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Abstract

An approach to the optimization of the thin-walled cantilever open
section beams subjected to th bending and to the constrained tor-
sion is considered. The problem is reduced to the determination
of minimum mass, i.e. minimum cross-sectional area of struc-
tural thin-walled I-beam and channel-section beam elements for
given loads, material and geometrical characteristics. The area
of the cross-section is assumed to be the objective function. The
stress constraints are introduced. Applying the Lagrange multi-
plier method, the equations, whose solutions represent the optimal
values of the ratios of the parts of the chosen cross-section, are
formed. The obtained results are used for numerical calculation.
Keywords: optimization, thin-walled beams, optimal dimensions,
objective function, stress constraints.

1 Introduction

In most structures it is possible to find the elements in which, depend-
ing on loading cases and the way of their introductions, the effect of
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constrained torsion is present and its consequences are particularly evi-
dent in the case of thin-walled profiles. The earliest development of the
theory of thin-walled structures is assosiated whith the beginning of the
20thc. The most prominent contributor to the development of this theory
was S.P.Timoshenko [1], who was among the first to publish a number
of books on materials strength, theory of elasticity and theory of stabil-
ity and developed the theory of beams and plates bending. Kollbruner
and Hajdin [2, 3] expanded the field of thin-walled structures by a range
of their works. V.Z.Vlasov [4, 5] also contributed largely to the theory
of thin-walled structures by developing the theory of thin-walled open
section beams. Thin-walled open section beams are widely applied due
to their low weight in many structures. Thin-walled beams have a spe-
cific behavior and that is the reason why their optimization represents a
particular problem.

Optimization is a mathematical process through which a set of condi-
tions is obtained giving as a result the maximum or minimum value of a
specified function. Among the authors who developed theoretical funda-
mentals of the optimization method, Fox [6], Brousse [7] and Prager [8]
should be given the most prominent place. Also Fletcher [9] and Bert-
sekas [10] should be mentioned as the authors of some recent developments
in optimization approaches. Analyzing the process of designing various
types of the structures, it can be noticed that the classical procedure of
defining dimensions of a structure based on the theory of the strength
of materials provides sufficient, however, not the optimum geometric pa-
rameters Many studies have been conducted on the optimization prob-
lems, treating the cases where geometric configurations of structures are
specified and only the dimensions of members, such as areas of members
cross-sections, are determined in order to attain the minimum structural
weight or cost. Many authors, Farkas [11] being among them too, ap-
plied mathematical problems of the conditional extreme of the function
with more variables onto the cross-sectional area of the structure and de-
fined optimum cross-section from the aspect of load and consumption of
the material. Then, a series of works appear where the problem of op-
timization of various cross-sections, such as triangular cross-section [12],
I- section [13, 14], channel-section beams [15] are solved by using the
Lagrange multiplier method.
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The main purpose of this paper is to present one approach to the
optimization of a thin-walled I-section and channelsection beams

2 Definition of the problem

During the process of dimensioning of a structure, apart from defining
the requested dimensions that are necessary to permit the particular part
of the structure to support the applied loads, it is often very important
to find the optimal values of the dimensions. The starting points during
the formulation of the basic mathematical model are the assumptions of
the thin-walled-beam theory, on one side, and the basic assumptions of
the optimum design, on the other.

The I-section and the channelsection beams as very often used thin-
walled profiles in steel structures are considered in the present paper
as the objects of the optimization. The determination of their optimal
dimensions is a very important process but not always the simplest one.
The aim of the paper is to determine the minimum mass of the whole
beam, i.e. the minimum area A of the cross-section of the considered
beam for the given loads and material properties.

The formulation is restricted to the stress analysis of thin-walled
beams with open sections.

The cross-sections of the considered cantilever beam (Fig. 1) with
principal centroidal axes Xi (i= 1, 2) have the axis of symmetry. It is
assumed that its flanges have equal widths b1 = b3, and thicknesses t1=
t3, and that its web has the width b2 and thickness t2. The ratios of
thicknesses and widths of flanges and web are treated as not constant
quantities.

It is also assumed that the loads are applied in two longitudinal planes,
parallel to the principal centroidal axes Xi (i= 1, 2) at the distances ξibi

(i = 1,2) (Fig. 1).If applied in such a way, the loads will cause the
bending moments acting in the above mentioned two planes parallel to
the longitudinal axis of the beam, and as their consequence the effects of
the constrained torsion will appear in the form of the bimoment causing
the stresses that depend on the boundary conditions [2, 16].

