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Abstract

The conventional forms of phase diagrams are constructed without
consideration of interfacial energies and they represent an impor-
tant tool for chemical engineers and metallurgists. If interfacial
energies are taken into consideration, it is intuitively obvious that
the regions of phase equilibria must become smaller, because there
is a penalty on the formation of interfaces. We investigate this phe-
nomenon qualitatively for a one-dimensional model, in which the
phases occur as layers rather than droplets or bubbles. The mod-
ified phase diagrams are shown in Chapters 3 and 4.
Keywords: Interfacial energy, phase diagrams

1 Introduction

Phase diagrams for binary mixtures of the types shown in Fig. 1 are
important tools for the chemical engineer and metallurgist. Their shapes
may be determined from thermodynamic arguments and it turns out that
Fig. 1a is the diagram appropriate to ideal mixtures in the liquid phase
and mixtures of ideal gases in the vapor phase. In both phases the mixture
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Figure 1: Prototypical binary phase diagrams with pα T as the vapor
pressures of the pure constituents α = 1 and α = 2. X is the mol fraction
of constituent 1. a) unlimited miscibility, b) limited miscibility in the
liquid phase

properties are strictly the sums of the constituent properties except for
the entropies which – in both phases – contain an entropy of mixing. Fig
1b represents the more realistic case that a heat of mixing will occur, at
least in the liquid phase. This means that it requires energy to mix the
liquid constituents homogeneously and, if that energy is big enough, the
constituents may refuse to mix except for small and large fractions X;
there is a miscibility gap.

Both types of phase diagrams in Fig. 1 ignore a potential energetic effect
of the interface – or interfaces – between liquid and vapor, or between the
liquid solutions α and β. And yet there are such energetic contributions
as put in evidence by the well-known phenomena of surface tension and
surface energy.

In the present paper we postulate two such energetic penalties for the
formation of an interface

• an interface energy

• an energetic inhomogeneity penalty.
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The former tends to decrease the number of interfaces, while the latter
favors many interfaces. Both terms are forced to compromise in equilib-
rium.

The interfacial terms cause modifications in the shape of the phase
diagrams and the goal of this study is to illustrate those modifications
– at least qualitatively – for various values of the interfacial coefficients.
The results are reported in Chap. 3 for the case of unrestricted miscibility
and in Chap. 4 for the phase diagrams with a miscibility gap.

2 Minimizing the available free energy

2.1 Available free energy in a phase mixture

We consider a situation as shown in Fig. 2. There are two phases A and
B which are both binary mixtures of the same two constituents, α = 1, 2.
This phase mixture is at temperature T and the piston exerts a pressure
p. Under such circumstances the available free energy

A = F + pV (2.1)

tends to a minimum as equilibrium is approached. F is the Helmholtz
free energy and V is the volume of the phase mixture. For mathematical
simplicity we assume that the phases are layered vertically over the width
of the box as shown in Fig. 2a. In Fig. 2b we see a schematic view of the
fields of densities ρα (x) , α = 1, 2.

The leading term of the Helmholtz free energy is due to the free energy
density f (ρ1, ρ2), where ρα, (α = 1, 2) are the mass densities of the con-
stituents. But in the neighborhood of the phase boundaries the gradients
ρ′α of ρα are steep and, – according to arguments by van der Waals [1],[2]
for a single constituent –, they may contribute to the energy density, thus
energetically penalizing the formation of interfaces.

More recently it has been suggested by S. Müller [3] and Truskinovsky
[4] that the inhomogeneity of a two-phase body should provide a contri-
bution to the free energy. That suggestion was made in the context of
an elastic bar; its extrapolation to mixtures means that the free energy
density should contain terms of the type
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Figure 2: A phase mixture at fixed T and p. b) Schematic representation
of the fields ρα (x), α = 1, 2

(
mα (x)−m0

α (x)
)2

, where

mα (x) =
∫ x

0
ρα (z) dz

m0
α (x) = mα (W )

x

W

.

Putting all of this together we may write the free energy in the form

F =

∫ W

0

{
f (ρ1, ρ2) + α

(
[ρ′1 (x)]

2
+ [ρ′2 (x)]

2
)

+ β
[(

m1 (x)−m0
1 (x)

)2
+

(
m2 (x)−m0

2 (x)
)2

]}
dx, (2.2)

where α and β are positive constants. Thus the free energy is a functional
of the density fields ρα (x) .

The β-term represents the inhomogeneity penalty. Its form is sug-
gested by the idea that the interfacial planes between the phases A and
B have a tendency to contract so as to lower their interface energy. If they
were in fact allowed to contract, the phases A and B would form menisci,
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e.g. under the piston. Our 1-dimensional model, shown in Fig. 2a, for-
bids the menisci; therefore it implies that the interfaces are stretched.
The ansatz (2.2) assumes that the energy needed for the stretching grows
with the inhomogeneities mα (x)−m0

α (x) .
The inhomogeneity term is quite popular in the more mathematical lit-
erature, because it provides interesting problem for analysts. But even
for an analyst the minimization of (2.1) with F given by (2.2) is no mean
task and we avoid it altogether by assuming that the coefficients α and
β are small. Let us consider this:
If α and β were both zero, the interfaces would be sharp and

• the density fields ρα (x) would be piecewise constants equal to ρA
α

and ρB
α as indicated by Fig. 2b,

• the fields (ρ′α)2 would be represented by δ− distributions at the N
positions of the phase boundaries, and

• the inhomogeneity functions mα (x) − m0
α (x) would be piecewise

linear functions zig-zagging around zero.

If α and β are non-zero but small, we assume that the situation so de-
scribed is essentially unchanged, so that by (2.2) we have

F = FA

(
ρA

α

)
+ FB

(
ρB

α

)
+ τ1N + inhomogeneity penalty

Thus – for given values of the densities ρA
α , ρB

α , and of the volume fraction
zv = VA/V of phase A, and of the number of interfaces N – the available
free energy assumes a minimum, when the inhomogeneity penalty is min-
imal. In [5] it has been proved1 that this is the case when all A-layers and
all B-layers are equally wide. In that case the inhomogeneity penalty IN

assumes the form

IN =
τ2

2

[zv (1− zv)]
2

N2
V 3.

Thus the available free energy reduces to a function of only 6 variables –
viz. ρA

α , ρB
α , N, and zv –, plus p and T and we obtain

1The identical problem arose in [5] for the case of an elastic bar, so the analysis is
identical.
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A = FA + FB + τ1N +
τ2

2

[zv (1− zv)]
2

N2
V 3 + pV. (2.3)

τ1 and τ2 are positive constants which replace α and β of (2.2). We refer
to the terms τ1 and τ2 as the interfacial energy and the inhomogeneity
penalty respectively. Note that the former favors few interfaces while
the latter favors many interfaces. The phase mixture has to compromise
between the two terms and thus find the equilibrium size of the stripes
of phases A and B.

