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Abstract. In the present paper, a theoretical analysis of entropy generation
due to fully developed flow and heat transfer through a parallel plate channel
partially filled with a porous medium under the effect of transverse magnetic
field and radiation is presented. Both horizontal plates of the channel are kept
at constant and equal temperature. An exact solution of governing equation
for both porous and clear fluid regions has been obtained in closed form.
The entropy generation number and the Bejan number are also calculated.
The effects of various parameters such as magnetic field parameter, radiation
parameter, Brinkman number, permeability parameter, ratios of viscosities

and thermal conductivities are examined on velocity, temperature, entropy
generation rate.

1. Introduction

Entropy generation minimization studies are vital for ensuring optimal thermal
systems in contemporary industrial and technological fields like geothermal systems,
electric cooling, heat exchangers, MHD power generators and energy storage sys-
tems etc. Analysis of thermodynamic irreversibility in a channel partially filled
with a porous medium and partially with a clear fluid, in the presence of transverse
magnetic field and thermal radiation appears to be increasingly important due to
its various applications in engineering and industries such as in the field of solar en-
ergy collection, enhanced oil recovery, nuclear reactor cooling, electronic packages,
thermal insulation and petroleum reservoirs. Moreover, many engineering processes
occur at high temperature and acknowledge radiation heat transfer become very
important for the design of pertinent equipment (Sparrow and Cess [1], Raptis
et al. [2], Singh [3]). Several researchers such as Chauhan and Rastogi [4], Vyas
and Srivastava [5] and Manglesh and Gorla [6] have discussed the MHD flow and
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heat transfer through porous medium in the presence of radiation under various
configurations.

The foregoing discussions that deals with the radiative MHD flow in porous
channels are very much restricted to the aspect of the first law of thermodynamics,
and none of them carried out a second law based analysis to discuss the nature of
the irreversibility in terms of entropy generation. The concept of entropy generation
due to viscous fluid flow and heat transfer is introduced by Bejan [7–9] to analyze
the efficiency of various system designs. Entropy generation is associated with ther-
modynamic irreversibility, which is common in all types of heat transfer processes.
Moreover, in thermodynamic analysis of flow and heat transfer processes, one thing
of core interest is to improve the thermal systems to avoid the energy losses and
fully utilize the energy resources. Since entropy generation is the measure of the
destruction of the available work of the system, the determination of the factors
responsible for the entropy generation is also important in upgrading the system
performances. Efficient utilization of energy is the primary objective in the design
of any thermodynamic system. This can be achieved by minimizing entropy gener-
ation in processes. Many investigators examined the effects of entropy generation
in ducts and channels of different configurations filled with a porous material, such
as Al-Odat et al. [10], Damesh et al. [11], Makinde [12, 13], Chauhan and Ku-
mar [14], Das and Jana [15,16], Vyas and Rai [17], Eegunjobi and Makinde [18],
Rajvanshi et al. [19]. Entropy generation in channels partially filled with porous
materials is not investigated much. Morosuk [20], Komurgoz et al. [21], Chauhan
and Kumar [22,23] studied entropy generation for incompressible and compressible
fluid flow in conduits and channel partially filled with a porous medium.

In the present study, the entropy generation in MHD Poiseuille flow in a hor-
izontal channel partially filled with a porous medium and partially with a clear
fluid under the effect of radiation is considered. Both the channel plates are sta-
tionary and maintained at constant and equal temperatures. It has been reported
by Levy [24] that the fluid flow through porous media is governed by the Brinkman
equation for smaller particles while the Darcy model is valid for coarse particles.
However there is some uncertainty about validity of the Forchheimer model for fine
particles, and therefore the Darcy-Brinkman model has been taken for moderate
flow in this study. Closed form solution has been obtained for the fluid veloci-
ties, temperatures and entropy generation rates in both the clear fluid region and
porous region. The variations of the velocity and temperature fields, entropy gen-
eration rate, and Bejan number are investigated for various values of the magnetic
field parameter, Brinkman number, Radiation parameter, permeability parameter,
viscosity and conductivity ratio parameters.

