the following equation

(5.2) T̄n(s) =
sT (0) + Ṫ (0)

fn(s)
.

where

fn(s) = s2 + κsα + ω2
0 , ω2

0 =
E∞Ik

2
n

ρA(1 + µk2n)
, κ = ω2

0τ
α
σ .

with over-bar denoting the Laplace transform of the corresponding function and τσ
denoting the retardation time . It can be noticed that Eq. (5.2) is of the equivalent
form as dimensionless Eq. (5.2) with only difference in frequency of nonlocal elastic
system ω0 influenced by nonlocal parameter µ. By taking that fn = 0, we obtain
the characteristic equation which is of the same form as characteristic equation of
the fractional Kelvin–Voigt single mass oscillator presented in [17], whose complex
roots can be found by carrying out the following substitution s = reiψ . Than,
separating the real and imaginary parts and adopting new variables x1 = r2 and
x2 = κrα we obtain

x1 =
ω2
0 sin(αψ)

sin(2− α)ψ
, x2 = − ω2

0 sin(2ψ)

sin(2− α)ψ

where r = x
1/2
1 and κ = x2r

−α can be calculate by choosing ψ in the range π/2–
π/(2−α) that gives one root of the characteristic equation (see also [17]). Choosing
−ψ instead of ψ, one can obtain complex conjugate root, s1,2 = re±iψ = −δ ± iΩ,
where the imaginary part Ω0 represents system’s natural frequency and the real part
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δ represents damping ratio of the system. Further, we determine complex roots by
adopting the following values of parameters of armchair [8, 8] SWCNT from Ansari

et al. [35]: Young modulus E∞ = 1.1 [TPa], density ρ = 2300[kg/m
3
], thickness

of nanotube h = 0.34 [nm] and characteristic length a = 1.5 [nm]. In addition, to
obtain results in Table 1 we adopted angle ψ = 1.572 in order to determine complex
roots for different length to diameter ratios ξ = L/d, fractional parameters α and
nonlocal material constant e0.

From Table 1 it is obvious that imaginary parts of complex roots representing
natural frequencies of viscoelastic nanobeam are approaching to the frequencies
obtained from MD simulations in [35] by choosing the corresponding nonlocal pa-
rameter. In Figure 2, we plotted complex roots only in the upper half of complex
plane for changes of parameter κ from 0 to ∞ (κ = 0 corresponds to s1,2 = ±iω0)
by changing the angle ψ from ψ0 = π/2 to ψ∞ = π/(2 − α). One can notice
that imaginary parts of complex roots i.e. frequencies are in good agreement but
slightly damped compared to nonlocal frequencies of elastic system ω0 when higher
i.e. integer and close to integer values of fractional parameter α are adopted (see
Figure 2). However, lower values of fractional parameter results in higher imaginary
parts i.e. natural frequencies of nanobeam. Such results for fractional Kelvin–Voigt
model are in line with the results presented in [17] where ”abnormal” behavior of
the model was observed for α 6 0.85, where frequency increases for an increase of
damping coefficient κ from 0 to ∞. In spite of their deficiencies, in the literature
one can find both types of viscoelastic Kelvin-Voight models, the nonlocal integer
order [27] and fractional order one [36]. For nonlocal fractional Kelvin–Voigt model
we can say that even for some values of parameters ”normal” results of decreasing
frequency with increasing damping coefficient can be obtained, mentioned ”anom-
aly” still does not have any rational physical explanation. Since such behavior of
fractional Kelvin–Voigt model is visible in complex domain but not clearly in the
time domain, both types of analysis should be performed [17].

5.2. Comparison of dimensionless eigenvalues. Here, we compare the re-
sults for dimensionless eigenvalues obtained for a nanobeam with neglected mass of
nanoparticle, with the results for dimensionless eigenvalues given in Ref. [28]. The
results are compared for three different types of boundary conditions. From Ta-
ble 2, one can notice that our results for dimensionless eigenvalues are in excellent
agreement with the results [28] for all three boundary conditions and different val-
ues of nonlocal parameter. It can be noticed that an increase of nonlocal parameter
causes a decrease of eigenvalues. Further, it is obvious that for the “weaker” con-
straints such as cantilever and simply supported nanobeams, eigenvalues are lower
than in the case of “stronger” constraints such as clamped-clamped nanobeam.

