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Abstract

The method of moving (Cartan) coframes is used to analyse the
influence of geometry on the behaviour of electromagnetic fields
in confining guides and the effect of such fields on their ultra-
relativistic sources. Such issues are of relevance to a number of
topical problems in accelerator science where the need to control
the motion of high current-density micro-meter size bunches of
relativistic radiating charge remains a technical and theoretical
challenge. By dimensionally reducing the exterior equations for the
sources and fields on spacetime using symmetries exhibited by the
confining guides one achieves a unifying view that offers natural
perturbative approaches for dealing with smooth non-uniform and
curved guides. The issue of the back-reaction of radiation fields on
the sources is approached in terms of a simple charged relativistic
fluid model.1

Keywords: Guided waves, geometry, waveguides, Electromag-
netic Theory, Cartan frames, differential forms, accelerator sci-
ence.

1 Introduction

This article outlines procedures for analysing theoretically the behaviour
of electromagnetic fields and their sources in metallic guides. The em-
phasis is on deriving systems of equations, based on Maxwell’s theory,
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from first principles so that approximation schemes can be put into some
kind of perspective. The motivation is to formulate a methodology that
is powerful enough to accommodate dynamic currents i.e. describe the
behaviour of currents produced by moving charges in guides taking into
account the back-reaction on the source produced by the excited electro-
magnetic field. Such issues have direct relevance to many problems of
interest in current particle accelerator design.

The natural mathematical language for relativistic physical field theo-
ries is the exterior calculus. Elementary introductions to this geometrical
formulation can be found in [1], [2], [3], [4]. It is the author’s hope
that the power of this mathematical framework will be illuminated by its
application to the well trodden path under discussion. In much of the
literature, however, this path often stops at points where the physics of
back-reaction on sources becomes interesting. Although back-reaction is
arguably negligible in many applications (particulary in low power mi-
crowave transmission), this may not be the case for the accelerator scien-
tist struggling to control the motion of bunches of electrons that are emit-
ting copious synchrotron radiation. It is then crucial to determine how the
self-consistent electromagnetic field affects such bunches and their neigh-
bours. To deal with this interaction while maintaining the appropriate
boundary conditions on the fields in the guide is a non-trivial mathe-
matical problem and recourse to numerical simulation or approximation
schemes becomes essential. For sources composed of ultra-relativistic
charged particles it proves useful to re-formulate the equations of motion
for the sources and electromagnetic fields into their “longitudinal”and
“transverse”components. The Maxwell system can then be recast into a
set of equations that resembles a collection of “telegraph”equations that
determines the Maxwell fields. Indeed approximations to these equations
involving lumped impedances for long transmission lines were guessed by
Kelvin and others even before Maxwell invented his field theory of elec-
tromagnetism! An advantage of this formulation is that, besides ensuring
the satisfaction of boundary conditions, it offers different approximation
schemes for dealing with coupled sources and irregularities in the geome-
try of the guide in terms of a 2−dimensional field theory rather than that
based on the original set of partial differential equations in four indepen-
dent variables. This approach is afforded by the notion of dimensional
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reduction and the exploitation of spacetime symmetries that lies behind
much of the following.

2 Notation

The notation follows standard conventions for a manifold M with a metric
tensor field. Thus ΓTM denotes the set of vector fields and ΓΛpM the set
of p−form fields on M . Metric duals with respect to any metric tensor g
are written with a tilde so that X̃ = g(X,−) ∈ ΓΛ1M for X ∈ ΓTM and
α̃ = g−1(α,−) ∈ ΓTM for α ∈ ΓΛ1M . The Hodge dual map associated
with g is denoted by a star so that the canonical n-form measure on M is
the image of 1 under the Hodge map. In this article a number of different
metrics will be introduced on manifolds of different dimensions. One must
then distinguish notationally between the different metrics introduced and
their associated Hodge maps. However for any manifold M with Hodge
map ? one always has the standard relations

