The Hamilton-Eshelby stress is a basic ingredient in the description of the evolution of point, lines and bulk defects in solids. The link between the Hamilton-Eshelby stress and the derivative of the free energy with respect to the material metric in the plasticized intermediate configuration, in large strain regime, is shown here. The result is a modified version of Rosenfeld-Belinfante theorem in classical field theories. The origin of the appearance of the Hamilton-Eshelby stress (the non-inertial part of the energy-momentum tensor) in dissipative setting is also discussed by means of the concept of relative power.