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Abstract

A genuine variational principle developed by Gyarmati, in the field of ther-
modynamics of irreversible processes unifying the theoretical requirements
of technical, environmental and biological sciences is employed to study the
effects of viscous dissipation and stress work on MHD forced convection
flow adjacent to a non-isothermal wedge. The velocity and temperature
distributions inside the boundary layer are considered as simple polynomial
functions and the variational principle is formulated. The Euler-Lagrange
equations are reduced to simple polynomial equations in terms of bound-
ary layer thicknesses. The values of skin friction coefficient and the Nusselt
number are presented for various values of wedge angle parameter m, wall
temperature exponent 2m, magnetic parameter ξ, Prandtl number (Pr)
and Eckert number (Ec). The present results are compared with known
available results and the comparison is found to be satisfactory and the
present study establishes the fact that the accuracy is remarkable.
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Nomenclature

x coordinate measuring distance along the plate.
y coordinate measuring distance normal to plate.
u velocity component in the x-direction.
v velocity component in the y-direction.
T temperature of fluid.
T0 temperature of plate.
T∞ temperature of ambient fluid.
U∞ free stream velocity.
d1 hydrodynamical boundary layer thickness.
d2 thermal boundary layer thickness.
P12 momentum flux.
Jq thermal flux.
L Lagrangian function.
Ls, Lλ conductivities.
ν kinematic viscosity.
d∗1, d

∗
2 non dimensional boundary layer thicknesses.

α thermal diffusivity.
Pr Prandtl number.
δ symbol for variation.
σ entropy production.
Ψ∗, Φ∗ local dissipation potentials in energy picture.
τ ∗w Non-dimensional skin friction.
Nul Nusselt number.
ρ density of the fluid.
κ electrical conductivity.
Ec Eckert number.
m pressure gradient parameter.
Ω total angle of the wedge.

1 Introduction

The problem of magnetohydrodynamic (MHD) incompressible, steady viscous
flow has many important practical engineering applications in areas such as MHD
power generator designs, design for cooling of nuclear reactors, construction of
heat exchangers, installation of nuclear accelerators and blood flow measurement
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techniques. Magnetohydrodynamic forced convection flow over a wedge is of
considerable interest to the technical field due to its frequent role in industrial
and technological applications.

According to the boundary layer theory, the velocity increases from 0 at the
wall surface to the free stream velocity at the edge of the boundary layer and thus
velocity gradient may be appreciable even if the viscosity is very small. Analyzing
the shear stress and heat transfer is one of the most important objectives in the
solution of the boundary layer equations. The governing equations of boundary
layer flow become nonsimilar due to the presence of a magnetic field or variable
fluid properties. The boundary layer flow of a laminar incompressible electrically
conducting fluid over a wedge in the presence of transverse magnetic field has
been investigated by many researchers.

Watanabe[14, 15] reduced the momentum partial differential equation to or-
dinary differential equation by employing difference-differential method and ob-
tained solution in a form of integral equation. The solution for the heat transfer
of an electrically conducting fluid over a semi-infinite flat plate in the presence
of a transverse magnetic field was studied by Watanabe and Pop[18] by means of
difference-differential method. The problems of stagnation point and asymmetric
flow were investigated by Raptis[11] and Chamkha[1]. Watanabe[15] analyzed the
magnetohydrodynamic boundary layer flow along a wedge and he has not con-
sidered the energy equation. Hossain [8] treated the viscous and joule heating
effects on MHD free convection flow with variable plate temperature. Watanabe
and Pop[17] solved the MHD free convection flow over a wedge in the presence
of a transverse magnetic field. Yih[19] presented an analysis of forced convec-
tion boundary layer flow over a wedge with uniform suction and blowing whereas
Watanabe[16] investigated the behaviour of the boundary layer over a wedge with
suction/injection in forced flow.