Φ ∧ ?Ψ = Ψ ∧ ?Φ for Φ, Ψ ∈ ΓΛpM (1)

iX ? Φ = ?(Φ ∧ X̃) for X ∈ ΓTM, Φ ∈ ΓΛpM (2)

where iX denotes the interior (contraction) operator on forms. Maxwell’s
equations find their most cogent formulation as a theory of 2−forms on
spacetime modelled on a space and time oriented 4−dimensional manifold
with a metric tensor field g of Lorentzian signature (−, +, +, +). On
a spacetime M the set {e0, e1, e2, e3} will denote a local g-orthonormal
coframe (a linearly independent collection of 1−forms). The Hodge map
associated with the Lorentzian metric g will be denoted by ?. Then

? iXΦ = − ? Φ ∧ X̃ for X ∈ ΓTM, Φ ∈ ΓΛpM (3)

? ? Φ = (−1)p+1Φ for Φ ∈ ΓΛpM (4)

For manifolds with a Euclidean signature and different dimensions
these last two relations change as will be indicated for 3 and 2 dimensional
spaces below. Finally note that for all n−dimensional manifolds of any
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signature one has the useful results:

iXΦ ∧Ψ = (−1)p+1Φ ∧ iXΨ for Φ ∈ ΓΛpM,

Ψ ∈ ΓΛqM, p + q ≥ n + 1 (5)

dΦ ∧Ψ = (−1)p+1Φ ∧ dΨ + d(Φ ∧Ψ) for Φ ∈ ΓΛpM,

Ψ ∈ ΓΛqM (6)

3 Electromagnetic fields in spacetime

Maxwell’s equations for an electromagnetic field in an arbitrary medium
can be written

d F = 0 and d ? G = j (7)

where F ∈ ΓΛ2M is the Maxwell 2-form, G ∈ ΓΛ2M is the excitation
2-form and j ∈ ΓΛ3M is the 3-form electric current source2. To close
this system, “electromagnetic constitutive relations” relating G and j to
F are necessary.

The electric 4-current j describes both (mobile) electric charge and
effective (Ohmic) currents in a conducting medium. The electric field
e ∈ ΓΛ1M and magnetic induction field b ∈ ΓΛ1M associated with
F are defined with respect to an arbitrary unit future-pointing timelike
4−velocity vector field U ∈ ΓTM by

e = iUF and cb = iU?F (8)

Thus iUe = 0 and iUb = 0.
Since g(U,U) = −1

F = e ∧ Ũ − ? ( cb ∧ Ũ) (9)

The field U may be used to describe an observer frame on spacetime
and its integral curves model idealised observers.

2All tensors in this article have dimensions constructed from the SI dimensions
[M ], [L], [T ], [Q] where [Q] has the unit of the Coulomb in the MKS system. We adopt
[g] = [L2], [G] = [j] = [Q], [F ] = [Q]/ ε0 where the permittivity of free space ε0 has
the dimensions [Q2 T 2M−1 L−3] and c denotes the speed of light in vacuo
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Likewise the displacement field d ∈ ΓΛ1M and the magnetic field
h ∈ ΓΛ1M associated with G are defined with respect to U by

d = iUG , and h/ c = iU ? G . (10)

Thus

G = d ∧ Ũ − ? ((h/ c ) ∧ Ũ) (11)

and iUe = 0 and iUb = 0. It may be assumed that a material medium
has associated with it a future-pointing timelike unit vector field V which
may be identified with the bulk 4−velocity field of the medium in space-
time. Integral curves of V define the averaged world-lines of identifiable
constituents of the medium. A comoving observer frame with 4−velocity
U will have 3 U = V .

4 Time dependent Maxwell systems in

space

On any n−dimensional manifold a chart sets up a correspondence be-
tween points on some region (patch) on the manifold and a set on Rn.
Thus in a 2−dimensional patch let ξ̂ = (ξ1, ξ2) be a generic set of coor-
dinates. Similarly let ξ = (ξ1, ξ2, ξ3) denote coordinates on a patch of a
3−dimensional manifold and ξ = (ξ, ξ0) denote coordinates on a patch of
4−dimensional spacetime.

