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RHEOLOGICAL-DYNAMICAL CONTINUUM

DAMAGE MODEL FOR CONCRETE UNDER

UNIAXIAL COMPRESSION AND ITS

EXPERIMENTAL VERIFICATION

Dragan D. Milašinović

Abstract. A new analytical model for the prediction of concrete response
under uniaxial compression and its experimental verification is presented in

this paper. The proposed approach, referred to as the rheological-dynamical
continuum damage model, combines rheological-dynamical analogy and dam-
age mechanics. Within the framework of this approach the key continuum
parameters such as the creep coefficient, Poisson’s ratio and damage variable
are functionally related. The critical values of the creep coefficient and damage
variable under peak stress are used to describe the failure mode of the concrete
cylinder. The ultimate strain is determined in the post-peak regime only, us-
ing the secant stress-strain relation from damage mechanics. The post-peak
branch is used for the energy analysis. Experimental data for five concrete
compositions were obtained during the examination presented herein. The
principal difference between compressive failure and tensile fracture is that
there is a residual stress in the specimens, which is a consequence of uniformly
accelerated motion of load during the examination of compressive strength.
The critical interpenetration displacements and crushing energy are obtained
theoretically based on the concept of global failure analysis.

Nomenclature

A0 damaged cross section area
A effective resisting cross section area
a acceleration
acrF critical crack depth under peak stress
C linear creep law constant
ccr critical viscous damping
cload loading rate
D damage variable
Dcr critical damage variable
DcrF critical damage variable under peak stress
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δ frequency ratio
EH elastic modulus
EK viscoelastic modulus
ED

K dynamic viscoelastic modulus
ER RDA modulus, RDA modulus function
ERF critical RDA modulus
ET tangent modulus
E(D) variation in Young’s modulus
E(DcrF ) critical variation in Young’s modulus
ε, εj total strain
ε̇ total strain rate
εS,j static total strain
εD,j dynamic total strain
εel elastic strain
εve viscoelastic strain
εvp viscoplastic strain
εcr peak compression strain
εcrF ultimate strain
fc measured strength
fγ acceleration coefficient
φ diameter of concrete cylinder
ϕ viscoelastic creep coefficient
ϕ∗ structural creep coefficient
ϕcr critical creep coefficient
ϕcrF critical creep coefficient under the peak stress
GC crushing energy
g gravity acceleration
γ specific gravity
H symbol for Hookean spring
H ′ viscoplastic modulus
H ′D dynamic viscoplastic modulus
I minimum moment of inertia of cross-section about centroidal axis
i minimum gyration radius
K symbol for Kelvin’s body
K0,KE structural material constant
k stiffness
l0, lE , lD, lj cylinder height
λ0, λE , λD, λj slenderness ratio
λK viscoelastic normal viscosity
λN viscoplastic normal viscosity
m mass
N symbol for Newtonian dashpot
µ Poisson’s ratio
r effective radius
Q,QA instantaneously applied loading
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ω natural angular frequency
ωσ load or stress angular frequency
ρ mass density
StV symbol for Saint-Venant’s body
σ time-dependent variation of stress
σ̇ stress rate
σA cyclic stress amplitude
σE Euler’s critical stress or stress at limit of elasticity
σY uniaxial yield stress of material
σcr, σcr,j inelastic critical stress
σcrF critical failure stress
σD dynamic stress
σD crF dynamic critical failure stress
σS static stress
σS crF static critical failure stress
σfictitious fictitious stress
σresidual residual stress
TD
K dynamic time of retardation

t,∆t time, very short time of loading
tE time when stress reaches limit of elasticity
tF time when failure occurs
wcr critical interpenetration displacement
Y stress level for viscoplastic yielding
| symbol for parallel connection
— symbol for serial connection
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1. Introduction

Reinforced concrete materials have been studied and employed in diverse fields
of science and engineering disciplines due to their wide application in infrastructure
in many countries. From a practical standpoint, the ultimate strength design of
reinforced concrete elements brought the stress-strain relationship into focus. The
compression response of concrete, and in particular the compressive strength, ulti-
mate strain and post-peak branch, have an important role in the design of concrete
and concrete-based structures. In the last three decades, there has been a keen
interest in compressive failure. In the early 1990’s, an extensive Round/Robin test
on compressive softening was carried out by the RILEM Technical Committee 148-
SSC [1]. Compression failure can have a great variety of forms both from theoretical
and experimental viewpoints, while the mode of failure is complex. The principal
difference from tensile fracture is that there is a residual stress in the specimens.
The correct evaluation of the constitutive parameters is also complicated by many
other testing aspects. To interpret the test results, it is important to know the
influence of the boundary conditions on the slope of the load-displacement curve
and on the value of the crushing energy [2]. An in-depth review of this matter
as well evidence that slenderness of the specimen has influence on the collapse
mechanism is given in [3]. Considering the size-scale and slenderness effects in uni-
axial compression tests, Carpinteri et al. [4] proposed an analytical model based
on the concept of strain localization. The discussion of instantaneous deformations
of concrete under load is timed from a theoretical viewpoint because deformations
provide indirect information concerning the internal structure [5] as well as the mi-
croscopic fracture mechanism. Analytical models of time-dependent stress-strain
response of concrete under compression are required. For global failure analysis,
the failure mechanism must be treated in a smeared manner, as a continuum with
damage. Since about 1998 (Milašinović, [6, 7]), a mathematical-physical analogy
named rheological-dynamic analogy (RDA) has been proposed in explicit form to
predict a range of inelastic and time-dependent problems related to 1D prismatic
rods, such as buckling, fatigue etc. This theory defines the critical mechanical prop-
erties of viscoelastoplastic (VEP) materials. RDA is based on the propagation of
elastic waves under instantaneously applied impact loading. A successful theoreti-
cal approach based on RDA and their practical applications have also been given in
connection with the VEP behavior of metallic bars in tension [8]. In fact, cracking
is accompanied by an emission of elastic waves which propagate within the bulk of
the material. More information on the modalities of energy release and the devel-
opment of cracking patterns can be obtained on the basis of the acoustic emission
monitoring technique, which proves that it is possible to detect the occurrence and
evolution of stress-induced cracks [9].

The aim of this paper is to experimentally verify an RDA model of prediction
of stress-strain response of concrete in the pre-peak regime only, given the load-
controlled compression test results used. On the other hand, the analytical model
presented covers the post-peak regime combining the RDA and damage mechanics.
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Many researchers have tried to represent the stress-strain relationship with stan-
dard mathematical curves, e.g., a parabola, hyperbola, ellipse, cubic parabola, or
combinations like a parabola with a straight line and so on, see also Model Code 90
[10]. These curves may have the advantage of simplifying the computation of the
ultimate moment of reinforced concrete sections. However, they can be classified
only as empirical methods since the assumed stress distribution does not represent
an observed physical phenomenon, such as the failure mechanism. Moreover, to
identify global failure as a continuum with damage, relations between RDA param-
eters and damage mechanics must be formulated first. Based on these relations, the
mode of failure is quantified by the characterizing parameters under the peak stress
as the critical creep coefficient and critical damage variable. The ultimate strain
is determined in the post-peak regime only, using the secant stress-strain relation
from damage mechanics. Consequently, the proposed approach is referred to as the
rheological-dynamical continuum damage model. The proposed model is shown to
provide very good predictions for the stress versus strain response in the pre-peak
regime. Within this global model the three main failure characteristics, the residual
stress, the critical value of interpenetration displacement and the crushing energy,
are theoretically evaluated. Finally, on the basis of four non-dimensional constants
the crushing energy is calculated for five concrete compositions.