Yih[20] extended the work of Watanabe and Pop[18] to investigate the heat
transfer characteristic in MHD forced convection flow adjacent to a non-isothermal
wedge in the presence of transverse magnetic field. An approximate numerical
solution for thermal stratification on MHD steady laminar boundary layer flow
over a wedge with suction or injection was investigated by Anjalidevi[2]. The
MHD boundary layer flow over a flat plate for two cases, a uniform free stream
velocity and a uniform hydrostatic pressure was investigated by Sam Lawrence
and Nageswara Rao[12]. Lin and Lin[7] proposed a similarity solution method
that provides accurate solutions for laminar forced convection heat transfer for
either an isothermal surface or a uniform flux boundary to fluid of any Prandtl
number. Chamkha[1] studied steady two dimensional mixed convection flows of
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an electrically conducting and heat absorbing fluid near stagnation point on a
semi infinite vertical permeable surface at arbitrary surface heat flux variations in
the presence of a magnetic field. Motivated by the work of the above mentioned
authors, the effect of viscous dissipation and stress work on the MHD boundary
layer flow over a wedge are analyzed here.

2 The formulation of governing principle of dis-

sipative processes (GPDP)

With the help of boundary layer approximations for the conservation equations
of mass, momentum and energy for steady, two dimensional, laminar flow, with
constant physical properties with viscous dissipation effects are

ux + vy = 0, (mass) (1)

uux + vuy = νuyy + U∞(U∞)x + (κB2
0)(U∞ − u)/ρ, (momentum) (2)

uTx + vTy = αTyy + (ν/Cp)(u
2
y)− (u/Cp)[(U∞(U∞)x) + ((κB2

0U∞)/ρ)]

+ (κB2
0u

2)/(ρCp). (energy) (3)

where subscript indicates partial differentiation, u, v, T , U∞, T∞, B0 and Cp rep-
resent the velocity component in x-direction, velocity component in y-direction,
temperature inside the boundary layer, free stream velocity and the free stream
temperature, externally imposed magnetic field in the y-direction and specific
heat at constant pressure respectively. The symbols ν, α, ρ, κ represent kine-
matic viscosity, thermal diffusivity, density and electrical conductivity of the fluid
respectively. The initial and boundary conditions of the system are

y = 0 : u = 0, v = 0, T − T0(x) = Ax2m, (uniform)

y →∞ : u = U∞ = Cxm, T = T∞, (uniform)





where m = β/(2 − β), is the Hartree pressure gradient parameter which corre-
sponds to β = Ω/π for a total angle of the wedge. The surface of the wedge is
maintained at a variable wall temperature proportional to x2m. In equations(4),
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A and C are positive numbers. In this study, the induced magnetic field and the
Hall effect are neglected.

Gyarmati[5, 6] introduced a genuine variational principle called the “Govern-
ing Principle of Dissipative Processes” (GPDP) which is given in its universal
form

δ

∫

V

[σ −Ψ− Φ] dV = 0. (4)

The principle(5) is valid for linear, quasi-linear and certain types of non-linear
transport processes at any instant of time under constraints that the balance
equations

ρ
•
ai +∇.

→
Ji = σi (i = 1, 2, 3, ...f) (5)

are satisfied. In equation(5), σ is the entropy production, Ψ and Φ are dissi-
pation potentials and V is the total volume of the thermodynamic system. In

equation(6),
→
J i is the flux and σi is the source density of ith extensive transport

quantity ai. σ can always be written in the bilinear form

σ =

f∑
i=1

→
J i .

→
Xi≥ 0, (6)

where
→
J i and

→
Xi are fluxes and forces respectively. According to Onsager’s linear

theory[9, 10] the fluxes are linear functions, that is

→
J i=

f∑

k=1

Lik

→
Xk, (i = 1, 2, 3, ...f) (7)

or alternatively

→
Xi=

f∑

k=1

Rik

→
Jk . (i = 1, 2, 3, ...f) (8)

The constants Lik and Rik are conductivities and resistances and they satisfy the
reciprocal relations[9, 10]

Lik = Lki and Rik = Rki, ( i, k = 1, 2, 3...f ). (9)
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The matrices of Lik and Rik are mutual reciprocals. That is

f∑
m=1

LimRmk =

f∑
m=1

LmkRim = δik, (i, k = 1, 2, 3, ...f) (10)

where δik is the Kronecker delta. The local dissipation potentials Ψ and Φ are
defined as[9, 10]

Ψ(
→
X,

→
X) = (1/2)(

f∑

i,k=1

Lik

→
Xi .