5.3. Mode shapes and eigenvalues. From Table 2 it is obvious that eigen-
values of the nanobeam without attached nanoparticle decreases for an increase of
the value of nonlocal parameter. The same is true for the nanobeam with attached
nanoparticle. Thus, in follow we examine the influence of the nonlocal parameter
and corresponding eigenvalues on mode shapes of the nanobeam with nanoparticle
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Table 1. Comparison of complex roots of nonlocal fractional
Kelvin–Voigt simply supported nanobeam with natural frequen-
cies [THz] of SWCNT obtained from MD simulations.

ξ MD [35] Undamped frequencies Complex roots

e0 = 0 e0 = 0.691 e0 = 0 e0 = 0.691

α = 1.00
8.3 0.5299 0.5497 0.5299 −0.00066 + 0.54966i −0.00063 + 0.52995i
10.1 0.3618 0.3712 0.3620 −0.00045 + 0.37120i −0.00043 + 0.36205i

α = 0.98
8.3 0.5299 0.5497 0.5299 −0.00066 + 0.54968i −0.00064 + 0.52997i
10.1 0.3618 0.3712 0.3620 −0.00045 + 0.37122i −0.00044 + 0.36207i

α = 0.86
8.3 0.5299 0.5497 0.5299 −0.00066 + 0.54981i −0.00064 + 0.53009i
10.1 0.3618 0.3712 0.3620 −0.00045 + 0.37130i −0.00044 + 0.36215i

α = 0.6
8.3 0.5299 0.5497 0.5299 −0.00066 + 0.55014i −0.00064 + 0.53041i
10.1 0.3618 0.3712 0.3620 −0.00045 + 0.37153i −0.00044 + 0.36237i

Figure 2. Complex roots of the nonlocal fractional Kelvin–Voigt
model for changes of fractional parameter α and parameter κ from
0 to ∞.

attached at characteristic positions. Figures 3 to 5 shows the mode shapes for sim-
ply supported, clamped-clamped and cantilever boundary conditions, respectively.
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In the case of the first two boundary conditions, nanoparticles are attached at
the midpoint of nanobeam. In the case of cantilever boundary conditions, nanopar-
ticle is attached at the free end. It can be noticed that for the simply supported
boundary conditions, normalized mode shapes of nanobeam are the same for classi-
cal and nonlocal beam theory i.e., mode shapes of the local and nonlocal model are
overlaping since there is no influence of nonlocal parameter. For clamped-clamped
boundary conditions, this is not the case and there is a visible effect of nonlocal
parameter on mode shapes which amplitude increases in the first mode for an in-
crease of the nonlocal parameter. In the second mode, the nonlocal effect is less
pronounced. Besides, in the case of cantilever boundary conditions we have a weak
influence of nonlocal parameter on normalized mode shape in the first mode and
more pronounced effect in the second mode.

Table 2. Eigenvalues of the nanobeam in first four modes for
neglected mass of a nanoparticle.

µ̄ 0.0 0.2 0.4 0.6

Ref. [28] Present Ref. [28] Present Ref. [28] Present Ref. [28] Present

Simply supported nanobeam
k1 3.1416 3.14159 2.8908 2.89083 2.4790 2.47903 2.1507 2.15067
k2 6.2832 6.28319 4.9581 4.95805 3.8204 3.82035 3.1815 3.18150
k3 9.4248 9.42478 6.4520 6.45202 4.7722 4.77225 3.9329 3.93293
k4 12.5664 12.56637 7.6407 7.64070 5.5509 5.55086 4.5565 4.55655

Clamped nanobeam
k1 4.7300 4.73004 4.2766 4.27661 3.5923 3.59232 3.0837 3.08370
k2 7.8532 7.85321 6.0352 6.03522 4.5978 4.59781 3.8165 3.81649
k3 10.9956 10.99561 7.3840 7.38403 5.4738 5.47380 4.5231 4.52315
k4 14.1372 14.13717 8.4624 8.46242 6.1504 6.15043 5.0505 5.05048

Cantilever nanobeam
k1 1.8751 1.87510 1.8919 1.89193 1.9543 1.95428 2.1989 2.19894
k2 4.6941 4.69409 4.1924 4.19238 3.3456 3.34555 2.4809 2.48090
k3 7.8548 7.85476 6.0674 6.06738 4.8370 4.83705 . . . . . .

k4 10.9955 10.99375 7.3617 7.36170 5.2399 5.23986 . . . . . .