2. RDA of a specimen subjected to compression load

2.1. RDA-a short overview. Material micro cracking is accompanied by
the loading of a specimen (concrete cylinder), leading to its damage and failure.
Consider the case of the VEP strain of a cylindrical specimen presented in Figure 1a.
In material investigations, both stress σ(t) and inelastic strain ε∗(t) = εve(t)+εvp(t)
are functions of time. If the total VEP strain ε(t) = εel + ε∗(t) is presented as a
sum of elastic (instantaneous), viscoelastic (VE) and viscoplastic (VP) components,
each isochronous stress-strain diagram of a prismatic specimen (e.g., with a square
or circular cross section A0) can accurately be approximated by the rheological
body H−K− (StV |N), consisting of five elements. The rheological body is shown
in Figure 1b using the following symbols: N for the Newtonian dashpot, StV
for Saint-Venant’s body, H for the Hookean spring, “|” for a parallel connection
and “—” for a connection in a series. Since the Hookean spring, Kelvin’s body
(K = H |N) and VP body (StV |N) are connected in a series, stresses σ(t) in all
the bodies are equal. Based on this rheological body, Milašinović [6] derived a
governing differential equation, i.e.,

(2.1)

ε̈(t) + ε̇(t)
(EK

λK
+

H ′

λN

)

+ ε(t)
EKH ′

λKλN

=
σ̈(t)

EH
+ σ̇(t)

( EK

λKEH
+

H ′

λNEH
+

1

λK
+

1

λN

)

+ σ(t)
( EK

λKλN
+

H ′

λKλN
+

EKH ′

λKλNEH

)

− σY
EK

λKλN

in which EH is the elastic modulus and σY is the uniaxial yield stress. The yield
condition is Y = σY + H ′εvp(t). The four properties at fixed step times are:
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extensional VE viscosity λK , extensional VP viscosity λN , VE modulus EK and
VP modulus H ′. However, these constants cannot easily be determined in phys-
ical experiments, especially Trouton’s viscosities λK and λN . The corresponding
homogeneous equation of the total VEP strain is as follows

(2.2) ε̈(t)λKλN + ε̇(t)(EKλN +H ′λK) + ε(t)EKH ′ = 0

Figure 1. Rheological-dynamical continuum damage model for
concrete cylinder (l0/φ = 2) under compression: a) damage state
of concrete cylinder; b) rheological model; c) dynamical model.

On the other hand, a mechanical longitudinal disturbance (strain) propagates
in an elastic medium at the finite initial phase velocity v0 = (EH/ρ)1/2, where ρ is
the density of the medium. The vibration at an arbitrary point M of the specimen
lags in the phase behind that at the source of the wave. If l0 is the initial distance
between the two ends of the specimen, the time required for a wave to travel from
one to the other end of it is t− t0 = TD

K = l0/v0. The natural angular frequency ω
of the discrete dynamical model, which represents the undamped free longitudinal
vibration of a specimen, is given by

(2.3) ω =

√

k

m
=

√

EHA0

l0

1

ρA0l0
=

v0
l0

=
1

TD
K

⇒ TD
K =

l0
v0

=
1

ω

m is the mass of the specimen and k its axial stiffness, as shown in Figure 1c.
Bearing in mind (2.2), an expression similar to (2.3) can be formulated, setting the
rheological model of the specimen into the state of critical viscous damping (c = ccr)

(2.4) ω =

√

EKH ′

λKλN
=

√

1

TKT ∗
=

1

TD
K

where EK/λK=H ′/λN , λK =EKTK , λN =H ′T ∗ and TK=T ∗=TD
K . Therefore,
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(2.5)

√

EH

ρ

1

l0
=

√

EKH ′

λKλN
⇒ λKλN =

EKH ′γl20
EHg

⇒ λKλN

γ
=

EKH ′A0l
2
0ρ

EHγA0

where γ is the specific gravity. Thus,

(2.6) m =
λKλN

γ
= k(TD

K )
2
, k =

EKH ′

γ
, ccr = 2

√
km = 2kTD

K

Consequently, the propagation of longitudinal elastic waves under instanta-
neously applied impact loading Q represents a physical basis for the analogy be-
tween two different physical phenomena, the rheological and dynamical. Then, (2.2)
may be expressed as follows

(2.7) ε̈(t)m+ ε̇(t)ccr + ε(t)k = 0

Therefore, a very complicated nonlinear problem in the VEP range of strains
may be solved as a simple linear dynamic one. Generally speaking, the RDA is
derived in order to solve dynamic problems [7], but it can be used in the analysis
of quasi-static loading (δ → 0) considering the corresponding limit values of de-
rived analytical expressions. For instance, each quasi-static stress-strain curve of
a specimen (bar, column, concrete cylinder, etc.) can be obtained using the RDA
modulus function, including the peak stress or compressive strength, which is the
main parameter for energy analysis. On the other hand, the J integral cannot be
applied to solve the problem of loading in compression of concrete cylinder although
the other fracture mechanics approaches can be applied.

2.2. RDA modulus and the structural-material constant of a speci-

men. The inelastic strain has been solved analytically using the sinusoidal excita-
tion σ(t) = σ0 + σA sin(ωσt) in a uniaxial loaded specimen [6]. The RDA modulus
in the state of critical viscous damping was obtained as follows

(2.8) ER(t) =

1+δ2

EH
+ 1

ED

K
(t)

+ 1
H′D(t)

1+δ2

E2
H

+
(

1
ED

K
(t)

+ 1
H′D(t)

)(

2
EH

+ 1
ED

K
(t)

+ 1
H′D(t)

)

where δ is the angular frequency ratio,

(2.9) δ =
ωσ

ω
= TD

Kωσ

The previous properties are replaced by the corresponding dynamic (marked
D), ED

K(t) and H ′D(t). ωσ is the frequency of excitation. When a specimen is
loaded cyclically, the rheological behavior is characterized by the dynamic time of
retardation TD

K = 1/ω, with the following dynamic VE modulus

(2.10) ED
K(t) =

EH

ϕ(t)

(

1− e−t/TD

K

)

=
EH

ϕ(t)

ϕ(t) is the VE creep coefficient (e−t/TD

K ≈ 0). According to the second formula of
(2.6), the dynamic VP modulus may be expressed by

(2.11) H ′D(t) =
kγ

ED
K(t)

=
A0γϕ(t)

l0
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In the case of quasi-static loading (δ → 0), the RDA modulus is given by

(2.12) ER(t) =
1

1
EH

+ 1
ED

K
(t)

+ 1
H′D(t)

If the behavior of the material cannot be VE (ED
K → ∞), its only response is

elastoviscoplastic. Therefore,

(2.13) ER(t) =
H ′D(t)

1 + H′D(t)
EH

Obviously, ER is equal to the tangent modulus ET at the selected moment
in time. In order to obtain the structural-material constant of a specimen in the
inelastic range, the elastic strain may be ignored or its value considered negligible
(1/EH ∼ 0). Therefore,

(2.14) ER(t) = H ′D(t) =
A0γϕ(t)

l0
=

ϕ(t)

K0EH

where

(2.15) K0 =
1

EKH ′
=

1

kγ
=

l0
A0

1

EHγ

K0 is the structural-material constant of a specimen (bar, column, concrete cylin-
der, etc.).

2.3. RDA modulus function. Consider now the linear law σ(ϕ) in concrete
in the interval tE < t < tF , as shown in Figure 2

(2.16) σ(t) = C · ϕ(t)

Figure 2. Linear change of stress with creep coefficient in concrete.

