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Abstract
We study a growing biological tissue as an open biphasic mixture
with mass exchange between phases. The solid phase is identified
with the matrix of a porous medium, while the fluid phase is com-
prised of water, together with all the dissolved chemical substances
coexisting in the pore space. We assume that chemical substances
evolve according to transport mechanisms determined by kinematic
and constitutive relations, and we propose to consider growth as
a process able to influence transport by continuously varying the
thermo-mechanic state of the tissue. By focussing on the case of
anisotropic growth, we show that such an influence occurs through
a continuous rearrangement of the tissue material symmetries. In
order to illustrate this interaction, we restrict ourselves to diffusion-
dominated transport, and we assume that the time-scales associated
with growth and the transport process of interest are largely sep-
arated. This allows for performing an asymptotic analysis of the
“field equations” of the system. In this framework, we provide a
formal solution of the transport equation in terms of its associated
Green’s function, and we show how the macroscopic concentration
of a given chemical substance is “modulated” by anisotropic growth.
Keywords: multi-scale, homogenization, mixtures theory, growth,
transport.
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1 Introduction

Biological growth is the mass variation of a living tissue in response to
the concurrency of various phenomena which take place at several scales of
observation. As a result, the tissue may either increase (positive growth)
or decrease (negative growth, or resorption) its mass [1]. At the molecular
and cellular level, growth is dictated by chemical reactions and cellular pro-
cesses involving transport mechanisms of both cells and chemical species
[2][3]. At the scale at which the tissue can be regarded as a macroscopic
complex continuum system, growth is influenced by environmental factors
[1], identified with thermo-mechanical stimuli that participate with growth
in the changes of geometry, internal structure, thermo-mechanic state, and
material properties of the tissue. This continuous transformation of the
tissue implies that chemical substances evolve in a continuously varying
thermo-mechanical environment.

Despite the separation of scales between the molecular and the tissue
levels, the transport processes experienced by chemical substances, and the
thermo-mechanical processes undergone by the tissue as a whole are inter-
connected. Mixture Theory offers a useful tool for studying the coupling
between transport processes and thermo-mechanics in biological systems
[3]-[6]. Mixtures can be either assumed to be composed by a solid phase,
a fluid phase and an arbitrary number of chemical species dissolved in the
fluid [2], or can be assumed to consist of an arbitrary number of solid and
“fluid” constituents [5][6].

We regard a biological tissue experiencing growth as a porous medium
made of a solid matrix saturated by a fluid, i.e., the saturation condition,
φF + φS = 1, is assumed to hold true (φF and φS being the volume frac-
tions of the fluid and solid phase, respectively). The fluid phase consists
of a number of chemical species, which behave as solutes in an aqueous
solution, and filtrate the solid porous matrix. This description is consis-
tent with Biot’s picture [7]. We first consider the balance laws of chemical
substances at the pore scale. Then, by averaging these balance equations
[8], we “bring” chemical substances to the scale at which the porous mate-
rial is treated as a macroscopic continuum mixture. This technique, called
upscaling, is consistent with the macroscopic description of the mixture
given, for example, in [2][5], and can be made consistent with the results
shown in [6] by considering the case of a system open with respect to mass,
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momentum, energy, and entropy even at the pore scale. However, for the
sake of simplicity, we shall deal with the case of a system open with respect
to mass only.

The macroscopic thermo-mechanic characterisation of the mixture given
in this paper follows the constitutive assumptions suggested in [8]. This
provides the expressions for Darcy’s law of flow and Fick’s law of diffusion
in porous materials. It is worth to notice that in the framework followed
in the present paper, the caveat put forward by Rajagopal [9] seems to be
not so stringent for our purposes.

The introduction of Fick’s law enables us to treat the macroscopic mass
balance of a given chemical substance in terms of an advection-diffusion-
reaction equation. The investigation of the possible interaction between
these transport mechanisms and growth is the main goal of this paper. In
order to do that, we write the advection-diffusion-reaction equation in ma-
terial form [10], and we follow the idea put forward by Epstein and Maugin
[11] to consider growth as development of material inhomogeneities. Par-
ticular emphasis is given to anisotropic growth. In this case, we interpret
the growth-induced evolution of transport properties in terms of a contin-
uous rearrangement of material symmetries and inhomogeneities. On the
trail of a previous paper [12], we assume that growth is characterized by a
time-scale much slower than that of the transport process of interest, we
suggest a formal solution of the transport equation in terms of its associ-
ated Green’s function, and we show how the macroscopic concentration of
a certain chemical substance is “modulated” by anisotropic growth.

2 Pore scale description and upscaling

The overall behaviour of a porous material depends on both its internal
structure and the interaction with the environment. In order to investi-
gate the role played by the former, it is necessary to start the analysis of
a porous medium from the pore scale description. Indeed, since this pa-
per deals with growth (i.e., a macroscopic phenomenon which requires the
presence of source terms in general balance laws), we need to determine the
macroscopic sources of mass, momentum, energy and entropy consistently
with the formulation of balance laws at the pore scale. This is possi-
ble if all the “ingredients” accounted for at the mesoscopic scale (or pore
scale) are retrieved within the macroscopic framework in accordance with a
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thermodynamically appropriate upscaling (or homogenization) procedure.
The upscaling “philosophy” allows for determining a Fick-like macroscopic
description of transport that incorporates pore scale structure and phe-
nomenology.

We consider a system made of a porous solid matrix (i.e., the solid
phase) and a fluid phase filling the pores. We represent the fluid phase as
an “ensemble” of N chemical substances (N−1 solutes plus the N -th com-
ponent, identified with water) coexisting in the pore space. By invoking
phase separation, we describe the evolution of the chemical constituents
by considering, for each species, separate balance of mass, momentum, en-
ergy, and entropy, and accounting for appropriate interaction and exchange
terms. By attaching at any point r of the system a given mesoscopic phys-
ical quantity ψm (that can be either a scalar, a vector or a tensor field),
the associated mesoscopic balance law reads [8][13]-[15]:

∂(ρmψm)

∂t
+∇r · (ρmψmvm)−∇r · =m − ρmfm = ρmgm, (1)

where ρm and vm are the mesoscopic mass density and velocity of the
medium, respectively, ∇r denotes differentiation with respect to the meso-
scopic space variable r , =m is the flux associated with ψm, fm is the internal
source, and gm is the net production rate. By labelling each of these phys-
ical quantities with the indices k = S, F, α, Eq. (1) can be specialized to
the solid phase (index S), fluid phase (index F ) and the generic chemical
constituent (index α) of the fluid phase. The specialization of Eq. (1) to
the subsets of the porous material occupied by the solid and fluid is nec-
essary because physical quantities are assumed to be smooth inside each
component of the medium, but experience jump conditions at the fluid-
solid interface [8]. These jump conditions yield certain constraints on the
thermo-mechanical quantities, and can be stated as balance laws at the
fluid-solid interface, i.e.,

∑N
α=1 [ρm,αψm,α(u− vm,α)−=m,α]|F · nFS+

[ρm,Sψm,S(u− vm,S)−=m,S]|S · nSF ≥ 0,
(2)

where u is the interface velocity, nFS and nSF (nFS = −nSF ) are the unit
normal vectors pointing out of the fluid and solid phase, respectively, and
the symbols [...]|F and [...]|S indicate that, at the interface, the limit of the
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expressions within brackets is to be evaluated from the fluid and solid side,
respectively. It is worth to remark that Eq. (2) is satisfied as an inequality
only in the case of entropy.

Quantity ψm =m fm gm

Mass 1 0 0 r̂gr
m,S

Momentum vm,S σm,S gm,S r̂gr
m,Sv̂m,S + λ̂gr

m,S

Energy Um,S+
1
2
v2

m,S

σm,S.vm,S+
qm,S

gm,S ·vm,S+
hm,S

r̂gr
m,S(Ûm,S + 1

2
v̂2

m,S)

+λ̂gr
m,S · vS + θ̂m,S

Entropy Sm,S ϕm,S bm,S r̂gr
m,SŜm,S + ζ̂m,S +

Γm,S

Table 1: Mesoscopic variables referred to the solid phase.