The aim of the paper is to determine the minimal mass of the beam
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(a) I-section (b) channel-section

Figure 1:

or, in other words, to find the minimal cross-sectional area

A = Amin (1)

for the given loads and material and geometrical properties of the con-
sidered beam, while satisfying the constraints.

Formulation of the structural design optimization problem plays an
important role in the numerical solution process [6]. A particular choice
of the cost function and constraints affect the final solution, and efficiency
and robustness of the solution process.

2.1 Objective function

The process of selecting the best solution from various possible solutions
must be based on a prescribed criterion known as the objective function.
In the considered problem the cross-sectional area will be treated as an
objective function and it is obvious from the Fig. 1 that

A =
∑

biti, i = 1,2,3, (2)

or (because b1 = b3)

A = A (b1, b2) = 2 b1 t1 + b2 t.2
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The ratios of thickness and length of the cross-sectional walls are as-
sumed to be non-constant variables (Fig.1)

µi =
ti
bi

6= const, i = 1,2,3, (3)

where bi andti are widths and thicknesses of the parts of the considered
cross-sections.

2.2 Constraints

Only normal stresses will be taken into account in the consideration that
follows and the constraints treated in the paper are the stress constraints.

The normal stresses are caused by the bending moments MX1 and
MX2 and by the bimoment B that appears in the case of constrained
torsion and they will be denoted as σX1 and σX2 and σω respectively [2,
16].

Bimoment is not a static value, and can not be defined by static
equilibrium conditions. In the case when the bending moments are act-
ing in planes parallel to the longitudinal axis (Fig. 1) at the distances
ξibi(i = 1, 2) the bimoment as their consequence will appear and it can
be expressed as the function of the bending moments and the eccentrities
of their planes ξibi(i = 1, 2) in the following way [2, 16]

B = ξ1b1MX1 + ξ2b2MX2. (4)

For the allowable stress σ0 the constraint function can be written as

ϕ1 = ϕ (σ) = σX1max + σX2max + σω max ≤ σ0. (5)

The maximal normal stresses [2, 16] are defined in the form

σXi max =
MXi

WXi

(i = 1,2) , (6)

σω max =
B

Wω

, (7)

where WXi, (i = 1,2) are the section moduli for the principal axes, and
Wω is the sectorial section modulus for the considered cross-section.
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After the introduction of (6) and (7) into (5), the constraint function
becomes

ϕ =
MX1

WX1

+
MX2

WX2

+
B

Wω

− σ0 ≤ 0. (8)

The constraint function (8) is reduced separately to:

• for the I-section:

ϕ = ϕ (b1, b2) = 6MX1
1

t1b1b2

(
6 +

t2
t1

b2

b1

)+

3MX2
1

t1b2
1

+ 6B
1

t1b2
1b2

− σ0 ≤ 0, (9)

and

• for the channel-section:

ϕ = ϕ(b1, b2) =

= 6MX1
1

t1b1b2

(
6 +

t2
t1

b2

b1

) + 3MX2

1 +
t2
t1

b2

b1

t1b2
1

(
1 + 2

t2
t1

b2

b1

)+

6B
3 +

t2
t1

b2

b1

t1b2
1b2

(
3 + 2

t2
t1

b2

b1

) − σ0 ≤ 0.

(10)

The expressions (11) and (12) represent the constraint functions cor-
responding to the given stress constraints.

3 Results and discussion

3.1 Analytic solution

One of the most common problems is that of finding maxima or minima
(in general, ”extrema”) of a function. The Lagrange multiplier method [6,
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7, 10, 17-19] is a powerful tool for solving this class of problems and rep-
resents the classical approach to the constraint optimization. Lagrange
multiplier, labeled as λ, measures the change of the objective function
with respect to the constraint. The Lagrange multiplier method is a
powerful tool for solving this class of problems without the need to ex-
plicitly solve the conditions and use them to eliminate extra variables. It
is a method for finding the extremum of the function of several variables
when the solution must satisfy a set of constraints, and for the analogous
problem in the calculus of variations.

Applying this method to the vector depending on two parameters bi,
(i = 1, 2), the system of equations (13) of the form

∂

∂bi

[A (b1, b2) + λ ϕ (b1, b2)] = 0, ( i = 1,2) (11)

will be obtained and after the elimination of the multiplier λ, it will
become

∂ A (b1, b2)

∂b1

· ∂ ϕ (b1, b2)

∂b2

=
∂ A (b1, b2)

∂b2

· ∂ ϕ (b1, b2)

∂b1

. (12)

The beams of the given cross-sections (Fig.1) are the objects of the
optimization.