Time tE , when stress reaches the limit of elasticity, and tF , when failure occurs,
are experimentally measured values. The linear law gives

(2.17) σ(t) =
σE

ϕ∗
ϕ(t)

The Euler critical stress
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(2.18) σE = σcr =
EHπ2

λ2
E

can be used as a failure criterion for slender two-hinged specimens. The structural
creep coefficient ϕ∗ for the specimen length lE (slender elastic specimens) is deter-
mined based on the Euler and RDA curve intersection at the limit of elasticity [6]

(2.19) ϕ∗ = π2 i
3

I

1

γλE

in which i =
√
I/A0 is the minimum radius of gyration, λE = lE/i is the slenderness

ratio at the limit of elasticity, and I is the minimum moment of inertia of the cross
section about the centroidal axis. Hence, beyond the limit of elasticity, the linear
creep law takes the form of

(2.20) σcr =
1

KE
ϕcr

where KE is the structural-material constant at the limit of elasticity.

(2.21) KE = λE
i3

I

1

EH

1

γ

Thus, the RDA modulus function follows from (2.12)

(2.22) ER =
1

1
EH

+ ϕ∗

EH

+ 1
H′

=
EH

1 + ϕcr
=

EH

1 + σcrKE

where the critical creep coefficient includes inelastic strain, as found in concrete.

(2.23) ϕcr = ϕ∗ +
EH

H ′
= σcrKE

2.4. Quasi-static inelastic buckling curve. The inelastic critical stress of
the two-hinged specimen may be obtained as explained in [6]

(2.24) σcr = H ′EH =
A0γϕ

∗

l0
EH =

EH

l0
A0

1
γϕ∗

=
EH

l0
i
i3

I
1

γϕ∗

=
EH

λ0
i3

I
1

γϕ∗

The above critical stress is only an upper bound of critical stress in the inelastic
range of strains, because the elastic modulus and structural creep coefficient are
used. However, the elastic modulus must be replaced by the RDA modulus given
by (2.22), if the failure compressive strength is explored. This viewpoint will be
considered in Section 4.1. The minimal slenderness for which the Euler critical
stress can still be applied is slenderness λE at the limit of elasticity. Hence, the
quasi-static elastic and inelastic buckling curves are as follows

σcr,j =
π2

λ2
j

EH , for λj > λE ,(2.25)

σcr,j =
EH

λj
i3

I
1

γϕ∗

, for λj 6 λE(2.26)

where the effect of the specimen shape and size is included through the slenderness

(2.27) λj = lj/i, (j = 1, 2, 3, . . .)
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2.5. Average RDA stress-strain curve. The RDA modulus function can
be used further to obtain the quasi-static stress-strain curve, as follows

(2.28) ε =
σcr

ER(0)
=

σcr

E(0)
(1 + ϕcr) =

σcr

E(0)
(1 + σcrKE)

Thus, one quadratic equation takes the form of

(2.29) σ2
crKE + σcr − E(0)ε = 0

Slope E(0) is the elastic modulus of the material in its initial state. The root
of (2.29) under the initial conditions ε(0) = 0 and σcr(0) = 0 is the limit value of
critical stress for the selected strain or the average stress-strain curve. Then

(2.30) σcr =
1

2KE

(
√

1 + 4KEE(0)ε− 1
)

At the limit of elasticity, the slope is equal to the elastic modulus EH (known
value). Therefore,

(2.31) ER(0) = EH .

Thus,

(2.32) E(0) = EH(1 + ϕ∗).

As detailed by Van Mier et al. [1], the stress-strain curves of concrete are
dependent on two major parameters, testing conditions and concrete characteris-
tics. The key experimental parameters cited in [1] included the frictional restraint
between the loading platen and the specimen, the rotation of the loading platen
during the experiment, the gauge length of the control LVDT, the stiffness of the
testing machine, the type of the feed-back signal, the loading rate, the shape and
size of the test specimen and the concrete composition. It is therefore important
when using experimental data for verification and comparison that the experimental
parameters are fully listed. Concrete characteristics depend on many interrelated
variables such as the water-cement ratio, the mechanical and physical properties of
the cement and aggregate, and the age of the specimen when tested [11].

In this study, cylinders of slenderness l0/φ = 2 loaded between the steel plates
with low-fiction are tested only. The analytical stress-strain curve of concrete in the
ascending branch is obtained as a critical curve and can be computed using (2.30) if
the compressive strength, elastic modulus, concrete density and Poisson’s ratio are
experimentally evaluated. It is valid for various prismatic concrete samples (e.g.,
with a square or circular cross section A0) and different concrete compositions. To
identify the basic mechanism that leads to concrete damage growth, some primary
features of concrete behavior experimentally observed are presented first.

3. Relations between RDA parameters and damage mechanics

3.1. Creep coefficient-Poisson’s ratio dependence according to RDA.

The RDA approach to the analysis of the problem of effect of Poisson’s ratio on
the creep coefficient has already been described in [7]. In this approach, based on
the Bernoulli energy theorem and assuming that εE = σE/EH = 0.001, the creep
coefficient can be expressed by the formula
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(3.1) ϕ(µ)=
[( 1

1− 0.001µ

)4

− 1
] 1

2 · 0.001/
{

1−
[( 1

1− 0.001µ

)4

− 1
] 1

2 · 0.001
}

Figure 3 presents the function given by (3.1), whose results are in excellent
agreement with the experimentally obtained values.

Figure 3. Variation of creep coefficient with Poisson’s ratio.

Concrete is a semi-brittle material determined by the linear dependence of
logϕ on logµ. As it is shown, according to the criterion of the linear logarithm
ϕ − µ dependence, the upper boundary value of Poisson’s ratio is 0.25. Given
the observed variation in the concrete composition and experimental data, in the
absence of experimental data, a value of Poisson’s ratio between 0.15 and 0.20 is
appropriate for characterizing the elastic material response. In the inelastic regime
it increases to a certain critical value between 0.20–0.35. The above equation can
be simplified by neglecting the products of second-order exponents

(3.2)

[( 1

1− 0.001µ

)4

− 1
] 1

2 · 0.001

=

{

1

[1− 0.002µ+ (0.001µ)
2
][1− 0.002µ+ (0.001µ)

2
]
− 1

}

1

0.002

=

[

1

(1− 0.002µ)(1− 0.002µ)
− 1

]

1

0.002

=

[

1

1− 0.004µ+ (0.002µ)
2 − 1

]

1

0.002
=

( 1

1− 0.004µ
− 1

) 1

0.002

=
( 0.004µ

1− 0.004µ

) 1

0.002
=

2µ

1− 0.004µ
≈ 2µ

Thus,

(3.3) ϕ =
2µ

1− 2µ
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3.2. Dependence of damage variable on creep coefficient and Pois-

son’s ratio. Since the development of micro cracks induces a reduction in the
stiffness of materials, the damage state can also be characterized by variation in
the elastic modulus (Lemaitre and Chaboche [12]). Thus, the damage variable D
is characterized by variation in Young’s modulus E(D), as follows

(3.4) E(D) = (1−D)EH

If we suppose that variation E(D) is equal to the RDA modulus, (3.4) can be
expressed by

(3.5) (1 −Dcr)EH = ER = EH
1 + ϕcr + δ2

(1 + ϕcr)
2
+ δ2

⇒ Dcr =
(1 + ϕcr)ϕcr

(1 + ϕcr)
2
+ δ2

In the case of quasi-static loading (δ → 0), the critical damage variable is
given by

(3.6) Dcr =
ϕcr

1 + ϕcr
⇒ ϕcr =

Dcr

1−Dcr

Figure 4 shows one important relation between the critical damage variable
and the critical creep coefficient, where Dcr → 1 when ϕcr → ∞. Hence, damage
is described by a scalar Dcr taking on a value between 0 and 1.

Figure 4. Variation of critical damage variable with critical creep
coefficient.

Also, using (3.3), linear variation of the critical damage variable Dcr with
Poisson’s ratio is obtained. It is consistent with the known phenomenon of Poisson’s
ratio increasing under compressive load due to micro cracking.