Quantity ψm =m fm gm

Mass 1 0 0 r̂ch
m,α

Momentum vm,α σm,α gm,α r̂ch
m,αv̂m,α + λ̂ch

m,α

Energy Um,α+
1
2
v2

m,α

σm,α.vm,α+
qm,α

gm,α ·vm,α+
hm,α

r̂ch
m,α(Ûm,α + 1

2
v̂2

m,α)

+λ̂ch
m,α · vα + θ̂m,α

Entropy Sm,α ϕm,α bm,α r̂ch
m,αŜm,α + ζ̂m,α +

Γm,α

Table 2: Mesoscopic variables referred to the α-th chemical substance.

In order to refer Eqs. (1) and (2) to the mesoscopic balance of mass,
momentum, energy and entropy, it suffices to use the physical quantities
defined in Tables 1 and 2. In Tables 1 and 2, Um,α, Um,S and Sm,α, Sm,S

are the internal energy and entropy densities per unit mass, respectively,
σm,α, σm,S are the Cauchy stress tensors, qm,α, qm,S and ϕm,α, ϕm,S are
the heat and entropy flux, respectively, gm,α, gm,S are body forces per
unit mass, hm,α, hm,S and bm,α, bm,S are the internal sources of internal

energy and entropy, r̂ch
m,α and r̂gr

m,S are mass net production rates, λ̂ch
m,α

and λ̂gr
m,S denote the intrinsic productions of momentum, θ̂m,α, θ̂m,S and

ζ̂m,α, ζ̂m,S are the net productions of energy and entropy, respectively, and
Γm,α, Γm,S are the entropy net production rates. It is worth to notice
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that the production rates of mass and momentum of the solid phase, r̂gr
m,S

and r̂gr
m,Sv̂m,S + λ̂gr

m,S, are due to growth (i.e., these two quantities would
vanish in the absence of growth), while the production rates of mass and
momentum of the α-th chemical species, r̂ch

m,α and r̂ch
α,mv̂α,m + λ̂ch

m,α, are
assumed to be due to chemical processes only. We introduced the velocities
v̂α,m and v̂m,S, the energies Ûα,m and Ûm,S, and the entropies Ŝα,m and Ŝm,S

because, as suggested by [6], the mass production rates r̂ch
m,α and r̂gr

m,S may
be endowed with their own velocities, energies, and entropies, respectively
(thus, in general, v̂α,m 6= vα,m, v̂m,S 6= vm,S, Ûα,m 6= Uα,m, Ûm,S 6= Um,S,

Ŝα,m 6= Sα,m, and Ŝm,S 6= Sm,S,).

By hypothesizing that chemical reactions take place within the pore
space, the net production of mass, momentum, energy, and entropy referred
to the fluid phase as a whole must equal zero. This implies the following
set of constraints on the mesoscopic source terms:

∑N
α=1 ρm,αr̂ch

m,α = 0,

∑N
α=1 ρm,α(r̂ch

m,αv̂m,α + λ̂ch
m,α) = 0,

∑N
α=1 ρm,α[r̂ch

m,α(Ûm,α +
1

2
v̂2

m,α) + λ̂ch
m,α · vm,α + θ̂m,α] = 0,

∑N
α=1 ρm,α(r̂ch

m,αŜm,α + ζ̂m,α) = 0.

(3)

In order to “bring” the mesoscopic balance laws (1), (2), and (3) to
the scale at which the porous material is regarded as a macroscopic mix-
ture, we postulate the existence of a suitable Representative Elementary
Volume (REV), Ω, and we average each physical quantity by employing
averaging operators [8][13]-[15][16] defined on Ω. An REV is a subset of
the porous material such that its size, represented by its measure |Ω|, de-
fines a length-scale which is much larger than the typical length-scale of
mesoscopic heterogeneities, and much smaller than the length-scale of the
macroscopic inhomogeneities.

We undertake the upscaling (or homogenization) procedure by intro-
ducing an averaging operator which provides the average of a given physical
quantity ψm over the REV, Ω(x), centred at x (x can be identified with
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the centroid of the REV), i.e.,

〈ψm〉Ω (t,x) =
1

|Ω(x)|
∫

Ω(x)

ψm(t,x + ξ)d$ξ =

1

|Ω(x)|
∫

Bt

ψm(t,x + ξ)γΩ(ξ)d$ξ, (4)

where ξ = r − x ∈ Ω(x) is the relative vector coordinate of a point lying
inside the REV centred at x ∈ Bt, Bt is the portion of space occupied by
the mixture at time t, and γΩ is the characteristic function of the REV,
defined by

γΩ(ξ) =

{
1, ∀ξ ∈ Ω(x) ∩ B(t),
0, elsewhere.

(5)

We also define the apparent and intrinsic volume averages,

〈ψm〉k (t,x) = 〈γkψm〉Ω (t,x), (6)

〈ψm〉kk (t,x) =
1

φk(t,x)
〈ψm〉k (t,x), (7)

the mass average of ψm with respect to the k-th phase (i.e., k = S, F ),

ψm,k
k
(t,x) =

1

〈γkρm,k〉Ω (t,x)
〈γkρm,kψm,k〉Ω (t,x), (8)

and the mass average of ψm with respect to the α-th chemical substance,

ψm,α
α
(t,x) =

1

〈γF ρm,α〉Ω (t,x)
〈γF ρm,αψm,α〉Ω (t,x). (9)

In Eqs. (6)-(9), γk(t, r) is the characteristic function of the set Ωk(t,x) ⊂
Ω(x) occupied by the k-th phase at time t, and φk(t,x) is the volume
fraction of the k-th phase, i.e., φk(t,x) = |Ωk(t,x)|/|Ω(x)|.

The ”upscaled” version of the mesoscopic balance law (1) can be ob-
tained by using the definitions given in Eqs. (4)-(9), and appealing for two
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theorems [13]-[15] that provide the result of the application of the appar-
ent volume averaging operator, 〈·〉k, to the time and space derivatives of a
given mesoscopic field, respectively, i.e. [8][13]-[15],

∂

∂t

[
φF 〈ρm,α〉FF ψm,α

α
]

+∇x ·
[
φF 〈ρm,α〉FF ψm,α

α
vm,α

α
]
−∇x · Jα

= φF 〈ρm,α〉FF [fm,α
α

+ gm,α
α + Eα(ρm,αψm,α) + <α],

(10)

∂

∂t

[
φS 〈ρm,S〉SS ψm,S

S
]

+∇x ·
[
φS 〈ρm,S〉SS ψm,S

S
vm,S

S
]
−∇x · JS

= φS 〈ρm,S〉SS [fm,S
S

+ gm,S
S + ES(ρm,Sψm,S) + <S].

(11)

In Eqs. (10) and (11), ∇x denotes differentiation with respect to the
centroid of the REV, x, Jα and JS represent macroscopic fluxes, and the
quantities ES(ρm,Sψm,S), Eα(ρm,αψm,α), <S, and <α are macroscopic source
terms accounting for the transfer of the fields ψm,S and ψm,α across the
solid-fluid interface [8] (see Appendix A for details).

3 Macroscopic description

Macroscopic balance laws of mass, momentum, energy, and entropy must
be studied for the N fluid components (or chemical species), and the solid
phase. Alternatively, we can write, for each balance law, N − 1 equations
referring to the N − 1 chemical species (we recall that the N -th fluid com-
ponent is water), one equation for the mean thermodynamic properties of
the fluid phase as a whole, and one equation for the solid phase. In order
to do that, it suffices to substitute the macroscopic thermodynamic quan-
tities reported in Tables 3, 4 and 5 into Eqs. (10) and (11). The quantities
in Tables 3 and 5 are the macroscopic counterparts of the mesoscopic fields
defined in Tables 1 and 2, respectively, while the quantities in Table 4 de-
scribe the overall behaviour of the fluid phase. The explicit form for all
these quantities is given in Appendix B.