→
Xk) ≥ 0, (11)

Φ(
→
J ,

→
J ) = (1/2)(

f∑

i,k=1

Rik

→
Ji .

→
Jk) ≥ 0. (12)

Since in the case of transport processes
→
Xi can be generated as gradients of

certain ”Γ” variables, it is written as

→
Xi= ∇Γi. (13)

The principle(5) with the help of equations(7),(10),(12),(13) and (14), takes the
form

δ

∫

V

[
f∑

i=1

→
Ji .∇Γi − (1/2)

f∑

i,k=1

Lik∇Γi.∇Γk − (1/2)

f∑

i,k=1

Rik

→
Ji .

→
Jk

]
dV = 0.

(14)
The principle (5) is also given in energy picture as[6]

δ

∫

V

[Tσ − Ψ∗ − Φ∗]dV = 0. (15)

Here Tσ is the energy dissipation and the dissipation potentials Ψ∗ and Φ∗ are
given by

Ψ∗ = TΨ and Φ∗ = TΦ. (16)

It is found that GPDP in energy picture given by equation(16) is always advanta-
geous for dealing with thermohydrodynamic systems. This variational principle
has already been applied for various dissipative systems and was established as
the most general and exact principle of macroscopic continuum physics. For
the description of viscous flow systems, Vincze[13] used the GPDP to derive
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the equation of thermohydrodynamics. Many other variational principles have
already been shown as partial forms of Gyarmati’s principle.

The balance equations of the system play a central role in the formulation of
Gyarmati’s variational principle and hence the governing equations (1)-(3) are
written in the balance form as

∇· →V = 0, (
→
V = iu + jv). (17)

ρ(
→
V ·∇)

→
V +∇ · P = (κB2

0)[U∞ − (
→
i ·

→
V )], (18)

ρCp(
→
V ·∇)T +∇·

→
Jq = µ(u2

y)−(
→
i ·

→
V )[ρU∞(U∞)x+κB2

0U∞]+κB2
0(
→
i ·

→
V )

2

. (19)

These equations represent the mass, momentum and energy balances respectively.

In equation(19) P denotes the pressure tensor which can be decomposed as [5]

P = p δ+

◦
P

vs
, (20)

where p is the hydrostaticpressure, δ is the unit tensor, and

◦
P

vs
is the symmetrical

part of the viscous pressure tensor, whose trace is zero. In the study of heat
transfer and fluid problems, the energy picture of Gyarmati’s principle is always
advantageous over entropy picture. Therefore, we use the energy dissipation Tσ
instead of entropy production σ. In the energy picture (16), the energy dissipation
for the present system is given by [5]

Tσ = −Jq(∂lnT/∂y)− P12(∂u/∂y) (21)

the heat flux Jq and P12 the only component of momentum flux

◦
P

vs
, satisfy the

conservative relations connecting the independent fluxes and forces as

Jq = −Lλ(∂lnT/∂y), and P12 = −Ls(∂u/∂y). (22)

Here Lλ = λT and Ls = µ where λ and µ are the thermal conductivity
and viscosity respectively. It is well known that lnT is the proper state variable
instead of T when the principle assumes energy picture[5]. With the help of
equation(23) the dissipation potentials in the energy picture are found as follows.
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Ψ? = (1/2)[Lλ(∂lnT/∂y)2 + Ls(∂u/∂T )2], (23)

Φ? = (1/2)[RλJq
2 + RsP12

2], (24)

where Lλ = R−1
λ and Ls = R−1

s . Using the equations(22), (23), (24) and (25)
Gyarmati’s variational principle in the energy picture(16) is formulated in the
following form

δ

∫ l

0

∫ ∞

0

[−Jq(∂lnT/∂y) − P12(∂u/∂y)− (Lλ/2)(∂lnT/∂y)2

− (Ls/2)(∂u/∂y)2 − (Rλ/2)Jq
2 − (Rs/2) P 2

12] dydx = 0, (25)

in which l is the representative length of the surface.