We introduce molar quantities by referring A to the number ν =
νA + νB of mols. We define

a =
A
ν

, v =
V

ν
, fA =

FA

νA

, fB =
FB

νB

,

vA =
VA

νA

, vB =
VB

νB

, z =
νA

ν
, n =

N

ν
,

and obtain

a = zfA (vA, XA, T ) + (1− z) fB (vB, XB, T ) + τ1n

(2.4)

+
τ2

2
v3

[
z vA

v
(1− z) vB

v

n

]2

+ pv. (2.5)

Note that the molar fraction z is different from the volume fraction zv. We
have zv = z vA

v
. The molar free energies fA and fB depend on the molar

volumes vA or vB and on the mol fractions XA =
ν1

A

νA
, or XB =

ν1
B

νB
, and on

temperature T. The preference of molar volumes and mol fractions over
mass densities and mass fractions, or concentrations is inherent in the
chemical-thermodynamic nature of this paper.

Equation (2.5) renders explicit the 6 variables on which the molar
availability depends, viz. vA, vB, XA, XB and n, z. The molar volume v is
given by

v = zvA + (1− z) vB. (2.6)

In addition there are 3 parameters, viz. p and T and X, the overall mol
fraction of constituent 1. We have

X = zXA + (1− z) XB. (2.7)
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2.2 Partial equilibria for fixed values of p and T

We minimize a in (2.5) under the condition of fixed p and T and by taking
the constraints (2.6), (2.7) into consideration. The constraint (2.6) is
considered by elimination of v, whereas the constraint (2.7) is taken care
of by a Lagrange multiplier µ. Thus, we minimize

Ψ = a− µ (zXA + (1− z) XB) . (2.8)

It is convenient to distinguish between conditions for

• mechanical equilibrium, obtained by setting the derivatives of Ψ
with respect to vA and vB equal to zero,

• mixing equilibrium obtained by setting the derivatives of Ψ with
respect to XA and XB equal to zero,

• interface equilibrium obtained by setting the derivative of Ψ with
respect to n equal to zero

• phase equilibrium obtained by setting the derivative of Ψ with re-
spect to z equal to zero.

2.3 Mechanical equilibrium

The conditions for mechanical equilibrium provide

∂Ψ

∂vA

= z
∂fA

∂vA

+ pz

+ τ2

(
(1− z) vB

n

)2
zvA

v

(
1− zvA

2v

)
z = 0,

∂Ψ

∂vB

= (1− z)
∂fB

∂vB

+ p (1− z)

+ τ2

(zvA

n

)2 (1− z) vB

v

(
1− (1− z) vB

2v

)
(1− z) = 0. (2.9)
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Remembering that −
(

∂fA

∂vA

)
XA,T

and −
(

∂fB

∂vB

)
XB ,T

equal the pressures pA

and pB of the two phases we conclude from (2.9)

pA = p + τ2

(
(1− z) vB

n

)2
zvA

v

(
1− zvA

2v

)
,

pB = p + τ2

(zvA

n

)2 (1− z) vB

v

(
1− (1− z) vB

2v

)
. (2.10)

Thus the pressures of the phases differ because of the energy penalty
due to inhomogeneity, – the term with τ2 –, even in the present one-
dimensionally layered arrangement of phases.

Multiplication of (2.10)1 by zvA and (2.10)2 by (1− z) vB and sum-
mation provides

zpAvA + (1− z) pBvB − pv = 3
τ2

2
v3

(
z vA

v
(1− z) vB

v

n

)2

. (2.11)

If we introduce WA and WB = W −WA as the total widths of the phases
A and B we may write this expression in the form

pAWA + pBWB − 3

2
τ2

1

v2
W

(
z vA

v
(1− z) vB

v

n

)2

= pW (2.12)

which shows that the forces on the piston exerted by the pressures pA, pB

and p are not balanced. The balance needs a downward force on the
piston which we may think of as acting in the phase boundaries. We
may conjecture that the A and B stripes of Fig. 1a tend to form concave
menisci so that, when those are prevented by the one-dimensionality of
our model, the phase boundaries are lengthened and thus pull the piston
downwards.
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2.4 Equilibrium of mixing

The conditions of mixing equilibrium read

∂Ψ

∂XA

= z
∂fA

∂XA

− zµ = 0

hence µ =
∂fA

∂XA

=
∂fB

∂XB

∂Ψ

∂XB

= (1− z)
∂fB

∂XB

− (1− z) µ = 0. (2.13)

We recall that ∂fA

∂XA
and ∂fB

∂XB
equal the chemical potential differences µA

1 −
µA

2 and µB
1 −µB

2 of the two phases and conclude that those differences are
equal in mixing equilibrium

µ = µA
1 − µA

2 = µB
1 − µB

2 . (2.14)

We also recall that ∂fA(vA,XA,T )
∂XA

= ∂gA(pA,XA,T )
∂XA

, where g = f + pv is the
molar Gibbs free energy. Analogous conditions hold for phase B and
therefore (2.13)3 may be written as

µ =
∂gA (pA, XA, T )

∂XA

=
∂gB (pB, XB, T )

∂XB

. (2.15)

2.5 Interface equilibrium

Interface equilibrium requires

∂Ψ

∂n
= τ1 − τ2v

3

[
z vA

v
(1− z) vB

v

]

n3

2

= 0. (2.16)

Hence follows for the equilibrium molar number n of interfaces

n = 3

√
τ2

τ1

1

v1/3
[zvA (1− z) vB]2/3 . (2.17)

If mechanical and interface equilibrium prevail, (2.10) with (2.17) provide

pA = p + 3

√
τ 2
1 τ2

[(1− z) vB]2/3

(zvA)1/3 v1/3

(
1− zvA

2v

)
,

pB = p + 3

√
τ 2
1 τ2

[zvA]2/3

[(1− z) vB]1/3 v1/3

(
1− (1− z) vB

2v

)
, (2.18)
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so that pA becomes very large when z becomes small and pB becomes
large when z approaches 1.

Once again for mechanical and interface equilibrium we may use (2.16)
to eliminate τ1 from the molar available free energy a and then use (2.11)
to obtain

a = zgA (pA, XA, T ) + (1− z) gB (pB, XB, T ) . (2.19)

Thus the available free energy of the phase mixture is the weighted sum of
the Gibbs free energies of the phases with the phase fractions as weighting
factors. In particular there is no explicit term due to interfacial energy
or inhomogeneity energy. It is true though that pA and pB, the pressure
arguments in gA and gB are determined by τ2 and τ1, cf. (2.18).