(3.7) Dcr = 2µ

Eq. (3.4) provides a basis for the hypothesis of strain equivalence [12]. However,
the physical meaning ofDcr is usually interpreted as a decrease in the effective load-
carrying area (or effective resisting cross section area) due to void development [13]

(3.8) Ā = (1−Dcr)A0
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4. RDA study of uniaxial compression tests

4.1. RDA stress-strain curve. A compressive strength test was performed
on a concrete cylinder with a diameter of φ = 150mm and a height of l0 = 300mm,
see Figure 5. The cylinder was made of SikaGroutr212 concrete, a product of the
Swiss company Sika AG, which is primarily intended for structural reinforcement
(principle 4, method 4.2 of EN 1504-9).

Figure 5. Tested cylinder SG1 before (left) and after (right) en-
cumbering.

A concentric compressive load was applied using an automated hydraulic test-
ing machine Controls Automax 5 with a 3000kN capacity. Low-friction loading
was applied through steel plates, one of them pivoting. The load on the tested
specimen was measured with an oil pressure gauge with a 1 kN margin error. The
local strains were measured by means of three strain gauges parallel to the direction
of the applied load and centered at mid-height of the cylinder. The unstable de-
scending part of the stress-strain curve was not measurable with the experimental
setup used (load-controlled compression test). Loading Q was applied at rate cload.
However, the loading rate could not be established instantaneously, but the current
increased from zero to a final constant value in a very short time ∆t, see Figure 6.

Due to the change of the loading rate, the uniformly accelerated motion of load
(a = cload/∆t), which acts on the concrete cylinder, must be analyzed as shown in
Figure 7.

Let us determine the stresses σD in an arbitrary cross section at a distance x
of the cylinder shown in Figure 7. The observed part moves with acceleration a,
which means that a force equal to its mass times acceleration a must be included
in the equilibrium equation

(4.1) QD =
Q+ γA0x

g
a
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Thus, the dynamic stresses σD acting in the sectional plane of the cylinder will
balance not only the static load Q+ γA0x, but also the additional force QD

(4.2) σD =
Q+ γA0x

A0
+

Q+ γA0x

gA0
a =

Q+ γA0x

A0

(

1 +
a

g

)

The ratio (Q + γA0x)/A0 is the static stress σS in the observed section of the
cylinder. Therefore

(4.3) σD = σS

(

1 +
a

g

)

i.e., the dynamic stress is equal to the static stress multiplied by the coefficient
(1 + a/g).

The uniformly accelerated motion of load remains the same until the specimen
fails, because the loading rate is constant. After the failure, the acceleration is
lost and particles of the material are returned to the gravitational acceleration.
Therefore, the acceleration coefficient fγ , which must be used to adjust the specific
weight of the material γ = fγ ·γg (γg = ρ·g) in order to obtain its dynamic strength,
is given by

(4.4) fγ =
g

g − a

It should be noted that this coefficient corresponds to the recommended in-
crease of the measured elastic modulus [10]

(4.5) EH = 2.2 · 104[fc/10]0.3

fc is the measured strength of the standard concrete cylinder. The experimentally
evaluated mechanical properties of cylinder SG1 at the time of the test (28-day
strength) are listed in Table 1.

Table 1. Experimentally evaluated mechanical properties of con-
crete cylinder SG1.

Concrete property Test data
Density [kg/m3] 2265.5

Elastic modulus [MPa] 30994
Poisson’s ratio 0.185

Measured strength [MPa] 65.91

Figure 6. Increases and decreases of loading rate in very short time ∆t.
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Figure 7. Stresses in cylinder under uniformly accelerated mo-
tion of load.

The structural-material characteristics of concrete cylinder SG1 are listed in
Table 2.

The properties obtained at the limit of elasticity are presented in Table 3.
Depending on the acceleration coefficient fγ it is possible to construct any

number of curves. Two stress-strain curves are computed here using the properties
from Table 3 and the four experimentally evaluated characteristics of the material
given in Table 1 (see Figure 8). The first SG RDA-g curve is computed using the
gravitational acceleration g (fγ = 1) and can be treated as static

Table 2. Structural-material characteristics of concrete cylinder SG1.

Standard concrete cylinder: φ = 15 cm, l0 = 30 cm,
A0 = φ2π/4, I = φ4π/64, i =

√
I/A0 = φ/4 = 3.75 cm,

λ0 = l0/i = 8, i3/I = 1/φπ = 0.02122 cm−1.
Test data: EH = 30994MPa, µ = 0.185, γ = 2.2655 ·
10−3 kg/cm3.
Model Code 90: (EH = 42462MPa, difference 37%)

RDA prediction: ϕ∗ = 2µ
1−2µ = 0.5873 E(0) = (1 +

ϕ∗)EH = 49196.78MPa.

Table 3. Structural-material properties of concrete cylinder SG1
at the limit of elasticity.

RDA
prediction

Gravitational accel-
eration γg = ρ · g

Uniformly accelerated motion of
load γ = fγ · γg, fγ = 1.37

λE π2 i3

I
1

γϕ∗ 157.41 114.89

σE
π2EH

λ2
E

= ϕ∗EHγ

λE( i3

I
) 12.35 23.17

KE λE
i3

I
1

EHγ 0.047569 0.025344
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σS =
1

2 · 0.047569(
√
1 + 4 · 0.047569 · 49196.83 · ε− 1),

for εcr = 0.003575⇒ σcrF = 51.20MPa.
The dynamic SG RDA curve is computed using the acceleration coefficient

fγ = 1.37, which fits the percentage increase in measured elastic modulus of 37%,
as recommended in [10]

σD =
1

2 · 0.025344(
√
1 + 4 · 0.025344 · 49196.83 · ε− 1),

for εcr = 0.003575⇒ σcrF = 65.88MPa.
As a consequence of the hypothesis of strain equivalence, the same values

of peak strains follow from the static and dynamic stress-strain curves for peak
stresses.

As it is shown in Figure 8, the results of dynamic SG RDA curve are in agree-
ment with the experimentally evaluated values, especially beyond the limit of elas-
ticity. It should be noted that limit of elasticity is the border from which RDA is
developed.

Figure 8 also presents the static and dynamic RDA strain-stress curves calcu-
lated by (2.28) for different slenderness λj as explained in the Appendix.

εS,j =
σS crF,j

49196.83
(1 + σS crF,j · 0.047569),

εD,j =
σD crF,j

49196.83
(1 + σD crF,j · 0.025344),

λj = lj/i, (j = 1, 2, 3, . . .)

Although the strain-stress curves are derived from the RDA failure curve using
iterations, they are close to the stress-strain curves. It means that the theoretical
stress-strain curves are unique. The RDA curve (inelastic buckling curve) shown
in Figure 9 gives only an upper bound of inelastic critical stresses in the inelastic
range, because the elastic modulus EH and structural creep coefficient ϕ∗ are used
in (2.26). However, when stress exceeds the limit of elasticity the elastic modulus
must be replaced by the RDA modulus given by (2.22) to obtain the failure stress.
The RDA failure curve is obtained using the iterative procedure for all slenderness
λj(j = 1, 2, 3, . . .) as explained in the Appendix. The analyzed concrete cylinder
SG1 has slenderness λ0 = 8(l0/φ = 2), see Table 1. The lower slenderness limit
λD = 15(lD = 56.25 cm, lD/φ = 3.75) is found based on the intersection of the RDA
failure curve and the horizontal line corresponding to the measured strength. The
higher cylinders have smaller compressive strengths because of the size effect, see
Figure 9. Consequently, the RDA results are in full accordance with the conclusions
reported in [1], where for slenderness lj/φ greater than 2 (and up to 4) a constant
strength was measured.

The stress-strain curves are unique because they depend only on the four ex-
perimentally evaluated properties of the concrete. The specimen shape and size
effect are included through the slenderness.