3 Solution procedure

It is considered that the system of two dimensional MHD laminar, inviscid po-
tential flow past an unlimited wedge placed symmetrically in a stream with apex
at the origin where x and y are coordinates measured along and normal to the
surface respectively. The main stream velocity and the wall temperature are
assumed to vary as power functions of distance from the start of the boundary
layer respectively as

U∞ = Cxm, T0 − T∞ = Ax2m, (26)

where C and A are constants and the exponent m is connected with the apex
angle πβ by the relation

m = β/(2− β) or β = 2m/(m + 1). (27)

In equation(27), T0 is the temperature of the surface and T∞ is the free stream
temperature respectively. Here the analysis is carried out for the entire range
of realistic flow, that means when 0 ≤ m < ∞ or 0 ≤ β < 2. The velocity
and temperature fields in their respective boundary layer regions are suitably
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described by the following functions

u/U∞ = 3y/d1 − 3y2/d2
1 + y3/d3

1 (y < d1),

u = U∞ (y ≥ d1),

(T − T∞)/(T0 − T∞) = 1− 3y/2d2 + y3/2d3
2 (y < d2),

T = T∞. (y ≥ d2)





(28)

Where d1 and d2 are the momentum and thermal boundary layer thicknesses
respectively. The velocity and thermal profiles (29) satisfy the following compat-
ibility conditions

y = 0, u = 0, v = 0, T = T0(x), Ty = 0,

y = d1, u = U∞, uy = 0, uyy = 0,

y = d2, T = T∞, Ty = 0,





(29)

The smooth fit boundary conditions uy = 0 and Ty = 0 correspond to P12 = 0
and Jq = 0 at the respective edges of the boundary layers. Here d1 and d2 are un-
known parameters and they are to be determined by the present thermodynamic
analysis.

The transverse velocity component v is obtained from the mass balance equa-
tion(1) as

v = (U∞)[(3y2/2d2
1 − 2y3/d3

1 + 3y4/4d4
1)d

′
1]

+(U∞)[(−3y2/2d1 + y3/d2
1 − y4/4d3

1)(m/x)]. (30)

The velocity and temperature functions (29) are substituted in the momentum
and energy balance equations(1)-(3), and on direct integration with respect to y
with the help of smooth fit boundary conditions the fluxes P12 and Jq are obtained
respectively. The expression for P12 remains the same for any Prandtl number
Pr. But the energy flux Jq assumes different expression for Pr ≤ 1 andPr ≥ 1
respectively. When Pr ≤ 1 the expression for Jq in the range d1 ≤ y ≤ d2 is
obtained first and the expression for Jq in the range 0 ≤ y ≤ d1 is determined
subsequently by matching the Jq expressions of the two regions at the interface.
The expressions for momentum and energy fluxes P12 and Jq are as follows.
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−P12/Ls = (U∞/d1) + (mU2
∞/νx)[53d1/160− y + 3y3/2d2

1

−3y4/2d3
1 + 3y5/4d4

1 − y6/4d5
1 + y7/28d6

1] + (U2
∞d′1/ν)

[9/160− 3y3/2d3
1 + 3y4/d4

1 − 9y5/4d5
1 + 3y6/4d6

1

−3y7/28d7
1] + [(κB2

0U∞)/(νρ)]

[3y2/2d1 − y3/d2
1 + y4/4d3

1 − y + 2d1/10], (0 ≤ y ≤ d1). (31)

−Jq/Lλ = [Pr(U∞)(T0 − T∞)/ν][3y3/2d1d
2
2 − 9y5/10d1d

4
2

−9y4/8d2
1d

2
2 + 3y6/4d2

1d
4
2 + 3y5/10d3

1d
2
2 − 3y7/14d3

1d
4
2

+3d2
1/40d2

2 − 3d4
1/280d4

2 − 3/8]d′2 + [mPr(U∞)(T0 − T∞)/νx]

[3y2/d1 − 9y3/4d1d2 + 3y5/20d1d
3
2 − 2y3/d2

1 + 15y4/8d2
1d2

− y6/4d2
1d

3
2 + y4/2d3

1 − 21y5/40d3
1d2 + 5y7/56d3

1d
3
2

+ d1/2 + 3d2
1/20d2 − 4d4

1/35d3
2 − 9d2/8] + [Pr(U∞)(T0 − T∞)/ν]