2. Mathematical formulation and solution

We consider fully developed, steady, laminar Poiseuille flow of an electrically
conducting, incompressible fluid in channel bounded below by a fluid saturated
porous medium under the effect of a transverse magnetic field B0 applied normal
to the flow direction. Both the plates are impermeable and maintained at a uniform



ENTROPY GENERATION IN POISEUILLE FLOW... 37

temperature Tw. The x-axis is taken in the flow direction and the y-axis is taken
normal to the porous layer interface. Let u1, v1, w1 and u2, v2, w2 be the velocity
components and t1, t2 be the temperatures for the clear-fluid region and porous
region respectively. The channel is infinitely long, and the Navier–Stokes equations
govern the clear-fluid region flow while the Brinkman model has been used to model
the flow through the porous medium.

The governing momentum and energy equations for steady state fully developed
Poiseuille flow are given as follows:

For clear-fluid region-I (h 6 y 6 d)
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The corresponding boundary and matching conditions are:

at y = 0; u2 = 0, t2 = Tw,

at y = h; u1 = u2, t1 = t2, µ̄
du2
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= k
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,

at y = d; u1 = 0, t1 = Tw.

Here µ̄ is the effective viscosity; µ the fluid viscosity; K0 the permeability;
k̄ the effective thermal conductivity; k the thermal conductivity; σ the electric
conductivity; B0 the magnetic field intensity; qr the radiation flux; h the width
of the porous medium; d the width of the channel; and dp

dx
the applied pressure

gradient.
It is assumed that the medium is optically thin and with relatively low density.

Following Cogley et al. [25] equilibrium model, we therefore take expression of the
radiative heat flux as follows:
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where Kλω is the absorption coefficient at the plate and ebλ is the plank constant.
We introduce the following dimensionless quantities:
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where u0 = − d2

µ
dp
dx

is the reference velocity; φ1 the viscosity ratio; φ2 the conduc-

tivity ratio; K the permeability parameter; M2 the magnetic field parameter; Br
the Brinkman number and F is the radiation parameter.

Using non-dimensional quantities, the governing dimensionless equations of the
present problem, for flow and temperature distribution after dropping asterisks for
convenience, are given by:

For clear-fluid region-I (a 6 y 6 1)
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−M2u1 + 1 = 0,(2.1)
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For porous region-II (0 6 y 6 a)
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The corresponding dimensionless boundary and matching conditions of the present
problem are given by:

at y = 0; u2 = 0, θ2 = 0,

at y = a; u1 = u2, θ1 = θ2, φ1
du2

dy
=

du1

dy
, φ2

dθ2
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=

dθ1
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,

at y = 1; u1 = 0, θ1 = 0.(2.5)

Equations (2.1)–(2.4) are solved under the corresponding boundary/matching con-
ditions (2.5), and we obtain the expressions for velocity and temperature profiles
as follows:
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The rate of heat transfer at the plates y = 1 and y = 0 can be obtained from (2.6)
and (2.7) respectively as
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3. Entropy generation

Second law analysis in terms of entropy generation rate is a useful tool for
predicting the performance of the engineering processes by investigating the irre-
versibility arising during the processes. Following Woods [26], the local volumetric
rate of entropy generation in the presence of a magnetic field for both clear fluid
and porous regions can be written as
For clear-fluid region-I (h 6 y 6 d)
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The non-dimensional form of the entropy generation number in both regions are
given by
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The Bejan numbers are given by
For clear fluid region:

(Be)1 =
(HTI)1
(Ns)1

.

For porous region:

(Be)2 =
(HTI)2
(Ns)2

.

4. Results and discussion

In the present paper, the study of fully developed Poiseuille flow in a hori-
zontal channel partially filled by a porous medium is conducted in the presence
of transverse magnetic field and radiation effects. A closed form solution is ob-
tained for the velocity profiles, temperature profiles, and rate of heat transfer while
the entropy generation due to heat transfer, fluid friction and magnetic field effect
is formulated. The effects of various pertinent parameters on the fluid velocity,
temperature, rate of heat transfer, entropy generation rate, and Bejan number dis-
tributions are reported in Figures 1 to 13. Figure 1 illustrates the effects of different

Figure 1. Velocity distribution for a = 0.2

parameters, e.g., the viscosity ratio parameter (φ1), permeability parameter (K),
and magnetic field parameter (M) on the velocity profiles in the composite channel
for the dimensionless thickness of the porous medium a = 0.2. It is observed that
the velocity in the channel decreases with the increase in the value of the mag-
netic field parameter (M). This is because the presence of Lorentz force acting
as a resistance to the flow. Further velocity in the channel decreases by increas-
ing the viscosity ratio (φ1), because porous medium offers resistance to the flow,
which increases by increasing φ1. However the flow in the channel increases by
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Figure 2. Temperature distribution for M = 2, F = 2, φ2 = 1.5,
a = 0.2