4.2. Critical parameters under peak stress and ultimate strain. Van
Mier showed that localization of deformations occur in the post-peak regime in
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Figure 8. Test data for stress-strain pairs and RDA results for
stress-strain curves.

compression [14, 15]. Also, it has been clearly demonstrated by Hillerborg and
co-workers in 1976 [16] that in tensile fracture of concrete strain localization oc-
curs after stress has passed the peak point. Therefore, Hillerborg [17] suggested
that in compression failure a description of the stress-deformations properties by
means of a stress-strain diagram before the peak and a stress-deformation diagram
after the peak may be expected to be a more realistic material model than just
a simple stress-strain curve. Also, based on the Van Mier observations, Bažant
[18] analyzed the post-peak stress-strain relation on the basis of a series coupling
hypotheses. However, from the rheological point of view, the strain localization
hypothesis means that strain at the peak point is permanently restrained. Hence,
the relaxation of stress takes place as explained in [19]

(4.6) σRe l. =
σcr

1 + ϕcrF
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Figure 9. Quasi-static inelastic buckling curves for concrete
cylinder SG1.

Let us consider the concrete cylinder at the lower slenderness limit λD = 15
(lD/φ = 3.75). (2.26) gives the upper bound of the inelastic critical stress

σcr =
EH · fγ · γg · ϕ∗

λD

(

i3/I
) =

=
30994 · 1.37 · 2.2655 · 10−3 · 0.5873

15 · 0.02122 =

=
30994 · 0.0031 · 0.5873

15 · 0.02122 = 177MPa

The critical creep coefficient for the measured strength fc = 65.91MPa is as
follows

ϕcrF = σcrF ·KE = 65.91 · 0.025344 = 1.67.

Obviously, the relaxation of stress is equal to the measured strength

σRe l. =
177

1 + 1.67
= 66MPa

It means that the rheological-dynamical theory is in accordance with the hy-
pothesis of strain localization, and the measured strength can only be confirmed by
another test, i.e. a displacement controlled experiment. This paper is concerned
with the development of a new model of inelastic material behavior of concrete in
compression, alternative to other methods of nonlinear fracture mechanics or plas-
ticity previously published in the literature. The model has already been developed
for metals [8]. The model allows that a very complicated nonlinear problem may
be solved as a simple linear dynamic one. It is important to note that, from the
mathematical point of view, the creep coefficient is a global quantity, and therefore
it permits to characterize structural behavior without the need to model the details
of the actual failure mode of the specimen, which may vary from pure crushing to
diagonal shear failure, or even to splitting, depending on its size-scale and slen-
derness [1]. The dynamic stress-strain curve is well suited for taking into account
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the nonlinear response of concrete cylinder in the ascending branch and gives the
measured strength. The corresponding peak strain for the above analyzed cylinder
is εcr = 0.003575. Consequently, the critical creep coefficient for the peak dynamic
stress can be determined according to (2.27)

ϕcrF = σcrFKE = 65.88 · 0.025344 = 1.67

The critical damage variable for the peak dynamic stress can be determined
according to (3.6)

DcrF =
ϕcrF

1 + ϕcrF
=

1.67

2.67
= 0.6255

In the end, from the secant stress-strain relation given by (3.4), the ultimate
strain is given as follows

σcrF = (1−DcrF )EHεcrF ⇒ εcrF

εcrF =
σcrF

(1−DcrF )EH
=

65.88

(1− 0.6255)30994
= 0.005679

As a consequence of the hypothesis of strain equivalence, the same ultimate
strain follows from the static stress-strain curve

ϕcrF = 51.2 · 0.047569 = 2.44,

DcrF =
2.44

3.44
= 0.7089,

εcrF =
51.2

(1 − 0.7089)30994
= 0.005679

4.3. Mode of failure. Concrete is a semi-brittle material which collapse un-
der the peak stress σcrF (measured strength). The effective resisting cross section
area and the effective radius of the cylinder after the failure are shown in Figure 10
left. These failure properties can be determined according to (3.8)

Ā = (1−DcrF )A0 ⇒ r̄ = 7.5
√
1− 0.6255 = 4.59 cm

Consequently, the critical crack depth is equal to the difference between the
radius of the damaged cross section area A0 and the radius of the effective resisting
cross section area Ā.

acrF = 7.5− 4.59 = 2.91 cm

Figure 10 right shows cylinder SG1 after the experiment, with the mode of
failure clearly visible. The calculated value of the critical crack depth is in good
agreement with the measured value (2.43 cm).

It is well known that the compression strength after an experiment does not
vanish, but it tends to a residual value. According to the nature of the action
explained in Section 4.1, the specimen is loaded dynamically. After the failure, the
acceleration is lost in a very short time ∆t, see Figure 6. The result of this process
is a decrease in the dynamic compressive strength to the static value (SG RDA-g
curve). However, because of the negative acceleration after the failure, a fictitious
stress exists for a very short time ∆t

(4.7) σfictitious = σS

(

1− a

g

)
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Figure 10. Mode of failure left, and measured value of critical
crack depth right.

Therefore, the stress-strain curve ends as shown in Figure 11. It means that
the softening branch exists. Consequently, the established difference between the
dynamic and the static strength is the residual stress level remaining in the material,
and it is a consequence of the uniformly accelerated motion of load during the
examination of compressive strength

(4.8) σresidual = σcrF − σcr

The residual stress is transmitted through the effective resisting area of the
cylinder that remains after its failure, see Figure 10. For the above analyzed
concrete cylinder σresidual/fc = 0.212% is obtained. Equations of the uniformly
accelerated motion of load and acceleration coefficient give a = 0.27g, fγ = 1.37.

In this paper damage mechanics is referred to for the post-peak regime only.
The damage parameter DcrF given in (3.8) is defined as a scalar, with the effective
resisting area Ā corresponding to the damaged area A0, as presented in Figure 10.
This concept pertains because the total inelastic strain, which is free after the
failure for a very short time ∆t (Figure 6), is really the ultimate strain caused by
the critical failure stress. From the secant stress-strain relation given by (3.4), the
ultimate strain is given as presented in the diagram shown in Figure 11

(4.9) εcrF =
σcrF

(1 −DcrF )EH
=

σcrF

EH
(1 + ϕcrF ) =

σcrF

ERF

Also, from the strain-stress curve given by (2.28), the ultimate strain is obtained
as follows

(4.10) εcr =
σcrF

EH(1 + ϕ∗)
(1 + ϕcrF ) ⇒ εcrF = εcr(1 + ϕ∗)

It means that the total inelastic strain is really the ultimate strain and the post-
peak behavior depends on the pre-peak behavior. The proposed RDA model relies
on global parameters to connect pre-peak behaviour with post-peak behaviour, and
should only be considered holistically. That is precisely what distinguishes it from
the Hillerborg model [17], where two independent curves are used for analysis,
a stress-strain curve for the ascending part (before the peak stress), and a stress-
deformation curve for the descending part. The damaged material of the cylinder is
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assumed to be able to transfer compressive stress between the overlapping surfaces,
see Figure 10 left. Concerning such stresses, they are assumed to be a decreasing
function of the interpenetration w [4]. The critical value of the interpenetration
displacement is determined so that areas FII and FIII under the softening branch
(including the elastic unloading portion FI), as shown in Figure 11, are equal
to the crushing energy GC . When the residual stress is reached in load-controlled
experiments, the tested specimen is no longer under loading, and the ultimate strain
cannot increase. Accordingly, two key failure properties can be calculated. The
critical value of the interpenetration displacement shown in Figure 11 is as follows

(4.11) wcr = [εcrF − εcr + (σcrF − σE)/EH ]l0

The crushing energy can be calculated as presented in the diagram shown in
Figure 11

(4.12)

GC = (FI + FII + FIII)l0

=

[

1

2

σ2
cr

EH
+

1

2
σresidual(εcrF − εcr) + (σcr − σresidual)(εcrF − εcr)

]

l0

For the above analyzed concrete cylinder is obtained

wcr = [0.005679− 0.003575+ (65.91− 23.17)/30994] · 300 = 1.04mm

GC = (0.042289+ 0.015475+ 0.076775) · 300 = 40.36N/mm

Figure 11. Stress-strain curve, critical interpenetration displace-
ment and crushing energy.