× [−3y3/4d2
1d2 + 9y5/20d2

1d
3
2 + 3y4/4d3

1d2 − y6/2d3
1d

3
2

− 9y5/40d4
1d2 + 9y7/56d4

1d
3
2 + 9d1/40d2 − 31d3

1/280d3
2]d

′
1

+ [U2
∞Pr/Cp][−9y/d2

1 + 18y2/d3
1 − 18y3/d4

1 + 9y4/d5
1 − 9y5/5d6

1
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+ 9/5d1] + [U3
∞Pr/νxCp][ξ(3y

2/2d1 − 4y3/d2
1 + 19y4/4d3

1

− 3y5/d4
1 + y6/d5

1 − y7/7d6
1 − 3d1/28) + m(3y2/2d1

− y3/d2
1 + y4/4d3

1 + d1/4− d2)], (0 ≤ y ≤ d1), (Pr ≤ 1). (32)

−Jq/Lλ = [Pr(U∞)(T0 − T∞)/ν][3y2/4d2
2 − 3y4/8d4

2 − 3/8]d′2

+[mPr(U∞)(T0 − T∞)/νx][2y − 3y2/4d2 − y4/8d3
2

−9d2/8] + [mU3
∞Pr/νxCp][y − d2].(d1 ≤ y ≤ d2), (Pr ≤ 1).(33)

−Jq/Lλ = [Pr(U∞)(T0 − T∞)/ν][3y3/2d1d
2
2 − 9y5/10d1d

4
2 − 9y4/8d2

1d
2
2

+3y6/4d2
1d

4
2 + 3y5/10d3

1d
2
2 − 3y7/14d3

1d
4
2 − 3d2/5d1 + 3d2

2/8d
2
1

−3d3
2/35d3

1]d
′
2 + [mPr(U∞)(T0 − T∞)/νx][3y2/d1 − 9y3/4d1d2

+3y5/20d1d
3
2 − 2y3/d2

1 + 15y4/8d2
1d2 − y6/4d2

1d
3
2 + y4/2d3

1 (34)

The prime indicates the differentiation with respect to x. Using the expressions of
P12 and Jq along with the velocity and temperature functions(29) the variational
principle (26) is formulated independently for Pr ≤ 1 and Pr ≥ 1 respectively.
After performing the integration with respect to y one can obtain the variational
principle in the following forms respectively

δ

∫ l

0

L1[d1, d2, d
′
1, d

′
2]dx = 0, (Pr ≤ 1) and (35)

δ

∫ l

0

L2[d1, d2, d
′
1, d

′
2]dx = 0. (Pr ≥ 1) (36)
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The variational principles (36) and (37) are found identical when d1 = d2.
Accordingly, the Euler-Lagrange equations are

(∂L1,2/∂d1)− (d/dx)(∂L1,2/∂d′1) = 0, (37)

and (∂L1,2/∂d2)− (d/dx)(∂L1,2/∂d′2) = 0. (Pr ≤ 1, P r ≥ 1) (38)

The equations (38) and (39) are second order ordinary differential equations
in terms of d1 and d2 respectively. The procedure for solving equations (38) and
(39) can be considerably simplified by introducing the non dimensional boundary
layer thicknesses d∗1 and d∗2 given by

d1 = d∗1
√

νx/U∞ and d2 = d∗2
√

νx/U∞. (39)

The variational principles (36) and (37) subject to transformations (40) and the
resulting Euler-Lagrange equations are obtained as simple polynomial equations

(∂L1,2/∂d∗1) = 0, (40)

(∂L1,2/∂d∗2) = 0. (Pr ≤ 1, P r ≥ 1) (41)

The coefficients of these equations(41) and (42) depend on the independent pa-
rameters Pr,m and ξ and Ec, where

Re = (U∞x/ν), (Renolds number)

Pr = (ν/α), (Prandtl number)

Ec = U2
∞/{Cp[To(x)− T∞]}, (Eckert number)

ξ = (κB2
0x)/(ρU∞). (Magnetic parameter)

Equation(41) is a simple polynomial equation in terms of boundary layer thick-
ness whose coefficients depend on the wedge angle parameter m, and the magnetic
parameter ξ. This equation is solved easily for any given combinations of m and
ξ and corresponding hydrodynamical boundary layer thickness d∗1 is obtained as
the only positive root. The polynomial equation(42) is solved for the values of
Pr, m, ξ and Ec and it is found that for any value of Pr there corresponds only
one real root d∗2.
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4 Results and discussions

After getting d∗1 and d∗2 for given values of Pr,m, ξ and Ec the local shear stress
values and local heat transfer values are calculated with the help of the following
relations respectively.