It is also necessary to provide the upscaled version of the constraints
stated in Eqs. (2) and (3). By employing the averaging operators defined
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Quantity ψm,α
α

Jα
Gα = gm,α

α + Eα(ρm,αψm,α) +<α =
Gch

α + Gtr
α

Gch
α Gtr

α

Mass 1 0 r̂ch
α r̂tr

α

Momentum vα σα r̂ch
α v̂α + λ̂ch

α r̂tr
α vα + m̂α

Energy Uα +
1
2
v2

α

σα.vα +
qα

r̂ch
α (Ûα + 1

2
v̂2

α)

+λ̂ch
α · vα + θ̂α

r̂tr
α (Uα + 1

2
v2

α)
+m̂α · vα + êα

Entropy Sα ϕα r̂ch
α Ŝα + ζ̂α + Γα r̂tr

α Sα + η̂α

Table 3: Macroscopic thermodynamic quantities associated with the α-th
chemical substance

Quantity ψF
F

JF
GF = Gch

F + Gtr
F

Gch
F Gtr

F

Mass 1 0 0 φF ρF R̂tr
F

Momentum vF σF 0 φF ρF R̂tr
F vF + φF ρF T̂F

Energy UF +
1
2
v2

F

σF .vF +
qF

0
φF ρF R̂tr

F (UF + 1
2
v2

F )

+φF ρF T̂F · vF + φF ρF Q̂F

Entropy SF ϕF φF ρF ΓF φF ρF R̂tr
F SF + Φ̂F

Table 4: Macroscopic thermodynamic quantities associated with the fluid
phase as a whole

Quantity ψS
S

JS
GS = Gtr

S + Ggr
S

Gtr
S Ggr

S

Mass 1 0 φSρSR̂tr
S φSρSR̂gr

S

Momentum vS σS φSρSR̂tr
S vS + φSρST̂S φSρSR̂gr

S v̂S

Energy US +
1
2
v2

S

σS.vS +
qS

φSρSR̂tr
S (US + 1

2
v2

S)

+φSρST̂S · vS + φSρSQ̂S

φSρSR̂gr
S (ÛS+

1
2
v̂2

S)

Entropy SS ϕS φSρSR̂tr
S SS +Φ̂S +φSρSΓS φSρSR̂gr

S ŜS

Table 5: Macroscopic thermodynamic quantities associated with the solid
phase

in section 2, the macroscopic balance laws at the fluid-solid interface read
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(cfr. Eq. (2))

Mass φF ρF R̂tr
F = −φSρSR̂tr

S (12)

Momentum
φF ρF R̂tr

F vF + φF ρF T̂F =

−(φSρSR̂tr
S vS + φSρST̂S),

(13)

Energy

φF ρF Q̂F + φF ρF T̂F · vF +

φF ρF R̂tr
F (UF + 1

2
v2

F ) = −[φSρSQ̂S+

φSρST̂S · vS + φSρSR̂tr
S (US + 1

2
v2

S)],

(14)

Entropy
φF

∑N
α=1 ρα(r̂tr

α Sα + η̂α)+

φSρS(R̂tr
S SS + Φ̂S) ≥ 0.

(15)

Analogously, it is possible to obtain the macroscopic representation of
Eq. (3), i.e.,

Mass φF

∑N
α=1 ραr̂ch

α = 0, (16)

Momentum φF

∑N
α=1 ρα(r̂ch

α v̂α + λ̂ch
α ) = 0, (17)

Energy φF

∑N
α=1 ρα

[
r̂ch
α (Ûα + 1

2
v̂2

α) + λ̂ch
α · vα + θ̂α

]
= 0, (18)

Entropy φF

∑N
α=1 ρα(r̂ch

α Ŝα + ζ̂α) = 0. (19)

In order to reduce the number of unknowns featuring in the macro-
scopic balance laws, it is necessary to set up a constitutive theory fulfilling
the Second Law of Thermodynamics and consistent with the continuum
theory of mixtures. This is achieved by exploiting the Clausius-Duhem
inequality, and selecting appropriate independent constitutive variables on
the basis of specific hypotheses about the behaviour of fluid components,
the fluid phase as a whole, and the solid phase. In this paper, we adhere
to the constitutive framework established in [8]. We regard the fluid as
inviscid, and the solid as an incompressible thermo-elastic material (i.e.,
the substantial derivative DSρS/Dt = ∂tρS + vS · ∇xρS is equal to zero).
The latter assumption is acceptable as long as we deal with a saturated
biological porous material [6]. Indeed, in this case, it is reasonable to ad-
mit that growth is able to change the solid phase volume fraction while
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“preserving” its intrinsic mass density [6][17]. Furthermore, we assume
that all chemical substances are at the same temperature (i.e., ΘF = Θα,
∀α = 1, ..., N), and the solid and fluid phase are in thermal equilibrium
(i.e., ΘF = ΘS = Θ). Although we are aware that multi-temperature
models have recently been proposed in Mixture Theory (cfr., for example,
[18][19]), we maintain this hypothesis because it simplifies the thermo-
mechanical treatment of our problem. The elastic deformation of the solid
is described by the solid phase motion, χS [20], i.e., a field mapping each
material point X in the reference configuration of the mixture, BR, onto
Bt (i.e., x = χS(t,X) ∈ Bt), and such that the components of velocity
are va

S(t,x) = ∂tχ
a
S(t,X). By virtue of the hypotheses stated above, the

variables to be treated as unknowns are: i) the fluid phase mass density,
ρF ; ii) the solid phase volume fraction, φS (or, equivalently, φF = 1−φS);
iii) the temperature, Θ; iv) the S−motion, χS; v) the filtration velocity,
vFS = vF−vS; vi) the mass fractions of chemical constituents, cβ = ρβ/ρF

(β = 1, ..., N − 1); vii) the diffusive velocities of constituents relative to
the fluid phase, vβF = vβ − vF (β = 1, ..., N − 1).

We start the constitutive description of the material with the definition
of the Helmholtz free energy densities:

AF = AF (ρF , cβ, Θ),

AS = AS(ES, Θ,X),

Aβ − AN = AβN = AβN(ρF , cβ, Θ) (20)

Here, ES = 1
2
(FT

SFS − IR) is the Green-Lagrange strain tensor of the solid
phase, FS = ∇XχS is the solid phase deformation gradient tensor, IR is
the identity tensor in the reference configuration, BR. By virtue of these
relations, the entropy of the mixture is given by

ρS = φF ρF SF + φSρSSS = −φF ρF
∂AF

∂Θ
− φSρS

∂AS

∂Θ
, (21)

and the Cauchy stress tensor of the fluid and solid phase can be written as

σS = −φSpI + σel
S ,

σF = −φF pI− φF ρF

∑N−1
β=1 cβvβF ⊗ vβF ,

(22)
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where I is the identity tensor in the current configuration of the mixture,
Bt, the thermodynamic pressure, p, is given by:

p = ρ2
F

∂AF

∂ρF

, (23)

and the tensor σel
S represents the elastic part of σS. By expressing the

solid phase Helmholtz free energy density, AS, as a function of FS, and
introducing the first Piola-Kirchhoff stress tensor,

Pel
S = JSφSρS

∂AS

∂FS

, (24)

where JS = det(FS), tensor σel
S can be written as

σel
S =

1

JS

Pel
S F−T

S . (25)

The variation of the fluid phase Helmholtz free energy density, AF ,
with respect to concentration (or mass fraction) cβ of the β-th chemical
substance enables us to define the “relative” chemical potential

YβN = Yβ − YN =
∂AF

∂cβ

(ρF , cβ, Θ), (26)

where Yβ and YN are the chemical potentials for the β-th chemical con-
stituent and water, respectively. On account of Eq. (26), it is possible to
prove that the Cauchy stress tensors associated with chemical species are
spherical (hydrostatic) tensors [8], i.e.,

σβN = σβ − cβ

cN

σN = −φF ρF cβ(YβN − AβN)I. (27)

Finally, the constitutive expressions defining the momentum exchange
terms referred to the fluid phase and chemical substances are given by

φF ρF T̂F = φF ρF fF + p∇xφF ,

φF ρF (T̂β − T̂N) = φF ρF cβfβ +∇x[φF ρF cβ(YβN − AβN)]−

φF ρF cβ∇xYβN − σN .∇x

(
cβ

cN

)
,

(28)
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where φF ρF fF and φF ρF cβfβ represent dissipative terms describing the
drag forces exerted on the fluid phase and the β-th chemical substance,
respectively. In Ref. [8], a detailed derivation of explicit formulae for fF
and fβ is presented, and it is shown how fF and fβ can be given a linearised
expression depending linearly on the filtration velocity, vFS, the diffu-
sive velocities, vβF , of chemical substances, and the temperature gradient,
∇xΘ. However, by assuming, for the sake of simplicity, that temperature,
Θ, is a constant (i.e., Θ = Θ0), we can write fF and fβ as

fF = −ΛF .vFS +
∑N−1

β=1 ΛFβ.vβF ,

fβ = Λβ.vFS −
∑N−1

γ=1 Λβγ.vγF ,

(29)

where the tensors ΛF , {ΛFβ}N−1
β=1 , {Λβ}N−1

β=1 , and {Λβγ}N−1
β,γ=1 are material

coefficients depending on ρF , φF , {cδ}N
δ=1, and Θ0. Equations (29) can be

used to derive the expressions of Darcy’s law of flow, and Fick’s diffusion
law in the context of porous materials. In order to resume this procedure,
we first write the momentum balance laws of the fluid phase and chemical
substances:

∂(φF ρFvF )

∂t
+∇x · (φF ρFvF ⊗ vF )−∇x · σF =

φF ρF R̂tr
F vF + φF ρF T̂F ,

(30)

∂(φF ρF cβvβ)

∂t
+∇x · (φF ρF cβvβ ⊗ vβ)−∇x · σβ =

φF ρF cβR̂βvF + φF ρF cβT̂β.