2.6 Phase equilibrium

We obtain the phase equilibrium from

∂Ψ

∂z
= fA − fB

+ τ2
v2

Av2
B

n2v

{
z (1− z) (1− 2z)− vA − vB

2v
[z (1− z)]2 + p (vA − vB)

}

− µ (XA −XB) = 0.

The underlined part is simply given by pAvA − pBvB provided that me-
chanical equilibrium prevails so that we have

gA (pA, XA, T )− gB (pB, XB, T ) = µ (XA −XB) . (2.20)

By the condition (2.15) of mixing equilibrium we may write (2.20) in the
form

µ =

(
∂gA

∂XA

)

pA,T

=

(
∂gB

∂XB

)

pB ,T

=
gA (pA, XA, T )− gB (pB, XB, T )

XA −XB

.

(2.21)
This is the well-known prescription for finding the mol fractions XA and
XB in equilibrium as abscissae of the contact points of the common tan-
gent of the curves gA and gB. Such a graphical construction of XA and
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XB is reported in many textbooks, even though these may not account
for different pressures pA, pB and p.

The only difference here to the standard procedure is that the common
tangent must be drawn to the molar Gibbs free energies pertaining to
different pressures, viz. pA and pB.

With the same qualification we recover the Gibbs phase rule by which
the chemical potentials of all constituents are equal in all phases in equi-
librium. This can be concluded from (2.13) and (2.21)3 by remembering
that gA = XAµA

1 +(1−XA) µA
2 and gB = XBµB

1 +(1−XB) µB
2 . It follows

µA
1 (pA, XA, T ) = µB

1 (pB, XB, T ) and

µA
2 (pA, XA, T ) = µB

2 (pB, XB, T ) . (2.22)

Once again we must realize that the equal chemical potentials refer to
different pressures in phases A and B.

It must also be realized that the final equilibrium conditions (2.22) are
two in number, but they are conditions on five variables, viz. pA, pB, T,
and XA, XB, or – by (2.18) – on p, T, z, XA, XB. We conclude that phase
equilibrium leaves us with three degrees of freedom, – rather than two,
when τ1τ2 = 0. Therefore the interfacial terms require a modification of
the Gibbs phase rule.

3 Nucleation and formation of kernels

3.1 Analytic constitutive equations for the phases

We assume that both phases are ideal mixtures with molar volumes vA
α

and vB
α (α = 1, 2) for the pure constituents under the pressures pA or pB

respectively. This means that we have

vA = XAvA
1 + (1−XA) vA

2 and vB = XBvB
1 + (1−XB) vB

2 . (3.1)
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The assumption of ideal mixtures also implies that gA and gB may be
written in the forms

gA (pA, XA, T ) = XA

(
gA
1 (pA, T ) + RT ln XA

)

+ (1−XA)
(
gA
2 (pA, T ) + RT ln (1−XA)

)
,

gB (pB, XB, T ) = XB

(
gB
1 (pB, T ) + RT ln XB

)

+ (1−XB)
(
gB
2 (pB, T ) + RT ln (1−XB)

)
, (3.2)

where gA
α (pA, T ) and gB

α (pB, T ) (α = 1, 2) are the molar Gibbs free ener-
gies of the pure constituents α under the pressures pA and pB respectively;
the logarithmic terms represent the entropies of mixing.

Of phase A we assume that it is ideal mixture of incompressible liq-
uids. In that case vA

α (α = 1, 2) are constants and gA
α (pA, T ) are linear

functions of pA. It is convenient to write gA
α (pA, T ) = gA

α (pα (T ) , T ) +
vA

α (pA − pα (T )) , thereby referring gA
α (pA, T ) to the saturation vapor

pressure pα (T ) of constituent α. Thus we obtain

gA (pA, XA, T ) = XA

(
gA
1 (p1 (T ) , T ) + vA

1 (pA − p1 (T )) + RT ln XA

)

+ (1−XA)
(
gA
2 (p2 (T ) , T )

+vA
2 (pA − p2 (T )) + RT ln (1−XA)

)
, (3.3)

Of phase B we assume that it is a mixture of ideal gases so that vB
α =

1
pB

RT (α = 1, 2) holds. gB
α (pB, T ) (α = 1, 2) are then logarithmic func-

tions of pB and again it is convenient to refer them to the saturation
vapor pressures pα (T ) . Thus gB (pB, XB, T ) reads

gB (pB, XB, T ) = XB(gB
1 (p1 (T ) , T ) + RT ln

[
pB

p1 (T )
XB

]
)

+ (1−XB)
(
gB
2 (p2 (T ) , T )

+ RT ln

[
pB

p2 (T )
(1−XB)

]
). (3.4)

The chemical potentials of the constituents α in the two phases are given
by

µA
α = gA

α (pα (T ) , T ) + vA
α (pA − pα (T ))

+

{
RT ln XA α = 1

RT ln (1−XA) α = 2



Phase diagrams modified by interfacial penalties 261

µB
α = gB

α (pα (T ) , T )

+





RT ln
[

pB

pα(T )
XB

]
α = 1

RT ln
[

pB

pα(T )
(1−XB)

]
α = 2

. (3.5)

In the sequel we shall present diagrams, – usually as the results of numer-
ical evaluations. The specific values of the material parameters which we
use in those calculations are those appropriate for a mixture of propane
and butane and they all refer to T = 293K.

The molar volumes of the pure liquids are

vA
1 = 75.24× 10−6 m3

mol
vA

2 = 96.86× 10−6 m3

mol
(3.6)

and the saturation vapor pressures are

p1 (T ) = 8.288 bar p2 (T ) = 2.064 bar (3.7)

respectively for propane and butane. The values for τ1 and τ2 are unknown
and we choose them so as to clearly emphasize the possible effects of the
penalties.