Let the ratio
z = b2/b1 (13)

be the optimal ratio of the parts of the considered cross-section and let

ψ = t2/t1, (14)

be the ratio of the flange and web thicknesses.
After the introduction of the expression (4) for the bimoment into the

equations (9) and (10), the equation (12) can be reduced to the equation
whose solutions give the optimal values of the ratio (13). The solutions
are in the form:

• of the fourth order for the considered I-beam

k=4∑

k=0

ckz
k = 0, (15)
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where the coefficients ck in (15) are defined by (16)

c0 = −12 (1 + 6ξ1) ,

c1 = 2

[
ψ (1 + 24ξ1)− 36ξ2

MX2

MX1

]
,

c2 = 2ψ

[
11ψξ1 + 6 (3 + 4ξ2)

MX2

MX1

]
,

c3 = 2ψ2

[
ψξ1 + (6 + 11ξ2)

MX2

MX1

]
,

c4 = ψ3 (1 + 2ξ2)
MX2

MX1

, (16)

and

• of the eightth order for the considered channel-section beam

8∑

k=1

ckz
k = 0, (17)

where the coefficients ck in (17) are defined by (18)

c0 = −216 (1 + 6ξ1) ,

c1 = −36

[
ψ (31 + 168ξ1) + 36ξ2

MX2

MX1

]
,

c2 = −12ψ

[
ψ (160 + 669ξ1) + 504ξ2

MX2

MX1

]
,

c3 = −4ψ2

[
ψ (296 + 117ξ1)− 9 (45− 223ξ2)

MX2

MX1

]
,

c4 = −2ψ3

[
ψ (64− 2363ξ1)− 18 (111− 13ξ2)

MX2

MX1

]
,

c5 = ψ4

[
16ψ (4 + 165ξ1) + (3645 + 4726ξ2)

MX2

MX1

]
,
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c6 = 8ψ5

[
63ψξ1 + 6 (31 + 55ξ2)

MX2

MX1

]
,

c7 = 4ψ6

[
8ψξ1 + (65 + 126ξ2)

MX2

MX1

]
,

c8 = 16ψ7 (1 + 2ξ2)
MX2

MX1

. (18)

It is obvious that the coefficients ck (k = 1, 2, . . . , 6) depend on the
ratio of the bending moments MX2/MX1 and on the eccentrities ξ1and ξ2

of their planes.
The results that follow were obtained by the analytical approach.

3.2 Optimal values z = b2/b1

From the general case, when bending moments about both principal axes
appear simultaneously with the bimoment, some particular cases can be
considered, depending on the ratio MX2/MX1.

The optimal ratios (13) obtained from the equations (15) and (17) are
calculated for MX2/MX1 =0, 0.1, 0.5, 1; ψ = 0.5, 0.75, 1 and ξ1, ξ2 =0,
0.2, 0.4, 0.6, 0.8, 1.0, or in other way for 0 ≤ ξ1≤ 1; 0 ≤ ξ2≤ 1.

3.2.1 I-beam

The optimal values of z forMX2/MX1 =0 and ψ = 0.5, 0.75 and 1.0, as the
functions of ξ1 and ξ2, are shown in Tables 1, 2 and 3 respectively. The
columns in Tables 1-3 are given in a shortened form because the ratios
z have the same values for each ξ2. The highest and the lowest optimal

↓ ξ2 ξ1 → 0 0.2 0.4 0.6 0.8 1
0 12 2.83 2.46 2.32 2.24 2.19
. . .
1 12 2.83 2.46 2.32 2.24 2.19

Table 1: I-beam: Optimal z for MX2/MX1 = 0, ψ = 0.5
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↓ ξ2 ξ1 → 0 0.2 0.4 0.6 0.8 1
0 8 1.89 1.64 1.54 1.49 1.46
. . .
1 8 1.89 1.64 1.54 1.49 1.46

Table 2: I-beam: Optimal z for MX2/MX1 = 0, ψ = 0.75

↓ ξ2 ξ1 → 0 0.2 0.4 0.6 0.8 1
0 6 1.42 1.23 1.16 1.12 1.09
. . .
1 6 1.42 1.23 1.16 1.12 1.09

Table 3: I-beam: Optimal z for MX2/MX1 = 0, ψ = 1

MX2/MX1 ψ z

0.1

0.5 2 ≤ z ≤ 2.02
0.75 1.37 ≤ z ≤ 1.58
1 1.04 ≤ z ≤ 1.32

0.5

0.5 1.02 ≤ z ≤. 1.72
0.75 0.82 ≤ z ≤ 1.20
1 0.69 ≤ z ≤ 0.93

1

0.5 0.75 ≤ z ≤ 1.59
0.75 0.59 ≤ z ≤ 1.11
1 0.51 ≤ z ≤ 0.86

Table 4: I-beam: Optimal z = b2/b1 for MX2/MX1 = 0.1, 0.5, 1 and
ψ = 0.5; 0.75; 1
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values z = b2/b1 for MX2/MX1 = 0.1, 0.5, 1 are given in a shortened form
in Table 4.