(31)

By invoking the mass balance law, after some manipulations, Eqs. (30)
and (31) can be rewritten as [8]

φF ρF
DFvF

Dt
= ∇x · σF + φF ρF T̂F , (32)

φF ρF cβ

(
Dβvβ

Dt
− DNvN

Dt

)
=

∇x · σβ − cβ

cN
∇x · σN + φF ρF cβ(T̂β − T̂N).

(33)
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By substituting Eqs. (22), (27), and (28) into Eqs. (32) and (33), and
assuming that inertial contributions are negligible for the class of biological
phenomena of interest, we obtain:

−φF ρF ΛF .vFS + φF ρF

∑N−1
β=1 ΛFβ.vβF =

φF∇xp +∇x · [φF ρF

∑N
α=1 cαvαF ⊗ vαF ],

(34)

Λβ.vFS −
∑N−1

γ=1
Λβγ.vγF = ∇xYβN =

∂YβN

∂ρF

∇xρF +
∑N−1

γ=1

∂YβN

∂cγ

∇xcγ.

(35)
If diffusive velocities, vαF , are sufficiently small, and the non-equilibrium

part of the fluid phase Cauchy stress tensor can be disregarded, Eqs. (34)
and (35) become a set of linear equations involving the unknowns vFS

and {vβF}N−1
β=1 . A simple solution to this set is obtained in the case in

which, at the pore scale, all chemical substances are present in the inter-
stitial water at a very low concentration. This assumption implies that,
at the macroscale, the overall fluid phase mass density can be safely ap-
proximated by the constant mass density of water, i.e. ρF ≈ ρN , and the
fluid phase can be thus considered as incompressible (i.e., DF ρF /Dt =
∂tρF + vF · ∇xρF = 0). Moreover, since in this paper the fluid phase is
also assumed to be macroscopically inviscid, its mass density ρF can be
replaced by the thermodynamic pressure p in the list of unknowns treated
as independent constitutive variables. By introducing the diffusive current
Jβ = φF ρF cβvβF , the formal solution to the set (34)-(35) can be written
as

vFS = −KF .∇xp−
∑N−1

β=1
DFβ.∇xcβ, (36)

Jβ = φF ρF cβvβF = −Kβ.∇xp−
∑N−1

γ=1
Dβγ.∇xcγ. (37)

Here, tensors KF , Kβ, and DFβ, Dβγ are the permeability, and diffusivity-
dispersivity tensors of the fluid phase and chemical substances, respectively.
In particular, tensors DFβ and Dβγ are defined by
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DFβ =
∑N−1

γ=1 DFγ
∂YγN

∂cβ
, Dβγ =

∑N−1
δ=1 Dβδ

∂YδN

∂cγ
, (38)

where DFγ and Dβδ are material coefficients [8]. If, in the limit of very
low concentration of chemical substances, tensors DFβ tend towards the
null tensor, tensors Dβγ vanish when indices β and γ are different, and
pressure effects on the diffusivity current Jβ are negligible, we can write
the “classic” expressions of Darcy’s and Fick’s laws, i.e.,

vFS = −KF .∇xp, (39)

Jβ = −Dβ.∇xcβ. (40)

Here, Dβ replaces the tensors Dβγ featuring in Eq. (37). By virtue of
Eqs. (39) and (40), the unknown fields reduce to volume fraction φS (or
φF ), pressure p, the S−motion χS, and the mass fractions {cβ}N−1

β=1 . These
quantities are to be determined by solving the following set of field equa-
tions:

∂(φSρS)

∂t
+∇x · (φSρSvS) = φSρS(R̂tr

S + R̂gr
S ) = φSρSR̂S, (41)

∂(φF ρF )

∂t
+∇x · (φF ρFvF ) = φF ρF R̂tr

F , (42)

∇x · σel
S = ∇xp− φF ρF R̂tr

F KF .∇xp, (43)

∂(φF ρF cβ)

∂t
+∇x · (φF ρF cβvF ) = ∇x · [Dβ∇xcβ] + φF ρF cβR̂β. (44)

Equation (44) provides the macroscopic description of the transport
processes experienced by the chemical substances in the pore space of a
porous medium. Because of the presence of the advective current, φF ρF cβvF ,

the Fick-type diffusive current, −Dβ∇xcβ, and the reaction term, φF ρF cβR̂β,
we refer to Eq. (44) as to an advection-diffusion-reaction equation.
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4 Material form of the field equations

In order to bring the theory exposed so far into contact with the Continuum
Physics treatment of growth, it is convenient to write the field equations
(41)-(44) in material form. This is done by employing the formalism pre-
sented in [20]. In particular, since we aim at investigating how growth
influences the transport coefficients featuring in the advection-diffusion-
reaction equation of chemical substances, we put special emphasis on the
material formulation of Eq. (44). In the literature, the study of the trans-
port equation in material form can be found, for example, in [10][21][22].

In Mixture Theory, the material field Ψk (k = α, F, S) associated with
a given physical quantity ψk, defined on the domain Bt ⊂ E (E = R3 being
the three-dimensional Euclidean space) occupied by the mixture at time t,
is determined by performing the Piola transformation of ψk with respect to
the S−motion χS [20]. By virtue of the S−motion, for every material point
X ∈ BR, there exists a point x ∈ Bt such that ψk(t,x) = ψk(t, χS(t,X)).
This identity implies that the gradient and substantial derivative of ψk

with respect to the n−th mixture component (n = α, F, S) can be written
as

∇xψk(t,x) = F−T
S (t,X).∇Xψk(t,X), (45)

Dnψk

Dt
(t,x) =

DSψk

Dt
(t,x) + vnS(t,x) · ∇xψk(t,x) =

∂ψk

∂t
(t,X) + VnS(t,X) · ∇Xψk(t,X),

(46)

where VnS = F−1
S .vnS is the material form of the relative velocity vnS =

vn − vS.

By using Eqs. (45) and (46), accounting for the identity ∇x · vS =
J−1

S ∂tJS, and applying the Piola transformations to Eqs. (41)-(44), we can
rewrite the field equations as

∂(ρSΦS)

∂t
= ρSΦSR̂S, (47)

∂(ρF ΦF )

∂t
+∇X · (ρF ΦFVFS) = ρF ΦF R̂tr

F , (48)
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∇X · [Pel
S − JSpF−T

S ] = −ρF ΦF R̂tr
F (F−1

S KFF−T
S ).∇Xp, (49)

∂Cβ

∂t
+∇X · (CβVFS) = ∇X · [∆β.∇XCβ − CβVβ] + CβR̂β, (50)

where ΦS = JSφS and ΦF = JSφF are the Piola transforms of the vol-
ume fractions φS and φF , respectively, VFS = F−1

S .vFS is the material
form of Darcy’s velocity vFS, Pel

S is the first Piola-Kirchhoff stress tensor,
F−1

S KFF−T
S is the material form of the permeability tensor, Cβ = ρF ΦF cβ

is the macroscopic concentration of the β−th chemical substance in the
reference configuration BR, ∆β is the material form of the diffusivity ten-
sor, and Vβ is an additional drift term due to the material inhomogeneity
of the fluid phase volume fraction. These two quantities are said to be the
material transport coefficients, and their expressions are given by

∆β = JSF
−1
S

Dβ

ρF ΦF

F−T
S , (51)

Vβ = ∆β.∇X ln(ΦF ). (52)

We remark that the term Vβ vanishes identically if, and only if, the Piola
transform of the fluid phase volume fraction, ΦF , does not depend on
material points X . Since ∇XΦF = ∇XJS−∇XΦS, we conclude that, when
growth is considered, this can be true only in the following two special
cases: i) neither volume fractions φF and φS depend on material points,
nor does the determinant of FS, JS; ii) the “packing” of material points,
ascribable to ∇XJS in entirely compensated for by the spatial variation
of ΦS. When these conditions are not respected, the term Vβ reflects
the rearrangement of material inhomogeneities developed by growth, and
represents the spatial variation of the fluid phase volume fraction due to
the mass transfer and growth between the fluid and the solid phase.