3.2 Analytic available energy for the phase mixture
in mechanical and interface equilibrium

With the specific constitutive relations (3.3), (3.4) we may write the avail-
able free energy (2.19) of the phase mixture in mechanical and interface
equilibrium in the form

a = z
{
XA

(
gA
1 (p1 (T ) , T ) + vA

1 (pA − p1 (T )) + RT ln XA

)

+ (1−XA) (gA
2 (p2 (T ) , T ) + vA

2 (pA − p2 (T )) + RT ln (1−XA)
}

+ (1− z)

{
XB(gB

1 (p1 (T ) , T ) + RT ln

[
pB

p1 (T )
XB

]
)

+ (1−XB) (gB
2 (p2 (T ) , T ) + RT ln

[
pB

p2 (T )
(1−XB)

]
)

}
. (3.8)
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The convenience in referring to the saturation vapor pressures pα (T )
becomes now obvious: it allows us to use the fact that gA

α (pα (T ) , T ) =
gB

α (pα (T ) , T ) holds. Therefore we have

a−XgA
1 (p1 (T ) , T )− (1−X) gA

2 (p2 (T ) , T )

= z
{
XAvA

1 (pA − p1 (T )) + (1−XA) vA
2 (pA − p2 (T ))

+RT (XA ln XA + (1−XA) ln (1−XA)}

+ (1− z)

{
XBRT ln

[
pB

p1 (T )

]
+ (1−XB) RT ln

[
pB

p2 (T )

]

+ RT [XB ln XB + (1−XB) ln (1−XB)]
}

. (3.9)

In particular for z = 0 and z = 1 this equation implies the Gibbs free
energies for the single phases B and A respectively. For z = 0 we have
with X = XB and pB = p, cf. (2.10), or (2.18)

az=0 −XgA
1 (p1 (T ) , T )− (1−X) gA

2 (p2 (T ) , T ) =

RT

{
X ln

p

p1 (T )
+ (1−X)

p

p2 (T )
+ [X ln X + (1−X) ln (1−X)]

}
.

(3.10)

For z = 1 we have with XA = X and pA = p

az=1 −XgA
1 (p1 (T ) , T )− (1−X) gA

2 (p2 (T ) , T )

= RT

{
X

(p− p1 (T )) vA
1

RT
+ (1−X)

(p− p2 (T )) vA
2

RT

+ [X ln X + (1−X) ln (1−X)]
}

. (3.11)

3.3 Available free energy for the phase mixture in
mechanical and interface equilibrium and equi-
librium of mixing

If in addition to mechanical and interface equilibrium we also have equi-
librium of mixing, the chemical potential differences must be equal in
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both phases cf. (2.13), (2.14). By (3.5) this condition implies for the
present simple constitutive equations

ln

(
XA

1−XA

1−XB

XB

)
= ln

p2 (T )

p1 (T )
+

(pA − p2 (T )) vA
2

RT
− (pA − p1 (T )) vA

1

RT
.

(3.12)
Also, of course we must have

zXA + (1− z) XB = X. (3.13)

These are two relations from which – for given values of p and T – we
may determine

XA = XA (z,X) and XB = XB (z, T ) . (3.14)

The actual determination of these functions must be done numerically,
because by (2.18) the pressures pA and pB depend on z and XA, XB in a
very complex manner. [Recall that vA = XAvA

1 + (1−XA) vA
2 holds and

vB = RT
pB

; also v = zvA + (1− z) vB ].

To give an impression of the ensuing functions XA = XA (z, X) and
XB = XB (z, X) we draw the corresponding graphs for one value of the
parameter X, viz. X = 0.6. Fig. 3 shows the graphs. Obviously we must
have XA = 0.6 for z = 1 and XB = 0.6 for z = 0. Both functions increase
with z, but not linearly, as would be expected if τ1 andτ2 were equal to
zero. All plots in this chapter employ the values τ1 = 20 · 104 J and
τ2 = 20 · 104 J/m9 and all numbers are calculated with those values.

In a process of condensation by an increase of pressure the liquid frac-
tion XA starts low with a 2-rich liquid with XA ≈ 0.27 and moves up to
XA = 0.6 as the condensation is completed; analogously the condensation
starts with a vapor fraction XB = 0.6 and during the process the residual
vapor is enriched in constituent 1 up to a value XB ≈ 0.85.

Once the mol fractions XA and XB in the two phases have thus been
determined numerically we may use (3.14) to eliminate those mol frac-
tions from the available free energy a in (3.9). We thus obtain a =
a (z; X, p, T ) . For a given pair (p, T ) = (5 bar, 293 K) and for X = 0.6
Fig. 4a shows that available free energy a as a function of z. Actually the
plot of the figure is for the function

ã = a−XgA
1 (p1 (T ) , T )− (1−X) gA

2 (p2 (T ) , T ) ,
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Figure 3: The equilibrium mol fractions of phases A and B for X=0.6 as
function of the liquid fraction z

i.e. the right hand side of (3.9). We call this function the reduced avail-
ability. In Fig. 4b we show an enlarged plot of the diagram, for small
values of z.

Inspection of Figs.4a and 4b shows that the function ã (z) has five
extrema. The lateral ones are end-point-minima corresponding to the
pure phases z = 0 and z = 1. The middle minimum corresponds to a phase
mixture with z ≈ 0.519. In-between those minima we have barriers which
we must interpret as nucleation barriers. True mechanical, interface- and
mixing-equilibrium occurs for the one of the three minima which has the
smallest value of ã. In Fig. 4a that is the middle minimum with z ≈ 0.519
and – according to Fig. 3 – XA ≈ 0.45 and XB ≈ 0.76. When this phase
mixture prevails, the nucleation barriers must have been overcome; that
can happen in a fluctuation or by interference from outside introduced by
shaking or stirring.

3.4 Nucleation barriers

The situation is not unlike the case of a droplet forming in a vapor, or
a bubble in a liquid, cases which were originally treated by W. Thomson
(Lord Kelvin) [6]. Generally the interpretation is that in a homogeneous
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(a) p = 5bar, T = 293K,X = 0.6

(b) p = 5bar, T = 293K, X = 0.6 in the neighborhood

Figure 4: The reduced availability in units of RT in mechanical equilib-
rium, interface equilibrium and equilibrium of mixing as a function of
phase fraction z.
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phase the barrier must be overcome by a fluctuation; if a fluctuation in
the vapor phase z = 0 creates a liquid nucleus with the phase fraction
corresponding to the left maximum, that nucleus will grow until it reaches
the middle minimum. The middle minimum will also be reached after
formation of a sufficiently big vapor nucleus in the liquid phase z = 1.

The nucleation barriers are the energetic differences between the max-
ima and the lateral minima in Fig. 4. The barriers for the emergence of
liquid in vapor and of vapor in liquid are, – always for X = 0.6

∆aL = 1.25 · 10−4RT and ∆aV = 59.4 · 10−4RT

respectively and the corresponding phase fractions are

zL
max = 1 · 10−3 and zV

max = 0.96.

In a manner of speaking we may call zL
max the phase fraction of the critical

droplet, while zV
max is the phase fraction of the critical bubble. Note,

however that the one-dimensionality of our mathematical model makes it
difficult to think of the nuclei as droplets or bubbles.

The size of the barriers depends on the pressure in such a way that
∆aV becomes bigger and ∆aL becomes smaller as the pressure increases.
Figs. 5a and 5b illustrate that effect by showing plots of ã in the vicinity
of the pure phases for three pressures, viz. 5.0 bar, 5.00005 bar and 5.0001
bar in the vicinity of vapor phase and 5.0 bar, 5.025 bar and 5.05 bar in
the vicinity of liquid phase.