From the Tables 1-4 it can be concluded that the values of z are
decreasing when the ratio ψ = t2/t1 is increasing and that they are de-
creasing when the load ratio is increasing.

3.2.2 Channel-section beam

The relations between z and the eccentricities ξ1 and ξ2 for MX2/MX1 =0,
ψ = 0.5, 0.75 and 1 are shown in Tables 5, 6 and 7, respectively. From

↓ ξ2 ξ1 → 0 0.2 0.4 0.6 0.8 1
0 12 3.60 3.12 2.94 2.84 2.78
. . .
1 12 3.60 3.12 2.94 2.84 2.78

Table 5: Channel-section beam: Optimal z for MX2/MX1 =0, ψ = 0.5

↓ ξ2 ξ1 → 0 0.2 0.4 0.6 0.8 1
0 8 2.34 2.08 1.96 1.89 1.85
. . .
1 8 2.34 2.08 1.96 1.89 1.85

Table 6: Channel-section beam: Optimal z for for MX2/MX1 =0, ψ =
0.75

↓ ξ2 ξ1 → 0 0.2 0.4 0.6 0.8 1
0 6 1.80 1.56 1.47 1.42 1.40
. . .
1 6 1.80 1.56 1.47 1.42 1.40

Table 7: Channel-section beam: Optimal z for for MX2/MX1 =0, ψ = 1

the results presented in Tables 5-7, it is obvious that the quantity z for
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ratio MX2/MX1 = 0, does not depend on the eccentricity ξ2, i.e. the ratios
z have the same values for each ξ2. That is why the relations between z
and the eccentrities ξ1 and ξ2 for MX2/MX1 =0, ψ = 0.75 and ψ = 1 are
presented in Tables 1, 2 and 3, respectively, in a shortened form.

Like in the case of the I-section, the optimal values z = b2/b1 for the
channel-section beam for ratios MX2/MX1= 0.1, 0.5, 1 are given in a
shortened form in Table 8.

MX2/MX1 ψ z

0.1

0.5 2.54 ≤ z ≤ 2.62
0.75 2.02 ≤ z ≤. 1.74
1 1.32 ≤ z ≤ 1.68

0.5

0.5 1.41 ≤ z ≤. 2.22
0.75 1.10 ≤ z ≤ 1.54
1 0.93 ≤ z ≤ 1.18

1

0.5 1.07 ≤ z ≤ 2.10
0.75 0.84 ≤ z ≤ 1.45
1 0.71 ≤ z ≤ 1.12

Table 8: Channel-section beam: Optimal z = b2/b1 for MX2/MX1= 0.1,
0.5, 1 and ψ = 0.5; 0.75; 1

From the Tables 5-8 it can be also concluded that the values of z
are decreasing when the ratio ψ = t2/ t1 is increasing and that they are
decreasing when the load ratio is increasing.

3.3 The loading cases

From the general case, when bending moments about both principal axes
appear simultaneously with the bimoment, some particular cases can be
considered depending on the loading case.

In this section an I-beam and channel-section beam are fixed at one
end and subjected to the concentrated bending moment MX1 = 10 kNcm
(MX2 = 0) at the free end of the beam in two ways (Figs.2 and 3) as: a)
Loading case 1: ξ1 = ξ2 = 0 and b) Loading case 2: ξ1 = 0.5, ξ2 = 0.
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(a) Loading case 1 (b) Loading case 2

Figure 2: I-section

(a) Loading case 1 (b) Loading case 2

Figure 3: Channel-section
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4 Numerical example

As the numerical example, considered cantilever beams with the lengths
l=150 cm, fixed at one end are subjected to the bending moments MX1

= 10 kNcm, MX2 = 0.
The initial cross-sectional geometrical characteristics are calculated

taking into account the initial dimensions of the I-section and the channel-
section. It is assumed that considered sections have the same initial cross-
sectional geometrical characteristics: b1 =5.175 cm, b2 =9.2 cm,t1 = 0.8
cm, t2 =0.65 cm. For the given loads (Figs. 2 and 3) and the defined
geometry of the profile, the initial stresses are calculated.