It is well known that the sharp bend at the peak stress in the uniaxial stress-
strain diagram is not realistic. Because of that a decrease in the dynamic compres-
sive strength to the static value, which leads to the linear post-peak softening, is
a logical explanation based on load-controlled experiments (Figure 6). Hence, the
calculated values of the two key parameters are in agreement with the observed test
values for similar concrete samples that can be found in literature, although they
were obtained using displacement controlled experiments. Also, it should be noted
that the critical interpenetration displacement corresponds to σresidual = 0.2σcrF

according to the experimental evidence [4]. However, it is to be noted that these
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two key failure properties essentially describe the response of the central zone of
the cylinders only, which is generally accepted to be subjected to a near-uniform
uniaxial compressive stress, in contrast to the complex and indefinable compres-
sive state of stress imposed on the end zones by frictional restraints due to the
interaction between the specimen and loading device [3]. From the findings which
have been presented the static loading may be simulated if uniformly acceleration
motion of load is zero (a = 0). Hence, σD = σS and σfictitious = σS . Also, the
acceleration coefficient fγ = 1 and RDA-g curve valid as shown in Figure 12. The
residual stress level is zero. It means that presented stress-strain diagram for con-
crete in compression is the same type as proposed in many current codes only for
static loading. The expression given in (3.8) implies that DcrF = 0.6255 for the
peak dynamic stress corresponds to the damage state with the effective resisting
area of the cylinder that remains after its failure. However, DcrF = 0.7089 for the
peak static stress is a critical value which corresponds to the failure of the cylinder
in two parts, because the residual stress level is zero. It is important to note that
according to Lemaitre [20], the critical value of the damage variable lies in the
range 0.2 ≤ DcrF ≤ 0.8 for metals. Hence, two key failure properties under static
loading can be calculated as follows

wcr = [εcrF − εcr + (σcr − σE)/EH ]l0

= [0.005679− 0.003575+ (51.2− 12.35)/30994] · 300 = 1.01mm

GC = (FI + FII)l0 =

[

1

2

σ2
cr

EH
+ σcr(εcrF − εcr)

]

l0

= (0.042289+ 0.107725) · 300 = 45N/mm

Figure 12. Stress-strain curve, critical interpenetration displace-
ment and crushing energy under static loading.

5. Comparative analysis for five concrete compositions

5.1. Experimental tests and model verifications. An experimental inves-
tigation was carried out to explain the compression behavior of standard concrete
cylinders with a strength range of 20 − 80MPa. The presented experimental re-
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search was conducted at the Materials and Structures Testing Laboratory of the
Faculty of Civil Engineering in Subotica, Serbia. A series of tests were performed
on five concrete compositions. The measured values of concrete density, elastic
modulus, Poisson’s ratio and compression strength are listed in Table 4.

Table 4. Experimentally evaluated mechanical properties for five
concrete compositions.

Type
of
concrete

Concrete
density

Elastic
modulus

Poisson’s
ratio

Compression
strength

[kg/m3] [MPa] [MPa]
HCS-04 2289 49211 0.175 76.82
SG 2265.5 30994 0.185 65.91
NSC 2325 28700 0.217 57.27
CC-1 2228.6 27404 0.180 38.90
C20 2125 23421 0.165 25.00

HCS-04: Repair mortar cement, polymers, minerals, and chemicals and fillers-
based; SG: SikaGroutr212 repair mortar; NSC : Normal-strength concrete; CC-1 :
Normal-strength concrete; C20 : Concrete strength class.

Table 5. Numerically defined dynamic and static RDA curves for
five concrete compositions.

Dynamic RDA curve

HCS-04 1
2·0.017054 (

√
1 + 4 · 0.017054 · 75709.23 · ε− 1)

SG 1
2·0.025344 (

√
1 + 4 · 0.025344 · 49196.83 · ε− 1)

NSC 1
2·0.019906 (

√
1 + 4 · 0.019906 · 50707.16 · ε− 1)

CC-1 1
2·0.030928 (

√
1 + 4 · 0.030928 · 42818.75 · ε− 1)

C20 1
2·0.045456 (

√
1 + 4 · 0.045456 · 34956.72 · ε− 1)

Static RDA curve

HCS-04 1
2·0.032009 (

√
1 + 4 · 0.032009 · 75709.23 · ε− 1)

SG 1
2·0.047569 (

√
1 + 4 · 0.047569 · 49196.83 · ε− 1)

NSC 1
2·0.037360 (

√
1 + 4 · 0.037360 · 50707.16 · ε− 1)

CC-1 1
2·0.058048 (

√
1 + 4 · 0.058048 · 42818.75 · ε− 1)

C20 1
2·0.085316 (

√
1 + 4 · 0.085316 · 34956.72 · ε− 1)

The HCS-04 cylinder was made of a high-quality, two-component concrete mix,
commercially available by the name PolimagrHK-04. The liquid component con-
tains water, cement polymer and plasticizer, while the powder component con-
tains cement, crushed carbonaceous stone aggregates, powdered filler and miner-
als. These components were mixed in a concrete mixer and no additional materials
were added. The SG type concrete was a high strength, low shrinkage, expanding
material commercially known as SikaGroutr212. It is a powdered concrete mix
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which contains cement, crushed stone aggregate and powdered cement additives.
In accordance to the manufacturer recommendations, fresh concrete was prepared
by adding 3.7 liters of drinking water to one 28 kg bag of SikaGrout. The mix pro-
portions for other concrete compositions were: NSC (portland cement (PC) CEM

II/B-M: 500 kg/m
3
; water: 200 kg/m

3
; fine aggregate: 991 kg/m

3
; coarse aggregate:

633 kg/m
3
), CC-1 (PC CEM II/A-M: 445 kg/m

3
; water: 250 kg/m

3
; fine aggregate:

465 kg/m3; coarse aggregate: 1100 kg/m3) and C20 (PC CEM II/B-M: 395 kg/m3;

water: 280 kg/m
3
; sand: 420 kg/m

3
; coarse aggregate: 1165 kg/m

3
). The concrete

mix was designed for compressive cylinder strength fc at 28 days of approximately
20-80 MPa. The concrete properties at the time of the test are presented in Table 4.
The numerically defined dynamic and static RDA curves are presented in Table 5.
The acceleration coefficient fγ = 1.37 was used in the computation for all concrete
compositions.

The experimentally evaluated and numerically computed dynamic stress-strain
curves shown in Figure 13 are in excellent agreement beyond the limit of elasticity,
because the limit of elasticity is the border from which the rheological-dynamical
theory is developed.

It was observed that the mechanical response of concrete in uniaxial compres-
sion can be well explained through the measured strengths. Figure 14(1) shows
that all recommended elastic modules are between 30 and 40 percent greater than
the measured values, except for concrete with the maximum strength, where the
measured modulus is higher than recommended. Consequently, it is proved in this
study that the presented procedure for the computation of the stress-strain curves
is more objective than standard computation involving elastic modulus adjustment
procedures. Figure 14(2) shows that different strengths can be obtained for ma-
terials of different densities, with strength obviously growing with the growth of
concrete density. This opens up possibilities for new studies on the basis of which
two important questions may be answered. First, what is the relationship between
density and strength if the porosity (density) of the same concrete mixtures is
varied and second, what is this relationship if the concrete density is changed by
varying the aggregate density? An adequate answer to these questions is possi-
ble to obtain with the application of the proposed RDA model because the model
uses four measured mechanical properties, density, elastic modulus, Poisson’s ratio
and compressive strength, which are functionally linked in the proposed model.
Figure 15(1) presents the variation of the measured Poisson’s ratio with strength,
which coincides with the variation of the computed VE creep coefficient shown in
Figure 15(2).