However, the nucleation barriers never disappear, irrespective of pres-
sure.

All graphs and values reported in Sects 3.3 and 3.4 refer to the value
X = 0.6. Corresponding graphs and values must be known – and have
been calculated – for all X between 0 and 1, and they will be used in the
sequel.

3.5 Full equilibrium

In addition to mechanical and mixing equilibrium and interface equi-
librium we now allow phase equilibrium to prevail so that the chemical
potentials satisfy the conditions µA

α = µB
α (α = 1, 2), cf (2.22). Because of
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(a) Reduced availability in the neighborhood of the
pure vapor phase

(b) Reduced availability in the neighborhood of
the pure liquid phase

Figure 5:
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Figure 6: X=X(z) for the pair(p,T)=(5bar, 293K) with penalties τ1, τ2

(dotted) and without penalties (solid). See Fig.8 for the significance of
the coordinates of the extrema

(2.14), which ensures mixing equilibrium, this represents one additional
condition, e.g. µA

1 = µB
1 , or by (3.5) with gA

1 (p1 (T ) , T ) = gB
1 (p1 (T ) , T )

vA
1 (pA − p1 (T )) + RT ln XA = RT ln

pB

p1 (T )
+ RT ln XB (3.15)

We already have XA (X, z) and XB (X, z) cf. (3.14) and, by (2.18), pA

and pB are also known functions of X and z. Thus for a given pair (p, T )
(3.15) provides a relation between X and z. This relation can be obtained
numerically and Fig. 6 represents the function X = X (z) in the form of
the non-monotone graph in that figure.

The solid line in Fig. 6 represents the function X = X (z) , if neither
interface nor inhomogeneity penalties exist. In this case (3.12) and (3.13)
imply that X (z) is a linear function.

When we insert the conditions (3.14) of mixing equilibrium into the
reduced availability ã (3.9) and use the condition (3.15) of phase equilib-
rium to eliminate z, we obtain three branches for ãE (X, p, T ) , i.e. ã in
full equilibrium. Those three branches correspond to the three monotone
parts of the functions X = X (z) in Fig. 6 and they form a loop as shown
in Fig. 7 for (p, T ) = (5 bar, T=298 K) . The lower part of the loop is
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Figure 7: a) The reduced availability for a phase mixture in full equi-
librium. b) The dashed curves represent the availability of the pure
phases:liquid (z=1)and vapor (z=0)

concave; it corresponds to the decreasing branch of the X (z)-graph in
Fig. 6

3.6 Formation of kernels

For the interpretation of the reduced availability graph in equilibrium it
is useful to add the graphs ãz=1 (X, p, T ) from (3.10) and ãz=0 (X, p, T )
from (3.11) to Fig. 7a. This is done in Figs. 7b and 8.

The latter shows the relevant parts of the availabilities ãE, ãz=0, and
ãz=1 and a number of abscissae to be discussed.

The interpretation of these curves is as follows: In the liquid phase
z = 1, when X grows away from 0, – by admixing constituent 1 to
the pure constituent 2 – the liquid solution begins to compete with a
two-phase, liquid-vapor solution at X = Xmin. But it will remain liquid
until it reaches the mol-fraction X1→E, because up to that point the
two-phase equilibrium has a higher energy than the single liquid phase.
The corresponding value z1→E is the phase fraction of a vapor kernel,
the largest value of z that permits phase equilibrium. The value z1→E

may be read off from the descending branch of Fig. 6 as the z-value
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Figure 8: ãE(X, p, T )(dashed) and ãz=0(X, p, T ), ãx=1(X, p, T ) (solid)
Common tangent for the case without any penalties (dotted)

corresponding to X = X1→E. It is noteworthy that the vapor kernel
is bounded away from z = 1 due to the interface and inhomogeneity
penalties; this conclusion follows from Fig. 6 by comparison of the solid
and dashed graphs.

Analogously we may start with z = 0 in the vapor phase and let
X decrease by admixing more and more of constituent 2 to the initially
pure constituent 1. The mixture of vapors begins to compete with a two-
phase, vapor-liquid solution at X = Xmax. Yet it will remain in the vapor
phase until it reaches the mol fraction X0→E, because down to that point
the single-phase vapor is energetically more favorable than the two-phase
solution. For X0→E the liquid kernel appears which has a phase fraction
z0→E that may be read off from the descending branch of the X (z) curve
of Fig. 6 as the abscissa corresponding to the ordinate value X0→E. The
smallest kernel has a phase fraction z bounded away from z = 0 due to
interface and inhomogeneity penalties.

Thus in the range Xmin < X < X1→E and Xmax > X > X0→E the
mixture remains in the liquid and vapor phases respectively. It is true
that three minima are available – as explained in the Sect. 3.3 – but the
ones for the single phases have lowest energy. The situation is reversed in
the range X1→E < X < X0→E, because here the two-phase solution has
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a smaller energy than either single phase.

The concept of kernels, i.e. initial phase fractions bounded away from
either z = 1 or z = 0, has been introduced in the recent paper [5] which
deals with interface and inhomogeneity penalties in a single constituent.
We may succinctly express the concept by saying that a stable bubble or a
stable droplet emerge with a finite size. The kernel must not be confused
with the unstable nuclei discussed in Sect. 3.4. Indeed in the discussion
of the present section the competing energy minima determine the phase
transition. The nucleation barriers play no role in this discussion; we may
think that they are overcome by large enough fluctuations.

We continue the discussion of Fig. 8 with the observation that a
vertical line X = const. with Xmin < X < Xmax – e.g. X = 0.6 – has
five points of intersection with the energy curves ã and ãz=1, ãz=0. The
attentive reader will realize that these points of intersection correspond to
the five extrema of the ã (z, X = 0.6) curve of Fig. 4. The intersections
with the solid lines of Fig. 8 define the end-point minima, while the
intersections with the dashed curves define the nucleation barriers and
the energy minimum.

To conclude the discussion of Fig. 8 we remark that without any
penalties – either due to interfaces or due to non-homogeneity – the
concave part of ã (X, p, T ) stretches into the common tangent of the
single-phase availabilities ãz=0 (X, p, T ) and ãz=1 (X, p, T ) , while the con-
vex parts of ãE tend to merge with the curves ãz=0 and ãz=1. There is
no difference in that case between Xmin and X1→E; both coincide with
X

(0)
1→E, cf. Fig. 8. There are no nucleation barriers in this case nor are

there kernels, i.e. minimal phase fractions for droplets or bubbles.