Equations (47)-(50) can be recast in a form in which only the unknown
fields are put in evidence, i.e., ΦS, p, FS, and {Cβ}N−1

β=1 . For this purpose,
by assuming that the intrinsic mass densities ρS and ρF are constants,
dividing Eq. (47) and Eq. (48) by ρS and ρF , respectively, and summing
up the resulting expressions, we may write
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∂ΦS

∂t
= ΦSR̂S, (53)

JStr(LS)−∇X·[(JS−ΦS)(F−1
S KFF−T

S ).∇Xp] = ΦSR̂S+(JS−ΦS)R̂tr
F , (54)

∇X · [Pel
S − JSpF−T

S ] = −ρF (JS − ΦS)R̂tr
F (F−1

S KFF−T
S ).∇Xp, (55)

∂Cβ

∂t
= ∇X · [∆β.∇XCβ − CβVβ + Cβ(F−1

S KFF−T
S ).∇Xp] + CβR̂β. (56)

In order to close Eqs. (53)-(56), it is necessary to provide self-consistent
expressions for the sources {R̂β}N−1

β=1 , R̂tr
F , and R̂S. Since R̂tr

F is bound to
satisfy the constraint

R̂tr
F =

∑N

α=1
cαR̂α, (57)

we can conveniently assign the sources {R̂α}N
α=1 on the basis of phenomeno-

logical laws that involve the unknown variables mentioned above [8]. On
the other hand, it is possible to prove that the source R̂S has to fulfil
a relation based on the kinematics of growth. This is done by introduc-
ing the multiplicative decomposition of the deformation gradient tensor
[1][4][11][20]

FS = Fel
S GS, (58)

where Fel
S is a purely elastic deformation tensor, and GS is said to be the

growth tensor because it describes the anelastic deformation induced by
growth through the production of material inhomogeneities and continuous
rearrangement of material symmetries [11]. The growth tensor is relative
to an elastically released configuration BG, which is obtained by applying
the linear map GS to the tangent space TXBR of BR, for any X ∈ BR. It
can be shown that, in the case of density preserving growth [6], Eq. (58)
implies the kinematic relation

R̂S = tr(LG
S ), (59)

where LG
S = (∂tGS)G−1

S is the growth velocity gradient. Since the growth
tensor, GS, has to be regarded as an independent constitutive variable, it
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must be assigned by prescribing an appropriate growth law consistent with
the Clausius-Duhem inequality (cfr. Ref [6] for details), i.e.,

LG
S = LG

S (t,X, C1, ..., CN−1, ΦS, p,Fel
S ). (60)

In Eq. (60), tensor Fel
S can alternatively be replaced by a suitable

stress measure SS (for example, SS can be identified with the second Piola-
Kirchhoff stress tensor [21][22], or the Eshelby stress tensor [11]). In some
cases [21][22], Eq. (60) can be also written as

∂GS

∂t
= FS(t,X, C1, ..., CN−1, ΦS, p,SS,GS). (61)

We remark that, by virtue of Eq. (59), the functional FS has to account
for both the mass uptake due to growth and the mass exchange between
the solid and the fluid phase.

The elasto-growth decomposition enables us to reformulate the consti-
tutive law for Pel

S in terms of Fel
S = FSG

−1
S . Indeed, by expressing the solid

phase Helmholtz free energy density as AS(FS, Θ0,X) = AS(FSG
−1
S , Θ0)

[11] (i.e., the explicit dependence of AS on X is accounted for by the growth
tensor, GS), Eq. (24) can be rewritten as

Pel
S = JSφSρS

∂AS

∂FS

= JSφSρS
∂AS

∂Fel
S

G−T
S . (62)

Substituting this constitutive relation into Eq. (55) implies that the ten-
sor fields FS and GS, although being independent, are coupled with each
other. This means that, since different growth laws (61) lead to different
deformation fields inside the tissue, it is possible to construct a functional
relation between FS and GS based on the fact that the solution to Eq.
(55) depends on the solution to Eq. (61) and thus on the initial condition
applied to it.

Equations (53)-(60), supplemented with suitable initial and boundary
conditions, constitute a set of coupled nonlinear equations whose solution
describes the macroscopic mechano-chemical behaviour of a tissue in the
presence of growth. To the best of our knowledge, determining a solution to
this problem is not an easy task. However, since the purpose of this paper is
to speculate on the possible influence of growth on transport processes, we
find it interesting to seek for a formal solution to Eq. (56), and discuss the
interaction with growth by substituting this result into the set of equations
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mentioned above. Apart from particular cases of exactly solvable nonlinear
transport equations, our procedure is possible if Eq. (56) is assumed to
be linear (i.e., the effective diffusivity tensor, ∆β, and the mass exchange

rate, R̂β, are independent on concentration of chemical substances), and
its formal solution is found by employing the Green’s function formalism
associated to the boundary value problem





∂C

∂t
= ∇X · [∆.∇XC − CV + C(F−1

S KFF−T
S ).∇Xp] + CR̂,

C(0,X) = C(X), ∀X ∈ BR,

αC(t,Xb) + γ[∆(t,Xb).∇XC(t,Xb)] ·N(t,Xb) = f(t,Xb), ∀Xb ∈ ∂BR .
(63)

Here, the index β has been dropt because, in the following, we shall
assume that only one species of chemical substances is present in water.

5 Influence of growth on transport processes

An example of biological interest that may be suitable for our purposes is
the transport of chemical agents in a solid tumour at the avascular growth
stage. During this stage, the tumour cells are fed by nutrients diffusing
throughout the growing tissue, while mitosis is inhibited or promoted de-
pending on whether the concentration of a chemical agent, called growth
inhibitory factor (GIF), is greater or smaller than a given threshold value,
respectively [23][24]. The transport processes undergone by the GIF and
nutrients are usually studied by solving a boundary value problem, regard-
ing the tumour as a spheroid, the cellular phase as an isotropic material,
and assuming spherical growth [21][22][25][26]. In some cases, the solu-
tion of the advection-diffusion-reaction equation is found in the stationary
limit.

Here, we assume that growth is anisotropic, and characterized by a
time-scale, tG, largely separated from the time-scales tadv, tD, and tR asso-
ciated with advection, diffusion, and reaction, respectively. Moreover, by
referring to diffusion as to the fastest process that is accounted for in our
study, we express the separation of scales by introducing a positive small-
ness parameter ε such that tD/tG = ε ¿ 1. We motivate this assertion by
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saying that chemical substances diffusing throughout rapidly growing tu-
mours attain steady state on a time-scale much faster than the time-scale
associated with growth [22]-[24]. Indeed, according to some data reported
in the literature (cfr., for example, [24]), we can assume that the radius
of a tumour spheroid is of order Lsph ∼ 10−1mm, the characteristic value
of diffusivity is Dc ∼ 10−5mm2s−1, the time-scales associated with growth
and diffusion are tG ∼ 106s, and tD ∼ 103s, respectively, and the smallness
parameter ε is thus ε ∼ 10−3. Under these hypotheses, we propose a pic-
ture in which growth is able to interact with the evolution of the chemical
substances (i.e., the GIF or the nutrients) by varying very slowly in time
the transport properties VFS, ∆, and V featuring in Eq. (56).

A process in which the parameters driving the evolution of a given
physical quantity change very slowly in time is sometimes said to be an
adiabatic process [27], whereas the set of approximations involved to solve
the equations governing the process constitutes the adiabatic approxima-
tion. Although this approximation may fail in the case of other biological
tissues, e.g., articular cartilage (in this case, the time-scale of diffusion pro-
cesses is not largely separated from the time-scale associated with growth
[6]), we believe that it can give physical insight to study the problem stated
in Eqs. (53)-(60).