Figure 3. Temperature distribution for K = 0.01, Br = 5,
φ1 = 1.25, φ2 = 1.5, a = 0.2

increasing the permeability of the porous medium. The effects of various param-
eters on temperature field are shown in Figures 2 and 3. Figure 2 compares the
temperature profiles in the composite channel with that when there is no porous
medium. The temperature profiles are parabolic for the Poiseuille flow, when the
channel is free from porous material. It is seen that with the introduction of the
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Figure 4. Rate of heat transfer at the lower impermeable plate
for φ2 = 1.5, a = 0.2

Figure 5. Rate of heat transfer at the upper impermeable plate
for φ2 = 1.5, a = 0.2

porous medium at the plate the temperature in the channel reduces. Further, we
observe from the Figure 2 that the temperature field increases with the increase
in the value of Brinkman number (Br) and permeability parameter (K), while it
reduces by increasing the viscosity ratio (φ1). Figure 3 shows that the temperature
in the channel decreases by increasing the radiation parameter (F ) or the magnetic



44 KUMAR, JAIN, SHARMA, AND SHARMA

Figure 6. Rate of heat transfer at the upper impermeable plate
for M = 2, F = 2, φ1 = 1.25, φ2 = 1.5, Br = 5

parameter (M). Figures 4 to 6 illustrate the variations of the dimensionless rate of
heat transfer at the lower impermeable plate and at the upper impermeable plate
respectively for different values of the parameters M , K, F ,Br, a and φ1. It is
noticed in Figure 4 that the dimensionless rate of heat transfer, θ′2(0) increases at
the lower impermeable plate where porous medium is attached with the increase in
the permeability parameter K and the Brinkman number Br. However radiation
parameter F or the magnetic field parameter M or the viscosity ratio φ1decreases
θ′2(0). Figures 5 and 6 shows that θ′1(1) increases with the increase in the perme-
ability parameter K and the Brinkman number Br, while radiation parameter F or
the magnetic field parameter M or the viscosity ratio φ1decreases θ′1(1). Further
by the introduction of porous medium in the channel, the rate of heat transfer at
the upper plate decreases numerically and it attains its minimum value when the
channel is fully filled with a porous medium. This minimum value also increases
rapidly with the increase in the permeability of the porous medium. Figures 7
to 10, depict variations of total entropy generation Ns in both regions for different
values of the pertinent parameters, such as Brinkman number Br, magnetic field
parameter M , permeability parameter K, width of the porous medium a, and vis-
cosity ratioφ1. It is seen that the entropy generation number Ns is very low in the
middle part of the channel because of gradually varying small velocity and temper-
ature gradient there, and attains high values in the vicinity of the channel plates
and porous interface. It is more pronounced in the region near the upper plate be-
cause of high velocity and temperature gradient there. It is seen from Figure 7 that
the Brinkman number Br enhances the total entropy generation in both the free
fluid and the porous region. Figure 8 reveals the effect of increasing magnetic field
parameter M on total entropy generation Ns. As M increases, the total entropy
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Figure 7. Total entropy generation for M = 2, K = 0.01, F = 2,
φ1 = 1.25, φ2 = 1.5, a = 0.2

Figure 8. Total entropy generation for Br = 2, K = 0.01, F = 2,
φ1 = 1.25, φ2 = 1.5, a = 0.2

generation decreases in the channel except the middle part of the clear fluid region
where it increases by increasing M . Meanwhile, it is interesting to note that within
the flow field there exists two points where the entropy production is not affected
by increasing M . The results on Ns are also compared with that of a channel free
from porous material in Figure 9. It is observed that by attaching a porous medium
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Figure 9. Total entropy generation for M = 2, Br = 2, F =
2, φ1 = 1.25, φ2 = 1.5, a = 0.2

Figure 10. Total entropy generation for M = 2, K = 0.1, Br =
5, F = 2, φ1 = 1.25, φ2 = 1.5

layer to the lower plate Ns is increased in the clear fluid region near the porous in-
terface while it decreases in the rest part of the channel. Figure 10 shows the effect
of porous medium width a on total entropy generation. We see that total entropy
decreases throughout the region for large values of a and it is minimum for a = 1,
i.e. when the channel if completely filled with a porous medium. In Figure 11,
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Figure 11. Bejan number for M = 2, K = 0.1, F = 2, φ1 =
1.25, φ2 = 1.5, a = 0.2