Also in the absence of any penalties the dotted curve of Fig. 6 is
squeezed into the zig-zag graph defined by the vertical lines z = 0 and
z = 1 and the decreasing solid line.

3.7 Phase diagram for unrestricted miscibility of
constituents

It is useful and customary to summarize the foregoing observations in a
(p,X)-phase diagram which – for a given temperature – represents the
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Figure 9: On the construction of a phase diagram with unrestricted mis-
cibility. Solid: without penalties. Dotted: with penalties

lines p (X; T ) of the boiling liquid and of the saturated vapor, the so-called
boiling line and dew line.

In the case without penalties a pair of points, – one on the boiling line
and one on the dew line –, may be obtained by projecting the common
tangent of the available free energies ãz=1 and ãz=0 onto the appropriate
line of constant pressure in a (p,X)-diagram. Fig. 9 illustrates this
well-known graphical construction for p = 5 bar which produces the two
circles; the left one is the boiling point and the right one is the dew point
for that pressure.

Since the functions ãz=1 and ãz=0 depend on p, cf. (3.10), (3.11), the
boiling and dew points shift; the former traces out the boiling line which
is a straight line, while the latter traces out the dew line which is part of
a hyperbola. For the present case of an ideal solution of incompressible
liquids and a mixture of ideal gases the boiling and dew lines may be found
analytically for the penalty-free case, e.g. see [7]. The area between the
boiling and dew lines is the two-phase, liquid-vapor region.

With the penalty terms we have concluded in the previous section that
the boiling starts at X1→E and the condensation starts at X0→E, cf. Fig.
8. In Fig. 9 this means that we must project the points of intersection
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of ãE with ãz=1 and ãz=0 onto the line p = 5 bar in the (p, X)-diagram.
Thus, we obtain the new boiling and dew points. Between those two
points we have a two-phase region which has become smaller. If this
construction of boiling and dew points is repeated for different pressures
we see the dotted curves appear in Fig. 9. A remarkable phenomenon
occurs in dilute solutions as we come close to either X = 0 or X = 1,
or to pressures close to p2 (T ) and p1 (T ) : here the graph of ãE (X, p)
lies above the point of intersection between ãz=1 and ãz=0 so that it is
energetically favorable for the fluid to make a direct transition from liquid
to vapor or vice versa without an intermediate two-phase region. This is
why the two-phase region tapers out to single lines at either end.

4 Phase diagrams with a miscibility gap

4.1 Heat of mixing

We continue to consider the vapor as a mixture of ideal gases, but the
liquid solution is now considered non-ideal. Indeed, we assume that the
molar Gibbs free energy (3.3) of the liquid phase contains an additional
term of the form

eXA (1−XA) (e > 0) (4.1)

which represents the heat of mixing. Otherwise gA (X, p, T ) is supposed
to be unchanged. The heat of mixing renders gA (XA, p, T ) a non-convex
function of XA, provided that the coefficient e is big enough. In that
case, a judicious use of the common-tangent construction provides phase
diagrams of the type shown in Fig. 1b, e.g. [7]. The miscibility gap is
the projection of the common tangent of the convex parts of gA (XA, p, T )
for high pressures for which that tangent lies below the common tangents
of gA (XA, p, T ) and gB (XB, p, T ) . We assume that the reader is familiar
with that construction in its ordinary form. The most characteristic fea-
ture of this phase diagram is the eutectic point, denoted by E in Fig. 1b.
E is a triple point, where the vapor phase may coexist with the solutions
α and β which are liquids rich and poor, respectively, in constituent 2.
The horizontal line through E is called the eutectic line.
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We proceed to consider the effect of the interface and inhomogeneity
penalties on phase diagrams with a miscibility gap.

4.2 The effect of the heat of mixing on the liquid-
vapor equilibrium conditions

The arguments and formulae of Chap. 2 are unaffected when we now take
a heat of mixing into account in the liquid phase. And to a certain extent
that is true even for the formulae of Chap. 3. In order to avoid repeti-
tion we list only those equations that carry a supplementary term and
sometimes only that term is written explicitly. Thus (3.1) is unchanged,
while the modification in (3.2) is written as

gA (XA, pA, T ) = (3.2)1 + eXA (1−XA) ,

gB (XB, pB, T ) = (3.2)2 , (4.2)

meaning that only (3.2)1 acquires an additional term while (3.2)2 is un-
changed. The analogues to (3.3) and (3.4) in the present case read

gA (pA, XA, T ) = XA

[
gA
1 (p1 (T ) , T ) + vA

1 (pA − p1 (T ))

+RT ln XA + e (1−XA)2]

+ (1−XA)
[
gA
2 (p2 (T ) , T )

+vA
2 (pA − p2 (T )) + RT ln (1−XA) + eX2

A

]
,

gB (pB, XB, T ) = (3.4) . (4.3)

The chemical potentials µα in the two phases assume the forms

µA
α = gA

α (pα (T ) , T ) + vA
α (pA − pα (T ))

+

{
RT ln XA + e (1−XA)2 α = 1
RT ln (1−XA) + eX2

A α = 2

µB
α = (3.5)2 . (4.4)
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The reduced availability in mechanical and interfacial equilibrium – de-
fined by the left hand side of (3.9) – may now be written in the form

ã = z
{
XA

(
vA

1 (pA − p1 (T ))
)

+ (1−XA) (vA
2 (pA − p2 (T ))

+eXA (1−XA) + RT (XA ln XA + (1−XA) ln (1−XA)}

+ (1− z)

{
XBRT ln

[
pB

p1 (T )

]
+ (1−XB) RT ln

[
pB

p2 (T )

]

+ RT [XB ln XB + (1−XB) ln (1−XB)]} . (4.5)

and in, particular, the reduced availability of the pure phases read

ãz=0 = (3.10)

ãz=1 = (3.11) + eX (1−X) (4.6)

The condition of equilibrium of mixing, in addition to mechanical and
interface equilibrium assumes the form

ln

(
XA

1−XA

1−XB

XB

)
+

e

RT
(1− 2XA) = ln

p2 (T )

p1 (T )
+

(pA − p2 (T )) vA
2

RT

− (pA − p1 (T )) vA
1

RT
(4.7)

and that condition replaces (3.12).
The final condition for full equilibrium requires that the chemical po-

tentials µA
1 and µB

1 be equal, cf. (3.15) and by (4.4) that conditions now
reads

vA
1 (pA − p1 (T )) + RT ln XA + e (1−XA)2 = RT ln

pB

p1 (T )
+ RT ln XB.

(4.8)
With these new equations – including the supplements with e – we

must repeat the calculations of Chap. 3 and thus obtain the equilibrium
availability ãE and hence the phase diagram for liquid-vapor mixtures.