In order to apply the adiabatic approximation, we have to define all the
time-scales involved in Eqs. (53)-(60), and relate them to the time-scales
tD, tadv, tR, and tG. We identify tG with the time-scale associated with
the production of material inhomogeneities. Thus, by accounting for the
definition of the growth velocity gradient, LG

S , we rewrite Eq. (59) as

R̂S =
1

tG
R̄S = tr(LG

S ), (64)

where R̄S represents the nondimensional overall source of mass for the solid
phase. Substitution of Eq. (64) into Eqs. (53) and (54) implies that tG
also coincides with the time-scale associated with deformation, and the
evolution of ΦS, respectively. Moreover, by referring to tRtr

F
as to the time-

scale characterizing the mass transfer rate R̂tr
F , we assume that it is of the

same order of magnitude of tG (i.e., tRtr
F
∼ tG). This implies that R̂tr

F

rescales as

R̂tr
F =

1

tRtr
F

R̄tr
F =

1

tG
R̄tr

F . (65)
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Finally, we identify tR with the time-scale characterizing the production
rate of chemical substances, R̂, and define tD and tadv by introducing the
notation

tD =
L2

Dc

,

tadv =
L

Wc

=
L2

Kcpc

=
tD
Pe

,

(66)

where L is a characteristic length of the tissue (e.g., the radius of the
tumour spheroid, Lsph), Wc, Kc, and pc are the characteristic values of
Darcy velocity, VFS, permeability, KF , and pressure, p, respectively, and
Pe = WcL/Dc is Péclet number.

In the following, we perform a perturbative analysis of the field equa-
tions (53)-(60). For this purpose, we introduce the nondimensional vari-
ables ϑ = t/tD, τ = t/tG, and Z = X/L, and express a given physical
quantity Ψ as a two-scale function [28], i.e.,

Ψ(t,X) = ΨcΨ̄(ϑ, τ,Z), (67)

where Ψc and Ψ̄ represent the characteristic and nondimensional part of
Ψ, respectively [29]. Equation (67) means that, even though ϑ and τ are
related by the identity τ = εϑ, they are regarded as formally indepen-
dent because they measure the “rapidly” and “slowly” varying part of Ψ,
respectively [28]. The nondimensional derivatives of Ψ are given by

∇XΨ(t,X) = Ψc

L
∇ZΨ̄(ϑ, τ,Z),

∂Ψ

∂t
(t,X) =

Ψc

tG

[
∂Ψ̄

∂τ
(ϑ, τ,Z) +

1

ε

∂Ψ̄

∂ϑ
(ϑ, τ,Z)

]
.

(68)

By virtue of Eqs. (66)-(68), the nondimensional form of the field equa-
tions (53)-(56) reads

∂ΦS

∂τ
+

1

ε

∂ΦS

∂ϑ
= ΦSR̄S, (69)

JStr(L̄S)− 1

ε
Pe∇Z · [(JS−ΦS)(F−1

S K̄FF−T
S ).∇Zp̄] = ΦSR̄S +(JS−ΦS)R̄tr

F ,

(70)
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1

ε
∇Z·

[
P̄el

S −
pc

ρSASc

JS p̄F−T
S

]
= −ρF W 2

c

ρSASc

1

Pe
(JS−ΦS)R̄tr

F (F−1
S K̄FF−T

S ).∇Zp̄,

(71)

∂C

∂τ
+

1

ε

∂C

∂ϑ
=

1

ε
∇Z ·

[
∆̄.∇ZC − CV̄ + PeC(F−1

S K̄FF−T
S ).∇Zp̄

]
+

1

ε

tD
tR

CR̄.

(72)

The perturbative analysis is carried out by expanding the generic nondi-
mensional field Ψ̄ in asymptotic series, i.e.,

Ψ̄(ϑ, τ,Z) =
∑∞

k=0
εkΨ̄(k)(ϑ, τ,Z). (73)

The expansion (73) has to be used both for the independent unknown
fields ΦS, p, FS, and C, and the quantities R̄S, P̄el

S , ∆̄, V̄ , and R̄. The
asymptotic series are assumed to exist and converge to their asymptotic
solutions in the limit ε ¿ 1. By inserting Eq. (73) into Eqs. (69)-(72), and
regrouping the terms of the same power of ε, we obtain a set of equations
which have to be satisfied asymptotically for any infinitely small ε. Since
the coefficients of each power of ε are independent of the parameter itself,
each coefficient has to be identically zero in order to satisfy the equation for
any arbitrary small ε. By arresting the expansion (73) up to the first order
in ε, Eqs. (69)-(72) generate three sets of equations found by equating
the coefficients of ε−1, ε0, and ε1, respectively. The first set involves only
the zeroth-order terms of the fields expanded according to Eq. (73), while
the second and the third set contain both the zeroth- and the first-order
term of the same physical quantities (terms of order higher than the zeroth
are sometimes referred to as correctors). The fields, obtained by solving
the first set of equations, must be inserted into the second set in order to
determine the general form of the first-order correctors. Finally, the third
set provides the consistency conditions that complete the determination
of the first-order correctors. By following this procedure, it is possible to
describe how the effect of growth is “felt” by each physical quantity, for
each order of the asymptotic expansion (73). For example, it can be proven
[12] that the zeroth-order material volume fractions, ΦS(0) and ΦF (0), are
only functions of the slowly varying time coordinate, τ , i.e.,
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∂ΦS(0)

∂ϑ
= 0. (74)

This result means that the time variation of ΦS(0) is significant only
if observed over a time-scale comparable with the time-scale dictated by
growth, tG.

Here, for the sake of conciseness, we focus only on the zeroth-order
approximation of the boundary value problem (63). Moreover, by assuming
negligible drift velocity VFS (this is equivalent to assume Pe ∼ ε in Eq.
(72)), we obtain





∂C(0)

∂ϑ
= ∇Z · [∆̄(0).∇ZC(0) − C(0)V̄(0)] + tD

tR
C(0)R̄(0),

C(0)(0, 0,Z) = C(Z), τ = εϑ = 0,∀Z ∈ BR

ᾱC(0) + ξγ̄[∆̄(0).∇ZC(0)] ·N = κf̄ , ∀Zb ∈ ∂BR ,

(75)

where we introduced the notation

ξ =
γcDc

αcL
=

γcL

αctD
, κ =

fc

αc

, (76)

the ratio tD/tR is treated as a parameter, and the zeroth-order transport
coefficients ∆̄(0) and V̄(0) are given by

∆(0) = JS(0)F
−1
S(0)

Dβ

ρF ΦF (0)
F−T

S(0),

V(0) = ∆(0).∇Z ln(ΦF (0)).

(77)

By virtue of Eq. (74), it can be proven that ∆̄(0), V̄(0), and R̄(0) depend
only on space coordinates Z, and the slowly varying time variable τ , but
are independent on ϑ. This conclusion allows for studying Eq. (75) as an
initial boundary value problem with separable variables.

Since we are interested in the behaviour of concentration C(0) for suffi-
ciently long time, we have to look for the asymptotic solution to Eq. (75)
(i.e., the solution obtained in the limit ϑ ∼ ε−1). This solution is expected
to be independent on the rapidly varying time coordinate, ϑ. Rather, it
can be identified with the function of τ and Z that satisfies the boundary
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value problem




∇Z · [∆̄(0).∇ZC(0) − C(0)V̄(0)] + tD

tR
C(0)R̄(0) = 0,

ᾱC(0) + ξγ̄[∆̄(0).∇ZC(0)] ·N = κf̄ , ∀Zb ∈ ∂BR .

(78)

In order to rewrite Eq. (78) in a more concise form, and account for
the term V̄(0) (V̄(0) represents the zeroth-order drift contribution due to the
material inhomogeneity of the field ΦF (0)), we apply the commonly used
transformation

C(0)(τ,Z) = C∗
(0)(τ,Z)eΛ(τ,Z), (79)

with calculated value Λ(τ,Z) = 1
2
ln(ΦF (0)). By substituting Eq. (79) into

Eq. (78), we obtain





∇Z · [∆̄(0).∇ZC∗
(0)] +

tD
tR

C∗
(0)R̄

∗
(0) = 0,

{ᾱ + ξγ̄[N · ∆̄(0).∇ZΛ]}C∗
(0) + ξγ̄[N · ∆̄(0).∇ZC∗

(0)] = κf̄−Λ
e , ∀Zb ∈ ∂BR ,

(80)
where R̄∗

(0) = R̄(0) − 1
2
∇Z · V̄(0) − 1

4
V̄(0) · ∆̄−1

(0).V̄(0).

By denoting by G∗(0)(τ,Z,Z′) the Green’s function associated with Eq.