Figure 12. Entropy generation due to fluid friction for K =
0.1, F = 2, φ1 = 1.25, φ2 = 1.5, a = 0.2

the Bejan number is displayed as a function of the transverse distance y for varying
values of the Brinkman number Br. It is observed that the Bejan number increases
throughout the channel with the increase in the Brinkman number. We see that in
the middle part of the channel, the contribution in the entropy generation due to
heat transfer irreversibility is negligible. Figure 11 also shows that Be is always less
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Figure 13. Entropy generation due to magnetic field for F =
2, Br = 5, φ1 = 1.25, φ2 = 1.5, a = 0.2

than 0.5 throughout the channel for some moderate values of Brinkman number,
and hence in the channel FFI+MFI > HTI.

The effects of magnetic field parameter (M), Brinkman number (Br) and per-
meability parameter (K) on entropy generation due to fluid friction and magnetic
field is shown in Figures 12 and 13 respectively. Figure 12 shows that entropy gen-
eration due to fluid friction decreases in both regions by increasing the magnetic
field parameter (M). This behavior may be explained by the decrease in velocity
with the increase in magnetic parameter, see Figure 1. Further the entropy gen-
eration due to fluid friction decreases with the increase in Brinkman number (Br),
but this increment is significant near the plates only. The influence of magnetic
field parameter (M) and permeability parameter (K) on entropy generation due
to magnetic field is plotted in Figure 13. We can see that entropy generation due
to magnetic field tends to increase in both regions by increasing the value of M .
This effect has its maximum value near the centerline of the channel, which shifts
towards the upper plate by decreasing the value of K. The effect of increasing the
value of K is to increase the entropy generation due to magnetic field in the lower
half of the region, while the reverse effects have been obtained in the rest part of
the channel.

5. Conclusion

In this paper, the effect of transverse magnetic field on entropy generation of
steady fully developed flow in a channel partially filled with a porous material and
partially with a clear fluid has been investigated. The velocity and temperature
profiles for both regions are obtained and used to compute the entropy generation.
The effect of various parameters on velocity, temperature and entropy generation
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is analyzed. Based on the results presented above, the following conclusions are
deduced.

(1) An increase in K increases the velocity profiles, while an increase in M

or φ1 decreases the velocity profiles in both regions.
(2) An increase in Br or K, increases the temperature profiles, while an in-

crease in φ1, M or F decreases the temperature profiles in both regions.
(3) Rate of heat transfer at the lower impermeable plate increases by increas-

ing Br or K, while reverse effects are obtained by increasing φ1, M or F .
(4) Rate of heat transfer at the upper impermeable plate increases numerically

by increasing Br or K, while reverse effects are obtained by increasing φ1,
M , a or F .

(5) As expected, the channel plates and porous interface nearby region act as
strong producer of irreversibility in the channel.

(6) Entropy generation due to combined effect of fluid friction and magnetic
field dominates over entropy generation due to heat transfer. Moreover,
the entropy generation due to heat transfer and fluid friction takes their
minimum values near the centerline, while entropy generation due to mag-
netic field is maximum near the centerline.
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STVARAǋE ENTROPIJE U PUAZEǈEVOM TOKU KROZ

KANAL DELIMIQNO POPUǋEN POROZNIM

MATERIJALOM

Rezime. U ovom radu razmatrana je teorijska analiza stvaraǌa en-
tropije usled razmene toplote za tok kroz kanal izme�u paralelnih ploqa
delimiqno popuǌen poroznim materijalom, pod dejstvom tranverzalnog
magnetnog poǉa i radijacije. Obe horizontalne ploqe su na konstant-
nim i jednakim temperaturama. Dobijeno je taqno rexeǌe odgovaraju�ih
jednaqina u zatvorenoj formi, kako za oblasti ispuǌene poroznim ma-
terijalom, tako i za qiste oblasti fluida. Koeficijent stvaraǌa en-
tropije kao i Bejan-ov broj su tako�e izraqunati. Odre�en je uticaj
meǌaǌa raznih parametara, poput magnetnog poǉa, radijacije, odnosa
viskoznosti i termalne provodǉivosti, na vrednosti brzine, tempera-
ture, kao i brzinu stvaraǌa entropije.
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