In Table 3, we have analyzed the eigenvalues of viscoelastic nanobeam for
arbitrary attached nanoparticle and fixed value of nonlocal parameter µ̄ = 0.5
and four different positions x̄m of the nanoparticle. In addition, it can be noticed
that for simply supported and clamped-clamped boundary conditions, eigenvalues
are decreasing for an increase of the mass of nanoparticle and for an increase of
the distance x̄m from the boundary. However, it is obvious that eigenvalues are
increasing when a distance x̄m pass the midpoint of nanobeam. As expected, these
eigenvalues are equal to those with the same distance from the midpoint but in
opposite direction due to the symmetric boundary conditions. For the cantilever
nanobeam, we can observe a decrease of eigenvalues for an increase of the mass and
distance x̄m. Nevertheless, this effect is pronounced only in the first mode. For the
next three modes eigenvalues are given in Table 3. From the data presented, there
is no clear pattern of change of eigenvalues that can be recognized.
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Figure 3. Mode shapes of nanobeam with attached nanoparti-
cle at the middle and for simply supported boundary conditions
a) first mode; b) second mode.

5.4. Time dependent behavior of nanobeam with attached nanopar-

ticle. In the follow, we plot three characteristic cases of the time function, which
defines the dynamic behavior of the nanobeam with internal fractional order damp-
ing properties in the first vibration mode i.e. for n = 1. In our simulation we take
into account the following initial conditions T (0) = 0 and Ṫ (0) = 1. Considering
Eq. (4.5) it follows that we can expect different time behaviors depending of the
sign of the value of ω2+β at α = 0 and the sign of ω2−β2/4 at α = 1. On Figures 6
to 8 we illustrate the continuous transition for the time function behavior from the
first special case solution to the second one over the domain 0 < α < 1. For the
analysis and illustration of the time dependent behavior we use three typical cases
of the ratio of parameters ω and β as given in Table 4, which defines the sign of
the value of ω2 − β2/4 and the shape of the solution. First, in Figure 6 we plot
a time function for the first case in Table 4. As it can be noticed, in this case we
have a transition from harmonic oscillation at α = 0 to damped oscillation for an
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Figure 4. Mode shapes of nanobeam with attached nanoparti-
cle at the middle and for clamped-clamped boundary conditions
a) first mode; b) second mode.

increase of the fractional order parameter α. “Strong” damping properties are the
most pronounced at α = 1, where the solution is equal to the solution in the case
of classical viscoelastic model with integer order derivative. The solution for the
second case from Table 4 is shown in Figure 7. One can observe a smooth transition
from harmonic oscillation to aperiodic solution over domain α ∈ [0, 1]. In addition,
in Figure 6b) it can be observed that aperiodic solution starts from α = 0.6. The
similar solution can be noticed in the third case from Table 4, which is plotted in
Figure 8. Here, we also have a transition from harmonic oscillation to aperiodic
solution over the domain α ∈ [0, 1], where the aperiodic solution starts somewhere
around the value α = 0.5.

From the previous results, it is clear that fractional order models of viscoelas-
ticity such as fractional Kelvin–Voigt, can be used to describe variety of time de-
pendent behavior on nanoscale level depending on the values of internal damping
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parameter and system eigenvalues. Thus, values of system parameters and frac-
tional order parameter defines a continuous transition from harmonic to damped
oscillation that can describe much wider range of dynamics behaviors compare to
the classical viscoelastic models. Depending of the values of parameters it can also
define an aperiodic behavior. Therefore, fractional derivative models are natural
environment to describe damping properties, which is important from the practi-
cal point of view since such generalized models needs less number of parameters
compare to the integer order ones. Thus, nonlocal theory and fractional order vis-
coelasticity are powerful tools for theoretical analysis of nanostructures and should
be both applied for their accurate modeling.

As stated in [17], solution (4.4) of the fractional differential equation in terms
of series converges very slowly and even some authors are questioning its physical
interpretation, this solution gives good results for small time periods. However, in

Figure 5. Mode shapes of nanobeam with attached nanoparticle
at the middle and for cantilever boundary conditions a) first mode;
b) second mode.
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Table 3. Eigenvalues of the nanobeam with attached nanoparticle.

m 1 5

x̄m 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Simply supported nanobeam
k1 2.1963 2.0705 2.0705 2.1963 1.9096 1.6627 1.6627 1.9096
k2 3.3501 3.4272 3.4272 3.3501 3.1904 3.3969 3.3969 3.1904
k3 4.2397 4.2745 4.2745 4.2397 4.1833 4.2560 4.2560 4.1833
k4 4.9687 4.9493 4.9493 4.9687 4.9553 4.9207 4.9207 4.9553