A typical equilibrium availability, – appropriate for the pressure p = 9
bar – is shown in Fig. 10a. Also shown, in Fig. 10a, are the ”tangent
curves2” between the convex vapor availability ãz=0 and the right and

2This is what we call – for lack of a better name – the concave curves that replace
the common tangents when the penalty terms are taken into account.
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Figure 10: a) The reduced availabilities of the pure phases (solid) and
the equilibrium availabilities (dashed) for coexisting liquid and vapor. b)
Same as a) with arbitrarily exaggerated differences between equilibrium
curves and curves for pure phases

left convex parts of the liquid availability ãz=1. Since the equilibrium
availabilities and the single-phase availabilities in part nearly coincide,
we have drawn a schematic picture in Fig. 10b, where the differences are
arbitrarily exaggerated.

In order to construct the phase diagram we proceed as indicated in
Fig. 9. The novel feature here is that for one pressure we obtain two lines
of phase equilibrium. For tangents proper this is very well-known and by
changing the pressure, we thus obtain the two phase regions α+vapor
and β+vapor, cf. Fig. 1b. Of course here, – with tangent curves – those
regions will be modified as shown in subsequent phase diagrams.

4.3 Heat of mixing produces liquid-liquid phase equi-
libria

The phase diagram so constructed is not complete, however. Indeed,
since the graph of gA (XA, p, T ) is non-convex, there is the possibility that
equilibria between two liquid phases may ”interfere” with the equilibria
between liquid and vapor; namely in the sense that for some pressure the
liquid-liquid phase mixture in a certain range of mol fractions X is en-
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ergetically more favorable than the liquid-vapor phase mixture and vice
versa. That possibility must be investigated and it requires yet another
change in the form of our constitutive functions for the Gibbs free ener-
gies.

Let A and B now characterize two liquid phases. Thus gA (XA, p, T )
and gB (XB, p, T ) both have the form (4.3)1 with vA

α = vB
α (α = 1, 2) ,

because the two phases are mixtures of the same incompressible liquids.
We have for I = A,B the Gibbs free energies

gI (pI , XI , T ) = XI [g1 (p1 (T ) , T ) + v1 (pI − p1 (T ))

+RT ln XI + e (1−XI)
2]

+ (1−XI) [g2 (p2 (T ) , T )

+v2 (pI − p2 (T )) + RT ln (1−XI) + eX2
I

]
, (4.9)

and the chemical potentials

µI
1 (XI , pI , T ) = g1 (p1 (T ) , T ) + v1 (pI − p1 (T ))

+ RT ln XI + e (1−XI)
2

µI
2 (XI , pI , T ) = g2 (p2 (T ) , T ) + v2 (pI − p2 (T ))

+ RT ln (1−XI) + eX2
I . (4.10)

The reduced available free energy ã for mechanical and interface equilib-
rium reads in this case

ã = z {XAv1 (pA − p1 (T )) + (1−XA) v2 (pB − p2 (T ))

+RT [XA ln XA + (1−XA) ln (1−XA)] + eXA (1−XA)}
+ (1− z) {XBv1 (pB − p1 (T )) + (1−XB) v2 (pB − p2 (T ))

+ RT [XB ln XB + (1−XB) ln (1−XB)] + eXB (1−XB)} . (4.11)

The single-phase availabities ãz=0 and ãz=1 are equal functions of the
variable X in this case, since pB = p in the former case and pA = p in the
latter. The graph of this function shows a marked non-convexity, if e is
chosen big enough. In our calculations e was chosen to be equal to 3RT.

For equilibrium of mixing, in addition to mechanical and interface
equilibrium, the chemical potential differences in the two phases must be
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Figure 11: a) Phase equilibrium between the solutions α (left concave
part of ãz=1) and (right concave part). b) Same as a) with arbitrarily
exaggerated differences between equilibrium curves and curves for pure
phases.

equal and this implies in the present case

ln

(
XA

1−XA

1−XB

XB

)
+

(v1 − v2) (pA − pB)

RT
+ 2

e

RT
(XB −XA) = 0.

(4.12)
For full equilibrium there is one more condition, namely µA

1 = µB
1 and by

(4.10), that condition reads

ln
XA

XB

+
v1 (pA − pB)

RT
+

e

RT

[
(1−XA)2 − (1−XB)2] = 0. (4.13)

With these new equations pertaining to two liquid phases we redo the
calculations of Chap. 3 and for the high pressure equal to p = 12 bar
we obtain a ”tangent curve” between the two convex parts of the liquid
availability. This is shown in Fig. 11a. Fig. 11b shows a schematic
picture for a better qualitative understandig.

The projection – indicated by the arrows – of the equilibrium curve
on the isobar p = 12 bar in a (p,X)-diagram defines the miscibility gap,
cf. Fig. 1b. It is clear that the gap is narrowed by the penalty terms,
because it costs energy to form interfaces. Also, more formally, the
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distance between the arrows in Fig. 11 is smaller than the projection of
the common tangent.

Calculations show that the width of the narrowed miscibility gap is
practically independent of pressure. This is probably due to the assump-
tion that the two constituents of the mixture are incompressible.

4.4 Phase diagrams with miscibility gap

The situation of low and high pressure shown in Figs. 10 and 11 are
qualitatively much like the situation presented in Fig. 9, where the heat
of mixing was absent. Complications arise at intermediate pressures when
the tangent curves of the liquid-vapor availabilities and of the convex
parts of the liquid availability intersect and thereby exchange their roles
as minimum energies.

In this range of pressures we register serious modifications of the phase
diagram, particularly at the eutectic point and concerning the eutectic
line. It is impossible to present all special cases in this paper; they depend
on the values of the penalty coefficients τ1, τ2 between the liquid phases
and between liquids and vapor.

We exhibit some diagrams first and discuss their salient features and
how they depend on the values of τ1 and τ2. Afterwards we discuss the
complex phase changes at p = 9.5 bar as we move horizontally through
the phase diagram by admixing more and more of constituent 1.

Fig. 12a shows the case for which all interfaces – the liquid-liquid or
liquid-vapor ones – have τ1 = 5 · 104 J, τ2 = 5 · 104 J/m9.
In Fig. 12b the same phase diagram is shown again along with the ”usual”
diagram – dashed – for τ1 = 0, τ2 = 0; this is done for better appreciation
of the effects of the interfacial terms.

We list some of the salient features:

• The two-phase regions α+vapor and β+vapor taper off into lines as
X = 0 and X = 1 are approached.

• The eutectic point has spread into a short flat line.