(80), the formal solution can be written as

C(0)(τ,Z) =
∫

∂BR

eΛ(τ,Z)G∗
(0)

(τ,Z,Zb)e
−Λ(τ,Zb)

1+{ᾱ+ξγ̄[N(τ,Zb)·∆̄(0)(τ,Zb).∇Zb
Λ(τ,Zb)]}κf̄(τ,Zb)dAb

− ∫
∂BR

eΛ(τ,Z)[∆̄(0)(τ,Zb).∇Zb
G∗

(0)
(τ,Z,Zb)·N(τ,Zb)]e

−Λ(τ,Zb)

1+{ᾱ+ξγ̄[N(τ,Zb)·∆̄(0)(τ,Zb).∇Zb
Λ(τ,Zb)]} κf̄(τ,Zb)dAb,

(81)

where Zb ∈ ∂BR , and dAb denotes the surface measure on ∂BR.
An analogous procedure can be followed to determine the first-order

concentration C(1)(τ,Z). In this case, the differential equation in the cor-
responding boundary value problem contains terms depending explicitly
on C(0)(τ,Z) and its space and time derivatives. Since these terms are all
defined by means of Eq. (81), they can be regarded as a source. Thus, the
differential equation determining C(1)(τ,Z) has to be treated as inhomoge-
neous.

Since the transport coefficients ∆̄(0) and V̄(0) are related to GS through
FS, and the Green’s function G∗(0)(τ,Z,Z′) depends on ∆̄(0) and V̄(0), we can
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conclude that G∗(0)(τ,Z,Z′) is influenced by the growth tensor, GS. If we
assume that growth is anisotropic, we can write GS as a sum of a spherical
and a deviatoric part, i.e., (GS)α

A = gδα
A + (GD

S )α
A (here, the Greek index

α refers to the coordinates in the intermediate configuration BG), and we
can perform a formal Taylor expansion of the Green’s function around the
spherical tensor gδα

A, so that G∗(0)(τ,Z,Z′) can be split as

G∗(0)(τ,Z,Z′) = G∗sph
(0) (τ,Z,Z′) + G∗dev

(0) (τ,Z,Z′), (82)

where G∗sph
(0) (τ,Z,Z′) refers to the Green’s function evaluated in the case

of purely spherical growth, while G∗dev
(0) (τ,Z,Z′) accounts for the deviatoric

part of GS. Analogously, by expanding the effective diffusivity tensor,
∆̄(0), around gδα

A, we find

∆̄(0)(τ,Z) = ∆̄sph
(0) (τ,Z) + ∆̄dev

(0) (τ,Z). (83)

By substituting Eqs. (82) and (83) into Eq. (81), and restricting for
the sake of conciseness to the case γ̄ = 0, we can write the concentration
C(0)(τ,Z) as

C(0)(τ,Z) = Csph
(0) (τ,Z) + Cdev

(0) (τ,Z), (84)

where the terms Csph
(0) (τ,Z) and Cdev

(0) (τ,Z) are defined by the formulae

Csph
(0) (τ,Z) =

∫
∂BR

eΛ(τ,Z)G∗sph
(0)

(τ,Z,Zb)e
−Λ(τ,Zb)

1+ᾱ
κf̄(τ,Zb)dAb

− ∫
∂BR

eΛ(τ,Z)[∆̄sph
(0)

(τ,Zb).∇Zb
G∗sph

(0)
(τ,Z,Zb)·N(τ,Zb)]e

−Λ(τ,Zb)

1+ᾱ
κf̄(τ,Zb)dAb,

(85)

Cdev
(0) (τ,Z) =

∫
∂BR

eΛ(τ,Z)G∗dev
(0)

(τ,Z,Zb)e
−Λ(τ,Zb)

1+ᾱ
κf̄(τ,Zb)dAb

− ∫
∂BR

eΛ(τ,Z)[∆̄sph
(0)

(τ,Zb).∇Zb
G∗dev

(0)
(τ,Z,Zb)·N(τ,Zb)]e

−Λ(τ,Zb)

1+ᾱ
κf̄(τ,Zb)dAb

− ∫
∂BR

eΛ(τ,Z)[∆̄dev
(0)

(τ,Zb).∇Zb
G∗sph

(0)
(τ,Z,Zb)·N(τ,Zb)]e

−Λ(τ,Zb)

1+ᾱ
κf̄(τ,Zb)dAb

− ∫
∂BR

eΛ(τ,Z)[∆̄dev
(0)

(τ,Zb).∇Zb
G∗dev

(0)
(τ,Z,Zb)·N(τ,Zb)]e

−Λ(τ,Zb)

1+ᾱ
κf̄(τ,Zb)dAb.

(86)
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6 Summary and discussion

We expressed the macroscopic transport equation (44) in material form
(cfr. Eq. (50) or (56)), and showed how material transport properties are
influenced by the growth tensor. Under the hypothesis of largely separated
time-scales, we studied the transport of a given chemical substance (e.g.,
GIF or nutrients) in a growing tissue as a process in which the mechanical
state and material symmetries vary adiabatically in time. This approxima-
tion enabled us to perform an asymptotic analysis of the boundary value
problem (63). In particular, we determined the zeroth-order formal solu-
tion of the transport equation in terms of its associated Green’s function,
and we showed how the concentration can be “modulated” by the time
evolution of the growth tensor (cfr. Eq. (84)). Equation (84) implies that,
for a given growth tensor, GS, the concentration of a chemical substance,
C(t,X), can be split into the sum of the concentration computed as if the
growth tensor were spherical, i.e., Csph(t,X), and the concentration due to
the deviatoric part of the growth tensor, i.e., Cdev(t,X). Since the growth
tensor changes in time, and yields a continuous variation of the transport
coefficients, the term Cdev(t,X) can be interpreted as a modulation of
the concentration Csph(t,X) due to the continuous rearrangement of the
transport coefficients induced by anisotropic growth. The assumption of
anisotropic growth is made in order to account for some effects (probably
ascribable to genetic information, chemical interactions, etc.) that may es-
tablish preferential directions in the mechanisms that govern the evolution
of the tissue. From the mathematical point of view, anisotropic growth
can be considered by choosing appropriate initial conditions to the growth
law (61). For example, this can be done by imposing that, at t = 0, the
growth tensor GS(0,X) has a non-vanishing deviatoric part. The result
commented above was obtained as a possible application of the Theory of
Upscaling [8][13]-[15], briefly exposed in sections 2 and 3, to the biological
problem explained in section 5.

We used the Theory of Upscaling for two reasons: i) we needed to find
an upscaled advection-diffusion-reaction equation in which the Fick-type
current was consistent with the constitutive framework established at the
macroscopic scale; ii) we had in mind to relate the pore scale concentration
of chemical substances with their average concentration in order to inves-
tigate the possible repercussions of growth on the mesoscopic dynamics
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of the tissue. Indeed, by expressing the macroscopic density of chemical
substances as

ρ = 〈ρm〉FF =
C

ΦF

=
c

φF

, (87)

and assuming that mesoscopic density can be written as

ρm(t, r) = ρ(t,x) + b(t, r) · ∇xρ(t,x) (88)

(where b(t, r) has to be e zero-mean field over the subset ΩF (t,x) ⊂ Ω(x)),
the modulation felt by ρ through the material concentration C is reflected
on ρm.
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Appendix A.

The macroscopic fluxes Jα and JS featuring in Eqs. (10) and (11) are given
by

Jα ·N =
1

|A|
∫

A

[=m,α − ρm,αψ̃m,α

α
ṽm,α

α] · nγF dAr, (89)

JS ·N =
1

|A|
∫

A

[=m,S − ρm,Sψ̃m,S

S
ṽm,S

S] · nγSdAr, (90)

where N is the unit vector normal to the Representative Elementary Area

(REA), and the fields ψ̃m,α

α
= ψm,α − ψm,α

α
and ṽm,α

α = vm,α − vm,α
α

represent the fluctuations of ψm,α and vm,α, respectively, with respect
to mass averages operators defined in Eqs. (8) and (9). The quantities
ES(ρm,Sψm,S), Eα(ρm,αψm,α), <S, and <α are given by

Eα(ρm,αψm,α) =
1

φF 〈ρm,α〉FF
1

|Ω|
∫

AFS

[ρm,αψm,α(u− vm,α)]|F · nFSdAr,

(91)

ES(ρm,Sψm,S) =
1

φS 〈ρm,S〉SS
1

|Ω|
∫

ASF

[ρm,Sψm,S(u− vm,S)]|S · nSF dAr

(92)

<α =
1

φF 〈ρm,α〉FF
1

|Ω|
∫

Ωα

[=m,α]|F · nFSdAr, (93)

<S =
1

φS 〈ρm,S〉SS
1

|Ω|
∫

ΩS

[=m,S]|S · nSF dAr. (94)

The first pair of equations accounts for the transfer of ψm,α and ψm,S due
to the relative motion between the interface and the α-th constituent, and
between the interface and the solid phase, respectively, while the second
pair describes the transfer due to the presence of the mesoscopic currents
=m,α and =m,S, respectively.