τ ∗w =
√

νx/U3∞ (−P12/Ls)y=0, (42)

Nul =
√

νx/U∞(T0 − T∞)2 (−Jq/Lλ)y=0. (43)

The main results of engineering interest are skin friction(shear stress) and wall
heat transfer(Nusselt Number) and hence these two important characteristics of
the problem are analyzed here. Tables 1 and 2 represent the values of skin
friction for various values of m when ξ=0 and for various values of ξ when m=1
respectively. In order to verify the accuracy of the obtained results by using
the present technique, the obtained numerical results are compared with Cebeci
and Bradshaw[4], Arial[3], Lin and Lin[7] and Yih[20]. As given in Table 1, it is
evidently observed that when the values of m increase, the values of skin friction
also increase. When the wedge becomes a flat plate (m=0) the surface skin
friction value is very small and low. While the wedge angle becomes large the
values of skin friction also increase rapidly. This circumstance remains the same
for any given value of m. When m=1 and for any given values of the magnetic
parameter ξ, the shear stress values are tabulated in Table 2. Since m=1, this
type is a particular case of stagnation flow. From this table, it is revealed that the
skin friction values increase with the increasing values of ξ with uniform interval.
The increasing of the magnetic parameter ξ, also increases the skin friction and
heat transfer values. Table 3 exhibits the heat transfer values for various values
of Prandtl number when m= 0, 1, Ec=0 and ξ=0. From this table, the heat
transfer values are increasing with the Prandtl numbers and the increase is rapid
for higher Prandtl numbers. Numerical results for heat transfer are presented
in Table 4 for various values of Prandtl number, Eckert number and magnetic
parameter ξ, for given m=0. From these tables the obtained results are well
comparable with known results and the comparison shows in good agreement.

Skin friction values are presented graphically for various values of ξ and m
in Fig. 1. In this figure, the pressure gradient parameter m ranges from 0 to 9,
and the magnetic parameter ξ ranges from 0 to 10. Figs. 2-4 represent the heat
transfer values for various values of m when Ec=0, 0.5 and 1 for given values
of Pr=0.1. Similarly for the cases of Ec=0, 0.5 and 1 when Pr=1 are given
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Table 1: Comparison of Skin friction values for various values of m when ξ = 0.

m Present results Cebeci and
Bradshaw[4]

0.0 0.33206 0.337164446
1/3 0.75745 0.759123053
1.0 1.23259 1.23334938

Table 2: Comparison of Skin friction values for various values of ξ when m = 1.

ξ Present results Arial[3] Yih [20]
0 1.23334938 1.232588 1.232588
1 1.58635749 1.585331 1.585331
4 2.34901650 2.346663 2.346663
9 3.24428992 3.240950 3.240950
25 5.15282465 5.147965 5.147964
100 10.0833987 10.074741 10.074741

Table 3: Comparison of Heat transfer values for various values of Pr when m =
0, 1, Ec = 0 and ξ = 0.

Pr Present results Lin and Lin [7]
m=0 m=1 m=0 m=1

0.0001 0.0056490 0.007990 0.00558768 0.00793796
0.001 0.017800 0.025240 0.0173157 0.0248294
0.01 0.054680 0.079086 0.0515902 0.0759726
0.1 0.146750 0.232550 0.140032 0.219505
1 0.344540 0.568590 0.332058 0.570466
10 0.778350 1.323490 0.728148 1.33880
100 1.71100 2.942610 1.57186 2.98634
1000 3.71945 6.427350 3.38710 6.52914
10000 8.04602 13.93341 7.29742 14.1583
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Table 4: Comparison of Heat transfer values for various values of Pr, Ec and ξ
when m = 0.