Clamped nanobeam
k1 3.2452 2.9797 2.9797 3.2452 2.9511 2.3838 2.3838 2.9511
k2 4.0554 4.1068 4.1068 4.0554 3.8340 4.0734 4.0734 3.8340
k3 4.8001 4.9288 4.9288 4.8001 4.6342 4.9255 4.9255 4.6342
k4 5.4523 5.5024 5.5024 5.4524 5.3924 5.4840 5.4840 5.3924

Cantilever nanobeam
k1 2.0075 1.8701 1.6443 1.4374 1.9506 1.5628 1.2369 1.0217
k2 2.9384 3.0550 3.2662 3.1169 2.9149 4.7597 3.4576 3.1565
k3 4.1982 4.0221 5.2418 4.3427 3.5931 6.2969 5.0881 4.3133
k4 5.4996 4.6954 5.9528 5.0789 6.1564 7.2681 5.9983 5.1423

Table 4. Three typical cases of the parameters ratio.

β/ω N = ω2 − β2/4

1. 1/2 N > 0
2. 2 N = 0
3. 3 N < 0

the future investigations other available methods for finding the solution of frac-
tional order differential equation need to be considered. In addition, it should be
noted that in [30], Eq. (4.1) is considered with Caputo definition of fractional
derivative and the solution is found by using the Laplace transform method and
compared with the solution for α = 1 i.e., integer order derivative case. Also,
in [30] the author has discovered nine distinct cases of the solution depending of
the model parameters compared to the three distinct cases observed in our work.

6. Concluding remarks

In this communication, we performed the free vibration analysis of a nanobeam
with arbitrary attached nanoparticle using the fractional derivative viscoelastic
model. Nonlocal theory of Eringen is applied in order to include small-scale ef-
fects appearing on the nano-scale level. Equations of motion for the system are
derived and the solution is proposed using the method of separation of variables.
Equations for eigenvalues and mode shapes are obtained for three typical boundary
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conditions. Validation study with calculated complex roots of characteristic equa-
tion, which imaginary parts represents damped frequencies of the system, showed
a good agreement with the results from molecular dynamics simulations found in
the literature. In the numerical analysis, it is shown that eigenvalues are decreasing
for an increase of the nonlocal parameter and mass of nanoparticle. In addition,
it is revealed that change of the position of nanoparticle significantly changes the
eigenvalues. These results are varying depending on the applied boundary condi-
tions. Time dependent behavior of fractional viscoelastic nanobeam is significantly
influenced by the fractional order parameter, which defines how “strong” damping
properties will be pronounced. Increase of the parameter in the domain [0, 1] signif-
icantly increases damping properties of the system. In addition, relations between
the values of parameters of the system also defines whether nanobeam will exhibit

Figure 6. Time behavior of fractional viscoelastic nanobeam for
different α and ratio β/ω = 1/2.

Figure 7. Time behavior of fractional viscoelastic nanobeam for
different α and ratio β/ω = 2.
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Figure 8. Time behavior of fractional viscoelastic nanobeam for
different α and ratio β/ω = 3.

damped or aperiodic oscillation. This study may be useful for the future analysis
of other single or multiple nanostructure based systems with damping or in design
procedures of real nanodevices.
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OSCILACIJE NELOKALNE VISKOELASTIQNE

NANOGREDE FRAKCINOG REDA SA NANOQESTICOM

Rezime. U radu je predloжen drugaqiji pristup u formiraǌu matemati-
qkog modela za ispitivaǌe slobodnih priguxenih transverzalnih osci-
lacija nanogrede primenom Eringenove nelokalne teorije i modela visko-
elastiqnog tela frakcionog reda. Jednaqina kretaǌa nanogrede, sa nano-
qesticom prikaqenom na proizvoǉnoj poziciji, je izvedena pomo�u nelo-
kalno viskoelastiqne konstitutivne jednaqine sa izvodima frakcionog
reda i primenom Ojler–Bernulijeve teorije greda. Predloжeno je rexe-
ǌe metodom razdvajaǌa promenǉivih. Sopstvene vrednosti i oblici
oscilovaǌa su odre�eni za tri tipa graniqnih uslova. Diferencijalna
jednaqina frakcionog reda za vremensku funkciju je rexena primenom
Laplasove transformacije. Ponaxaǌe vremenske funkcije u vremenu
je ispitano za razliqite vrednosti frakcionog parametra i razliqite
odnose ostalih parametara u modelu. Validacija je izvedena pore�e-
ǌem dobijenih rezultata za specijalni sluqaj naxeg modela sa odgo-
varaju�im rezultatima iz litrature dobijenih simulacijama moleku-
larnom dinamikom.
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