Figure 16(1) illustrates the variation of the elastic stress with the function at
its minimum for the above analyzed concrete cylinder, while the one (2) illustrates
the variation of the structural-material constant, with the function at its maximum
for the same specimen.

Figure 17(1) shows the logical linear relationship between the dynamic and
static strengths. However, the peak strain shown in Figure 17(2) is a function at
its maximum value for the above analyzed concrete cylinder.
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Figure 13. Comparison of test data for stress-strain pairs and
dynamic RDA curves for five concrete compositions.

The next important aspect of this study is the computation of the critical
parameters under peak stress and ultimate strains (see Section 4.2). Figures 18
and 19 illustrate the same type of function with maximum values for the above
analyzed concrete cylinder.

The failure mode of the standard concrete cylinder is discussed in Section 4.3.
The relevant global properties are: effective resisting cross section area, critical
crack depth, critical interpenetration displacement and residual stress level. These
properties are shown in Figures 20 and 21. The effective resisting cross section
area for the above analyzed concrete cylinder is at its minimum in the presented
function, while the other properties are at their maximum. The calculated values of
critical crack depths are in excellent agreement with the measured value (2.43 cm),
see Figure 10(2). It should be noted that critical crack depths are measurable after
the failure of tested cylinders in the load-controlled compression test and because
of that they can be used for experimental verification of RDA approach. When the
interpenetration displacement reaches the critical value, the concrete cylinder can
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(1)

(2)

Figure 14. Comparison of measured elastic modulus with recom-
mended values (1), and variation of concrete density with varying
strength (2).

transfer only constant residual stress through the effective resisting cross section
area. According to the experimental and theoretical investigation in this study,
the critical interpenetration displacement corresponds to σresidual = 0.2124σcrF ,
see Figure 21(2).

The common key properties that characterize the global failure mode of the
concrete cylinder are the crushing energy and brittleness ratio, see Figure 22. The
growth of the crushing energy with the growth of strength shown in Figure 22(1) is
logical and expected. However, the presented function is at its maximum in the case
of the concrete cylinder analyzed in Section 4.3, although one of the specimens has
greater measured strength. Obviously, the reason lies in the fact that the analyzed
cylinder has greater ultimate strain, as shown in Figure 19(2).
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(1)

(2)

Figure 15. Variation of Poisson’s ratio with strength (1), and VE
creep coefficient with strength (2).

The function of the brittleness ratio is shown in Figure 22(2), with the function
minimum occurring for the above analyzed concrete cylinder. This material char-
acteristic is closely related to the ultimate strain because ductile materials have a
lower brittleness ratio.

It is important to emphasize that the measured concrete properties are charac-
terized by much higher dispersion than the relevant parameters which characterize
the failure mode of concrete cylinders, see Table 6.

Although the concrete properties measured in the case of the SG cylinder are
not the best, the most favorable failure characteristics are obtained if the criterion
of the brittleness ratio is adopted as authoritative. On the other hand, the MB20
concrete cylinder test data are least favorable, and this is where the brittleness ratio
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(1)

(2)

Figure 16. Variation of elastic stress with strength (1), and
structural-material constant with strength (2).

has a maximum value. This means that this type of concrete is the worst. Hence,
it is obvious that an optimization approach to find the best concrete composition
may be useful.

5.2. Model parameters identification. The presented theory describes the
critical stress-strain response of material in compression before the peak for five
different concrete compositions, which are experimentally verified. This approach
covers also the degradation of stiffness and strength with limited ductility in the
post-peak regime, because it combines damage mechanics. Consider the SG con-
crete cylinder, whose measured properties are given in Table 1 (concrete density:
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(1)

(2)

Figure 17. Variation of dynamic and static strengths (1), and
peak strain and strength (2).

ρ = 2265.5 kg/m
3
; elastic modulus: 49211MPa; Poisson’s ratio: 0.185; compres-

sion strength: fc = 65.91MPa). The acceleration coefficient is fγ = 1.37. The
model parameters identification where the structural creep coefficient is the main
parameter gives

ϕ∗ =
2 · µ

1− 2 · µ =
2 · 0.185

1− 2 · 0.185 = 0.5873

E(0) = (1 + ϕ∗) ·EH = (1 + 0.5873) · 30994 = 49196.83MPa

λE = π2 i
3

I

1

fγ · γg · ϕ∗
= π2 · 0.02122 1

1.37 · 2.2655 · 10−3 · 0.5873 = 114.89
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(1)

(2)

Figure 18. Variation of critical creep coefficient and strength (1),
and critical damage variable and strength (2).

KE = λE
i3

I

1

EH · fγ · γg
= 114.89 · 0.02122 1

30994 · 1.37 · 2.2655 · 10−3 = 0.025344

The peak compression strain may be obtained from the measured strength
using (2.28)

εcr =
fc

E(0)
(1 + fcKE) =

65.91

49196.83
(1 + 65.91 · 0.025344) = 0.003577

The global mode of failure is determined by the critical parameters under the
peak stress as well as ultimate strain

ϕcrF = fcKE = 65.91 · 0.025344 = 1.67
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(1)

(2)

Figure 19. Variation of critical Poisson’s ratio and strength (1),
and ultimate strain and strength (2).

DcrF =
ϕcrF

1 + ϕcrF
=

1.67

2.67
= 0.6255

εcrF =
fc

(1 −DcrF )EH
=

65.91

(1 − 0.6255)30994
= 0.005679

The area below the stress-strain curve in Figure 11 represents the crushing energy
per unit area for standard concrete cylinders, which can be calculated from

(5.1) GC = 93 · f2
c

EH
+ 204 · fc · (εcrF − εcr)
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(1)

(2)

Figure 20. Variation of effective resisting area and strength (1),
and critical crack depth and strength (2).

with four non-dimensional constants valid for all concrete compositions

(5.2)

σresidual/fc = 0.2124

σS/fc = 0.7876

a/g = fc/σS − 1 = 0.27

fγ =
1

1− a/g
= 1.37

Owing to the present, fundamentally new investigations, our understanding of
concrete failure in compression may be achieved from both theoretical and exper-
imental viewpoints. The residual stress level is what principally distinguishes it
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(1)

(2)

Figure 21. Variation of critical interpenetration displacement
and strength (1), and σresidual/σcrF ratio and strength (2).

from tensile fracture, but it is a consequence of the uniformly accelerated motion of
load during the examination of compressive strength. The main concrete properties
which must be used for the numerical calculation of the crushing energy by (5.1)
are given in Table 7.

6. Conclusions

The proposed approach for global failure analysis of concrete in compression
combines the RDA and damage mechanics. The RDA modulus is used to obtain
one simple continuous modulus function and a stress-strain curve. The key global
quantities, such as the creep coefficient, Poisson’s ratio and damage variable, are
functionally related. The critical values of the creep coefficient and damage vari-
able under the peak stress (measured strength) are used to describe the global
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(1)

(2)

Figure 22. Variation of crushing energy and strength (1), and
brittleness ratio and strength (2).

failure mode of concrete cylinders. The ultimate strain is formulated in the post-
peak regime only, using the secant stress-strain relation from damage mechanics.
The softening branch exists as explained in Section 4.3. The residual stress is a
consequence of uniformly accelerated motion of load during the examination of com-
pressive strength. The present study analyzes experimentally five different concrete
compositions before the peak stress. The dynamic and static stress-strain curves
are computed taking into account four measured properties of concrete. The same
acceleration coefficient for all concrete compositions is used to obtain the dynamic
curves, which are in excellent agreement with the values measured beyond the limit
of elasticity. The results are also in full compliance with the conclusions reported
by RILEM TC 148-SSC [1]. The measured concrete properties have much higher
dispersion than relevant parameters which characterize the failure mode. Hence,
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Table 6. Influence of identified model parameters.