4.1 Determination of the minimum cross-sectional
area

The problem is considered in two ways:

1. The optimal dimensions of the cross-section b1optimal and b2optimal

are obtained by equalizing the “Initial” and the ”Optimal area”
(initial = optimal) and by using the calculated optimal relation z. In
that case the normal stress lower than the initial one is obtained
(σoptimal¡σinitial). It represents the model used for the control or
Optimal model no.1.

2. From the condition prescribing that the stresses must be lower
than the allowable one, i.e. the “Initial stress”, the optimal values
b1optimal and b2optimal are obtained by using the calculated optimal re-
lation zand by comparing the stress defined by the optimal geomet-
rical characteristics to the “Initial stress”. It represents the Opti-
mal model no.2. Starting from the optimal cross-sectional dimen-
sions (b1optimal and b2optimal), the optimal-minimum cross-sectional
area min is calculated for each loading case and the results including
the saved mass of the material are given in Tables 9 and 10.

From the Tables 9 and 10 it can be seen that greater saved mass of the
material was obtained for I-section than for channel-section. Also, for all
loading cases the level of stresses is decreased in the Optimal model no.1
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Load.
case

zinit zoptim σinit

[kN/cm2]

σoptim1
[kN/cm2]

σoptim2
[kN/cm2]

Ainit=
Aoptim1
[cm2]

Amin=
Aoptim2
[cm2]

Saved
mass [%]

1
1.67

7.38 0.20 0.19 0.20
14.26

12.60 11.64
2 1.46 0.94 0.94 0.94 14.23 0.22

Table 9: I-beam: Normal stresses and saved mass

Load.
case

zinit zoptim σinit

[kN/cm2]

σoptim1
[kN/cm2]

σoptim2
[kN/cm2]

Ainit=
Aoptim1
[cm2]

Amin=
Aoptim2
[cm2]

Saved
mass [%]

1
1.78

7.38 0.22 0.17 0.22
14.26

12.80 10.25
2 1.84 0.84 0.84 0.84 14.26 0.12

Table 10: Channel-section-beam: Normal stresses and saved mass

with the area of the cross-section having the same value as in the ”Initial
model” and the saved mass of material is increased with respect to the
initial stress limits in the Optimal model no.2 where the area is smaller
than the initial one. The calculation showed that the maximum saved
material is obtained in the Loading case 1 and the minimum in the Load-
ing case 2 for both shapes of cross-sections. This allows to conclude that
if the distance of the loading plane from the shearing plane is increased
the optimization of the cross-section is less necessary to be done.

5 Conclusions

The paper presents one approach to the optimization of the thin-walled
open section beams, loaded in a complex way, using the Lagrange multi-
plier method.

Accepting the cross-sectional area as the objective function and the
stress constraints as the constrained function, it is possible to find the
optimal relation between the dimensions of the web and the flanges of
the considered thin-walled profiles in a very simple way.

In addition to the general case, some particular loading cases are con-
sidered. As the result of the calculation the modified constrained func-
tions are derived as the polynomials of the fourth and eight order.

Particular attention is directed to the calculation of the saved mass
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using the proposed analytical approach. It is also possible to calculate
the saved mass of the used material for different loading cases.

The aim of the paper is the optimization of thin-walled elements sub-
jected to the complex loads, and it may be concluded that the paper gives
the general results permitting the derivation of the expressions that can
be recommended for technical applications.
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Jedan pristup optimizaciji tankozidih konzolnih
nosaca otvorenih poprecnih preseka

U ovom radu je razmatran jedan pristup optimizaciji tankozidih kon-
zolnih konstrukcionih elemenata otvorenih poprecnih preseka izloženih
savijanju i ogranicenoj torziji. Problem je redukovan na odredjivanje
minimalne mase, t.j. minimalne povrsine konstrukcionih tankozidih ele-
menata oblika I i U-profila za zadata opterecenja, materijal i geometrijske
karakteristike. Površina poprecnog preseka nosaca je izabrana za funkciju
cilja. Uvedeno je naponsko ogranicenje. Primenom metode Lagranžovog
množitelja formirane su jednacine cija rešenja predstavljaju optimalne
odnose dimenzija poprecnog preseka izabranog oblika. Dobijeni rezultati
su iskorǐsceni pri numerickom proracunu.

doi:10.2298/TAM0704323A Math.Subj.Class.: 76B15, 62H35