Appendix B.

The thermodynamic quantities given in Table 3 represent the macroscopic
fields obtained by averaging their mesoscopic counterparts (cfr. Table 1).

Mass density:

ρα = 〈ρm,α〉FF , (95)
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Mass production rate due to chemical reactions:

r̂ch
α = r̂ch

m,α

α
, (96)

Mass production rate due to transfer of mass across the fluid-solid in-
terface:

r̂tr
α =

1

φF ρα

1

|Ω|
∫

AFS

ρm,α(u− vm,α) · nFSdAr, (97)

Velocity

vα = vm,α
α, (98)

Stress tensor, σα, defined by

σα ·N =
1

|A|
∫

A

γF (σm,α − ρm,αṽm,α
α ⊗ ṽm,α

α) · ndAr, (99)

Velocity associated to the mass uptake, v̂α:

v̂α = v̂m,α
α
. (100)

Exchange of momentum production due to chemical reaction, λ̂ch
α :

λ̂ch
α = λ̂m,α

α

+ ˜̂rch
m,α

α ˜̂vm,α

αα

(101)

Momentum exchange rate, m̂α, between the α-th chemical substance and
the solid matrix as a result of physio-chemical and mechanical interactions:

m̂α =
1

φF ρα

1

|Ω|
∫

AFS

[ρm,αṽm,α
α ⊗ (u− vm,α) + σm,α]|F .nFSdAr. (102)

Macroscopic internal energy density of the α-th chemical substance, Uα:

Uα = Uα
α

+ 1
2
(ṽm,α

α)2
α
. (103)

Macroscopic heat flux, qα:

qα ·N =
1

|A|
∫

A

γF{qm,α + σm,α.ṽm,α
α − ρm,α[Um,α+

1

2
(ṽm,α

α)2]ṽm,α
α} · ndAr. (104)



A multiscale description of growth... 83

Macroscopic source of internal energy density, Ûα:

Ûα = Ûm,α

α

+ 1
2
( ˜̂vm,α

α
)2

α

. (105)

Macroscopic effect of molecular exchange of energy between the α-th chem-
ical substance and all other substances, θ̂α:

θ̂α = θ̂m,α

α

+ λ̂ch
m,α · ṽm,α

α
α

+ ˜̂rch
m,α

α
[
˜̂Um,α

α

+ 1
2
( ˜̂vm,α

α
)2

]α

, (106)

where ˜̂Um,α

α

= Ûm,α − Ûα.
Exchange of energy between the α-th chemical substance and the solid

matrix as a result of physio-chemical, mechanical, and thermal interactions,
êα:

êα =
1

φF ρα

1

|Ω|
∫

AFS

{
ρm,α

[
Ũm,α

α
+

1

2
(ṽm,α

α)2

]
(u− vm,α)+

σm,α.ṽm,α
α + qm,α}F

∣∣ ·nFSdAr (107)

Macroscopic entropy density, Sα:

Sα = Sm,α
α
. (108)

Macroscopic entropy density flux vector, ϕα:

ϕα ·N =
1

|A|
∫

A

γF [ϕm,α − ρm,αSm,αṽm,α
α] · ndAr. (109)

Macroscopic source of entropy density, Ŝα:

Ŝα = Ŝm,α

α

. (110)

Macroscopic effect of molecular exchange of entropy between the α-th
chemical substance and all other substances, ζ̂α:

ζ̂α = ζ̂m,α

α

+ ˜̂rch
m,α

α ˜̂
Sm,α

αα

. (111)

Macroscopic entropy production rate, Γα:

Γα = Γm,α
α
. (112)
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Macroscopic supply of entropy to the α-th chemical substance as a
result of thermodynamic interactions with the solid matrix, ηα:

η̂α =
1

φF ρα

1

|Ω|
∫

AFS

[ρm,αS̃m,α

α
(u− vm,α) + ϕm,α]

∣∣∣
F
· nFSdAr. (113)

In order to summarise in a single term, for each balance law, the combina-
tion of molecular effects and interface interactions, we define the quantities

R̂α = r̂ch
α + r̂tr

α , (114)

T̂α = λ̂ch
α + m̂α, (115)

Q̂α = θ̂α + êα, (116)

Φ̂α = ζ̂α + η̂α. (117)

The macroscopic thermodynamic quantities referred to the solid phase (cfr.
Table 5) are obtained by following an analogous procedure, substituting in
Eqs. (95)-(113) the quantities defined in Table 1, and replacing the index
F by the index S in the intrinsic volume averaging operators.

The thermodynamic quantities given in Table 4 represent the macro-
scopic fields associated to the fluid phase as a whole.

Mass density, ρF :

ρF =
∑N

α=1
ρα. (118)

Overall mass production rate, R̂tr
F :

ρF R̂tr
F =

∑N

α=1
ραr̂tr

α . (119)

Velocity, vF :

ρFvF =
∑N

α=1
ραvα. (120)

Cauchy stress tensor, σF :

σF =
∑N

α=1
[σα − φF ραvαF ⊗ vαF ], (121)

where vαF = vα−vF is the diffusive velocity of the α-th chemical substance
with respect to the fluid phase.
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Exchange of momentum between the fluid and the solid phase, T̂F :

ρF T̂F =
∑N

α=1
ρα(r̂tr

α vαF + m̂α). (122)

Energy density, UF :

ρF UF =
∑N

α=1
ρα(Uα + 1

2
v2

αF ). (123)

Energy density flux vector, qF :

qF =
∑N

α=1
[qα − σα.vαF − φF ρα(Uα + 1

2
v2

αF )vαF ]. (124)

Exchange of energy between the fluid and the solid phase, Q̂F :

ρF Q̂F =
∑N

α=1
ρα{êα + m̂α · vαF + r̂tr

α [(Uα − UF ) + 1
2
v2

αF ]}. (125)

Entropy density, SF :

ρF SF =
∑N

α=1
ραSα. (126)

Entropy flux vector, ϕF :

ϕF =
∑N

α=1
[ϕα − φF ραSαvαF ]. (127)

Entropy production rate, ΓF :

ρF ΓF =
∑N

α=1
ραΓα. (128)

Supply of entropy to the fluid phase as a result of thermodynamic interac-
tions of all fluid components, Φ̂F :

ρF Φ̂F =
∑N

α=1
ρα[η̂α + r̂tr

α (Sα − SF )]. (129)

Submitted on April 2007.
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Opis rasta i transporta bioloških tkiva sa vǐse skala

Proučavamo rastuća biološka tkiva kao otvorenu dvofaznu mešavinu sa
razmenom mase izmedju faza. Čvrsta faza je identifikovana sa matricom
poroznog medijuma, dok je fluidna faza uključuje vodu zajedno sa svim
rstvorenim hemijskim supstancama koje se nalaze u prostoru pora. Pret-
postavljamo da hemijske supstance evoluiraju saglasno transportnim meh-
anizmima odredjenim kinematskim i konstitutivnim jednačinama i predla-
žemo da se rast posmatra kao proces sposoban da utiče na transport
neprekidnim variranjem termomehaničkog stanja tkiva. Usmeravanjem
pažnje na slučaj anizotropnog rasta pokazujemo da takav uticaj postoji
neprekidnim ponovnim rasporedjivanjem materijalnih simetrija tkiva. U
cilju ilustracije ovog medjudejstva ograničavamo razmatranje na transport
diktiran difuzijom i pretpostavljamo da su vremenske skale pridružene
rastu i transportnom procesu različitog reda veličine. Ovo nam dozvo-
ljava da izvršimo asimptotsku analizu “jednačina polja” sistema. U ovom
okviru, dajemo formalno rešenje transportne jednačine pridruženom Gri-
novom funkcijom i pokazujemo kako je makroskopska koncentracija date
hemijske supstance “modulirana” anizotropnim rastom.
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