Identified model parameter HCS-04 SG NSC CC-1 C20
Density max. min.
Elastic modulus max. min.
Poisson’s ratio max. min.
Compression strength max. min.
Structural creep coefficient max. min.
Critical creep coefficient max. min.
Critical Poisson’s ratio max. min.
Critical damage variable max. min.
Critical crack depth max. min.
Peak compression strain max. min.
Ultimate compression strain max. min.
Interpenetration displacement max. min.
Crushing energy max. min.

Table 7. Main concrete properties and crushing energies calcu-
lated with four non-dimensional constants valid for all concrete
compositions.

Type of

concrete

fc EH εcr εcrF GC

[N/mm2] [N/mm2] [N/mm]
HCS-04 76.82 49211 0.00235 0.00361 30.84
SG 65.91 30994 0.003577 0.00568 41.32
NSC 57.27 28700 0.0024 0.00427 32.48
CC-1 38.90 27404 0.002 0.00313 14.08
C20 25.00 23421 0.001525 0.00228 6.33

it is obvious that an optimization approach to find the best concrete properties
may be useful. Finally, the crushing energy per unit area for standard concrete
cylinders is calculated, with four non-dimensional constants valid for all concrete
compositions. The calculated crushing energies are in agreement with the observed
test values of similar concrete specimens that can be found in literature, which were
obtained in displacement controlled experiments.

7. Appendix

RDA strain-stress curve Following Milašinović [6], the RDA modulus func-
tion ER(σcr) may be used to obtain compressive strength σcrF , which occurs when
the current critical stress does not change the RDA modulus in the next iteration.

For the computed value of σ
(0)
cr , according to (2.24)

(7.1) σ(0)
cr =

EH

λ0
i3

I
1

γϕ∗
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an appropriate E
(1)
R may be calculated according to (2.22)

(7.2) E
(1)
R =

EH

1 + σ
(0)
cr Kϕ

and then a new σ
(1)
cr recalculated

(7.3) σ(1)
cr =

E
(1)
R

λ0
i3

I
1

γϕ∗

This iterative procedure must be performed until there is convergence to stress σcrF

(7.4) σ(n)
cr = σcrF =

E
(n)
R

λ0
i3

I
1

γϕ∗

The above stress represents the compressive strength of the concrete cylinder. The
RDA modulus is as follows

(7.5) E
(n)
R =

EH

1 + σ
(n−1)
cr Kϕ

=
EH

1 +
E

(n−1)
R

EH

λE

λ0
ϕ∗

This iterative procedure may be repeated for different slenderness ratios λj =
lj/i(j = 1, 2, 3, . . .) and the RDA failure curve can be drawn (see the RDA fail-
ure and RDA-g failure curves shown in Figure 9. In the end, compressive strengths
σcrFj may be used to obtain the RDA strain-stress curve using (2.28)

(7.6) εj =
σcrFj

ER,j(0)
=

σcrFj

E(0)
(1 + ϕcrFj) =

σcrFj

EH(1 + ϕ∗)
(1 + σcrFjKϕ)

Figure 8 presents strain-stress curves named as the RDA strain-stress curve
and the RDA strain-stress curve-g, which are obtained using (7.6).

Acknowledgments. The work presented in this paper is a part of the inves-
tigation conducted within the research projects ON 174027 “Computational Me-
chanics in Structural Engineering” and TR 36017 “Utilization of by-products and
recycled waste materials in concrete composites for sustainable construction devel-
opment in Serbia: investigation and environmental assessment of possible applica-
tions”, supported by the Ministry of Science and Technology, Republic of Serbia.
This support is gratefully acknowledged.

References

1. J. G. M. Van Mier, S. P. Shah, M. Arnaud, et al., Strain-softening of concrete in uniaxial
compression, Mater. Struct. 30(4) (1997), 195–209.

2. M. D. Kotsovos Effect of testing techniques on the post-ultimate behaviuor of concrete in
compression, Materiaux et Constructions 16(91) (1983), 3–12.

3. F. Indelicato, M. Paggi, Specimen shape and the problem of contact in the assessment of
concrete compressive strength, Mater. Struct. 41(2) (2008), 431–441.

4. A. Carpinteri, M. Corrado, M. Paggi, An analytical model based on strain localisation for the
study of size-scale and slenderness effects in uniaxial compression tests, Strain 47 (2011),
351–362.

5. M. A. Youssef, M. Moftah, General stress-strain relationship for concrete at elevated temper-
atures, Eng. Struct. 29 (2007), 2618–2634.



RHEOLOGICAL-DYNAMICAL CONTINUUM DAMAGE MODEL FOR CONCRETE... 109
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13.  L. M. Kachanov, Introduction to Continuum Damage Mechanics, Martinus Nijhoff, Dordrecht,
1986.

14. J. G. M. Van Mier, Multiaxial strain-softening of concrete part I: Fracture, Mater. Struct.
19(3) (1986), 179–190.

15. , Multiaxial strain-softening of concrete part II: Load-Histories, Mater. Struct. 19(3)
(1986), 190–200.

16. A. Hillerborg, M. Modeer, P. E. Petersson, Analysis of crack formation and crack growth in
concrete by means of fracture mechanics and finite elements, Cement and Concrete Research
6(6) (1976), 773–781.

17. A. Hillerborg, Fracture mechanics concepts applied to moment capacity and rotational capac-
ity of reinforced concrete beams, Eng. Fract. Mech. 35(1/2/3) (1990), 233–240.
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REOLOXKO-DINAMIQKI KONTINUUMSKI MODEL

OXTE�EǋA BETONA IZLOЖENOG JEDNOAKSIJALNOM

PRITISKU I ǋEGOVA EKSPERIMENTALNA POTVRDA

Rezime. U radu je predstavǉen novi model za predvi�aǌe odziva betona
izloжenog jednoaksijalnom pritisku. Predloжeni pristup koji je naz-
van reoloxko-dinamiqki kontinuumski model oxte�eǌa materijala kom-
binuje reoloxko-dinamiqku analogiju i mehaniku oxte�eǌa. U okviru
ovog pristupa funkcionalno su povezani kǌuqni parametri kontinuuma,
kao xto su Poasonov keoficijent i skalarna varijabla oxte�eǌa. Za
odre�ivaǌe oblika i vrste loma uzorka izloжenog pritisku korixtene
su kritiqne vrijednosti poasonovog koeficijenta i skalarne varijable
oxte�eǌa pri naponu koji odgovara qvrsto�i na pritisak. Graniqna de-
formacija je odre�ena u post-kritiqnom podruqju korixteǌem sekantne
veze napon-deformacija iz mehanike loma. Prikazani su podaci za pet
betonskih mjexavina dobivenih eksperimentalnim istraжivaǌima. Os-
novna razlika izme�u loma uzorka izloжenog pritisku i loma uzorka
izloжenog zatezaǌu je zaostali napon koji je posǉedica jednoliko ubr-
zanog kretaǌa optere�eǌa tokom ispitivaǌa qvrsto�e na pritisak. Kri-
tiqno pomjeraǌe odnosno me�usobno prodiraǌe u materijalu i energija
loma pri pritisku su dobiveni teorijski na bazi koncepta globalne
analize loma.
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