Present results Yih [20]
Pr ξ Ec=0 Ec=1 Ec=0 Ec=1

0.733 0.0 0.302071269 0.194863613 0.297526 0.170272
0.5 0.346883447 0.198323111 0.357022 0.210072
1.0 0.370572675 0.210918412 0.382588 0.228813
1.5 0.386374354 0.215030718 0.398264 0.240798
2.0 0.398053480 0.215510246 0.409168 0.249316

1 0.0 0.344541458 0.145509029 0.332057 0.166029
0.5 0.388043942 0.186647276 0.402864 0.201452
1.0 0.411101757 0.192692338 0.433607 0.216814
1.5 0.426067133 0.198764352 0.452634 0.226323
2.0 0.436983831 0.205348438 0.465987 0.232998

graphically in Figs. 5-7 respectively. Figs. 8-11, display the heat transfer values
for various Prandtl numbers for given Ec=0.1 when m=0.111111, 0.333333, 0.5
and 1. From these figures the local skin friction and heat transfer values increase
as the pressure gradient parameter m increases.

5 Conclusions

This study deals with the effects of transverse magnetic field, viscous dissipation,
stress work, shear stress and surface heat transfer over a non-isothermal wedge.
The governing partial differential equations are reduced to simple polynomial
equations, the coefficients of which are functions of independent parameter Pr,
m, ξ and Ec. These equations offer a practising engineer, a rapid way of obtaining
skin friction and heat transfer values for any values of Pr, m, ξ, and Ec. The
great advantage involved in the present technique is that the results are obtained
with remarkable accuracy and the amount of calculation is considerably less
when compared with more conventional exact methods. Hence the practising
engineers and scientists can employ this unique approximate analytical method
as a powerful tool for solving heat transfer and boundary layer flow problems.
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Figure 1: Skin friction as a function of ξ for various m
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Figure 2: Local Nusselt number as a function of ξ for various m when Ec = 0
and Pr = 0.1
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Figure 3: Local Nusselt number as a function of ξ for various m when Ec = 0.5
and Pr = 0.1
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Figure 4: Local Nusselt number as a function of ξ for various m when Ec = 1
and Pr = 0.1
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Figure 5: Local Nusselt number as a function of ξ for various m when Ec = 0
and Pr = 1
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Figure 6: Local Nusselt number as a function of ξ for various m when Ec = 0.5
and Pr = 1
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Figure 7: Local Nusselt number as a function of ξ for various m when Ec = 1
and Pr = 0.1

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ξ

N
u

x/R
e x1/

2

Pr=1

Pr=0.733

Pr=0.1

Pr=0.01

Pr=0.001

Figure 8: Local Nusselt number as a function of ξ for various Pr when Ec = 0.1
and m = 0
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Figure 9: Local Nusselt number as a function of ξ for various Pr when Ec = 0.1
and m = 0.33333
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Figure 10: Local Nusselt number as a function of ξ for various Pr when Ec = 0.1
and m = 0.5
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Figure 11: Local Nusselt number as a function of ξ for various Pr when Ec = 0.1
and m = 1
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Thermodinamičko modeliranje viskozne disipacije pri
MHD tečenju

Cilj je studija efekata viskozne disipacije na MHD prinudnu konvekciju u okolini neizo-
termnog klina. Tu se primenjuje originalni Djarmatijev varijacioni princip koji unutar
termodinamike ireverzibilnih procesa ujedinjuje zahteve tehničkih, bioloških i nauka
prirodne okoline. Za formulaciju tog varijacionog principa se rasporedi brzine i tem-
perature unutar graničnog sloja posmatraju kao proste polinomijalne funkcije Ojler-
Lagranževe se redukuju na proste polinomijalne jednačine preko debljine graničnog
sloja. Vrednosti koeficijenta trenja na zidu i Nuseltovog broja su prikazane za ra-
zličite vrednosti parametra ugla klina m, eksponenta temperature zida 2m, magnetskog
parametra ξ, Prantlovog broja (Pr) i Ekertovog broja (Ec). Rezultati rada su pored-
jeni sa poznatim dostupnim rezultatima. Uporedjenje je zadovaljavajuće sa veoma
dobrom tačnošću.
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