Biologically inspired control and modeling of (bio)robotic systems and some applications of fractional calculus in mechanics


Mihailo P. Lazarević




In this paper, the applications of biologically inspired modeling and control of (bio)mechanical (non)redundant mechanisms are presented, as well as newly obtained results of author in mechanics which are based on using fractional calculus. First, it is proposed to use biological analog–synergy due to existence of invariant features in the execution of functional motion. Second, the model of (bio)mechanical system may be obtained using another biological concept called distributed positioning (DP), which is based on the inertial properties and actuation of joints of considered mechanical system. In addition, it is proposed to use other biological principles such as: principle of minimum interaction, which takes a main role in hierarchical structure of control and self-adjusting principle (introduce local positive/negative feedback on control with great amplifying), which allows efficiently realization of control based on iterative natural learning. Also, new, recently obtained results of the author in the fields of stability, electroviscoelasticity, and control theory are presented which are based on using fractional calculus (FC).