• The eutectic line is no longer straight
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(a) Phase diagrams with miscibility gap. τ1 = 5 · 104J, τ2 =
5 · 104J/m9, e = 3RT

(b) Same as a) but with the penalty-free diagram
(dashed)

Figure 12:
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Figure 13: Phase diagram with miscibility gap for large interfacial penalty
coefficients

• The two-phase regions have narrowed in width.

Fig. 13 refers to the larger penalty coefficients τ1 = 20 · 104 J, τ2 =
20 · 104 J/m9, e = 3 and we see that the β+vapor two-phase region has
now disappeared. The penalty for the formation of β+vapor interfaces is
so great that they do not appear.

The eutectic line has been even more strongly deformed than before and
there is a little to remind us of the eutectic point.

Fig. 14 exhibits the diminishing of the β+vapor phase region as the
penalty coefficients go up.

So far we have penalized all phase boundaries equally, whether they
be of the type α+vapor, β+vapor or α + β. It is clear that this need
not be the case, nor will it be the case in general. In order to illustrate
what another choice may result in, we consider the case that there is no
interfacial penalty between α and vapor, or between β and vapor, but
there is a heavy penalty on interfaces between α and β. In that case
we obtain a phase diagram of the form shown in Fig. 15, where the
miscibility gap is diminished, because it is heavily penalized. The most
visible feature in that figure is that now the eutectic point is drawn out
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Figure 14: With (τ1, τ2) = (0, 0) going up to (2 ·104, 2 ·104) and (5 ·104, 5 ·
104), in the respective units, the β+vapor two-phase region diminishes

into a steep line. Upon crossing that line at constant pressure by adding
constituent 1 we move from an equilibrium of α-solution and vapor to an
equilibrium of β-solution and vapor. Formally what happens is that the
common tangent of the left convex part of the liquid and the vapor curve
and the common tangent between vapor and the right convex part of the
liquid intersect before they reach the vapor curve.

4.5 Study of the 6 phases pertaining to p = 9.5 bar

We turn back to Fig. 13 and inspect the phases pertaining to the pressure
p = 9.5 bar which is indicated in the figure by thin horizontal line. When
we start at the point X = 0 and admix constituent 1 we pass through
6 phase regions until we reach X = 1. The fat dashed and dot-dashed
curves in Fig. 16 represent the availabilities of the pure phases vapor
and liquid, respectively. The thin curves represent the curves of phase
equilibrium. The Roman numbers I through V I characterize the phases
that we pass through in the admixing process as follows.

• I – α-solution

• II – phase equilibria of α + β solutions
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Figure 15: No penalty on α+vapor and β +vapor interfaces. For α + β
the penalties are τ1 = 441 · 104J , and τ2 = 441 · 104J/m9, e = 1.4RT

• III – phase equilibrium of α-solution and vapor

• IV – vapor phase

• V – phase equilibrium of α + β solutions (on enlargement in Fig.
16)

• V I – β-solution

5 Discussion and criticism

The best-known interfacial phenomena are overheating of a liquid and
undercooling of a vapor which delay the liquid-vapor phase transition
in a single, or pure fluid beyond the temperature, where the Gibbs free
energies of the phases are equal. Analogous effects occur when we try to
induce a phase transition by changing the pressure. The phenomenon is
due to the fact that it requires energy – the so-called surface energy –
to create the surface of a droplet or bubble. The difficulty to overcome
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Figure 16: Two phase availabilities for liquid and vapor and equilibrium
availabilities for α + β equilibrium and α+vapor equilibrium
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the nucleation energy may keep the body in metastable equilibrium. And
what we normally perceive as the boiling point or dew point occurs only
because the nucleation energy is overcome by the body, either because of
large fluctuations or because of the presence of nuclei, i.e. foreign traces
that ”catalyze” the phase transition. Thus in engineering applications of
simple bodies we may often ignore the surface energy and concentrate on
the stable equilibria.

The case of solutions is different. We have shown in the foregoing anal-
ysis that, even if nucleation barriers and metastable states are ignored,
the phase diagrams should exhibit considerable differences from custom-
ary ones, e.g. those shown in Figs. 1. Among the predicted differences
are

• direct transitions between liquid and vapor for either large or small
mol fractions, cf. Figs. 9 or 13. Whenever this occurs, it does occur
because the interfacial energy is too big to permit the coexistence
of two phases.

• modification of the eutectic point and the eutectic line. The eutectic
point in Fig. 1b is a triple point, i.e. a point where three phases may
coexist. According to the Gibbs phase rule – applied to a binary
solution with fixed temperature – such a three phase coexistence
can only occur in isolated points of the phase diagram. However, in
Sect. 2.6 we have concluded that the Gibbs rule is modified in the
presence of interfacial penalties, because the phase fraction occurs
as a relevant variable in the equilibrium conditions. Accordingly
we have triple points all along the short steep line separating the
α+vapor-region and the β+vapor-region in Fig. 15; those triple
equilibria differ by different values of the vapor fraction z.

It may be objected that for our one-dimensional model, which is rep-
resented in Fig. 2, it is topologically impossible to have triple points.
However, one may argue that the available free energy of equation (2.4)
is the true – mathematical – starting point of our model. That equation
was motivated by Fig. 2 but, as it stands and as it is exploited, it has
lost all specific references to one-dimensionality. Thus it permits triple
points.
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Another valid criticism may demand experimental evidence for the
predicted phenomena. We have tried to anticipate such an objection by
discussing the subject with chemical engineers and metallurgists. Unfor-
tunately we found it impossible to get through to them even to the extent
that we could not successfully communicate the existence of the problem.

Finally we remark that there have been previous attempts to investi-
gate the effect of interfacial penalties upon phase diagrams. These have
employed a simpler ansatz than ours by letting the interfacial energy a
priori be given by the phase fractions. The first such effort was made
Cahn and Larché [8], who already remarked on the necessity to reformu-
late the Gibbs phase rule. The same ansatz was later used by Müller [9],
Ansorg & Müller [10] and Ansorg [11]. The results concerning the phase
diagram with unrestricted miscibility and the eutectic phase diagram were
qualitatively similar to our results.
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Fazni dijagrami modifikovani medjufaznim
popravkama

Uobičajeni oblici faznih dijagrama su konstruisani bez razmatranja en-
ergija medjupovrši što predstavlja značajni alat za inženjere hemijske i
metalurške specijalnosti. Ako se energije medjupovrši uzmu u obzir, tada
je intuitivno očigledno da oblasti faznih ravnoteža moraju postati manje
jer postoji popravka na formiranje medjupovrši. Ova pojava se proučava
kvalitativno za jednodimenzioni model u kojem se faze pojavljuju pre
kao slojevi, a ne kao kapljice ili mehurići. Modifikovani fazni dijagrami
su prikazani u trećem i četvrrtom odeljku rada.
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