Let d denote exterior differentiation in a patch with coordinates ξ.

Similarly let d̂ denote exterior differentiation in a patch with coordi-
nates ξ̂. A “moving”orthonormal (Cartan) coframe in flat spacetime with
Minkowski metric g is a set of (independent 4) 1-forms {e0, e1, e2, e3} with
e0 timelike. In general this will depend on the choice of coordinates ξ in
the sense that their exterior derivatives will not be zero. In the following
we adopt an inertial frame with laboratory time ξ0 = t and e0 = c dt with
{e1, e2, e3} independent of t. Thus in general the coframe “moves”as a

3If U 6= V but at an event p in spacetime their integral curves share the same
tangent then it is sometimes said that V is instantaneously at rest at p with respect
to the timelike frame U

4i.e. e0 ∧ e1 ∧ e2 ∧ e3 6= 0
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function of ξ. If β is any form on spacetime it will be convenient to adopt

the abbreviation β̇ for L ∂
∂t

β, where LX denotes the Lie derivative [3] with

respect to X. Within this framework introduce the tensors:

ĝ = e1 ⊗ e1 + e2 ⊗ e2, g = ĝ + e3 ⊗ e3, g = −e0 ⊗ e0 + g

where e0 = c dt and g is the metric tensor on Minkowski spacetime. At
each instant (t =constant), g is the induced metric tensor on Euclidean
space and ĝ is the induced metric tensor on the 2−dimensional subman-
ifolds (leaves) where ξ3 = constant. Denote the Hodge map associated
with ĝ by #̂ with

#̂1 = e1 ∧ e2

Denote the Hodge map associated with g by # with

#1 = #̂1 ∧ e3

then
?1 = #1 ∧ e0 ≡ e1 ∧ e2 ∧ e3 ∧ e0

To accommodate the effects of signature it is convenient to introduce
the involution operator η on p−forms Φ by ηΦ = (−1)pΦ. Then

?? = −η, ## = 1, #̂#̂ = η (12)

By linearity the action of the Hodge map on an arbitrary form in
Euclidean 3− space readily follows by expanding it in an orthonormal
basis and using the relations

#e1 = e2 ∧ e3

#e2 = e3 ∧ e1

#e3 = e1 ∧ e2

on the basis forms. Furthermore in a 2−dimensional Euclidean space

#̂e1 = e2

#̂e2 = −e1
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If β
(p)

(ξ) is a p-form on spacetime but generated by forms in the ex-

terior algebra generated by {e1(ξ), e2(ξ), e3(ξ)} then at any event with
coordinates ξ one has

β
(p)

(ξ) =
∑

I

βI(ξ)e
I(ξ)

where, for each multi-index I, the set of exterior p−forms {eI(ξ)} denotes
a basis for p-forms generated from the set {e1(ξ), e2(ξ), e3(ξ)}. One refers

to the functions βI as the components of β
(p)

in the eI basis. With this

notation

β̇
(p)

(ξ) ≡
∑

I

∂

∂ξ0
βI(ξ)e

I(ξ)

Define the 2 + 1 split of β
(p)

(ξ) into the pair { β̂
(p−1)

(ξ), β̂
(p)

(ξ)} by the

unique decomposition with respect to d ξ3:

β
(p)

(ξ) = β̂
(p−1)

(ξ) ∧ d ξ3 + β̂
(p)

(ξ) (13)

where β̂
(p−1)

(ξ) and β̂
(p)

(ξ) are p−1 and p forms respectively, generated from

the 1-forms in {d ξ1, d ξ2} satisfying i ∂
∂ξ3

β̂
(p−1)

(ξ) = 0 and i ∂
∂ξ3

β̂
(p)

(ξ) = 0.

Thus β̂
(p−1)

and β̂
(p)

are forms that do not contain d ξ3.

It follows that for q = 0, 1, 2:

#( β̂
(q)

∧ e3) = #̂(η β̂
(q)

) (14)

#( β̂
(q)

) = #̂( β̂
(q)

) ∧ e3 (15)

For any 0−form β̂
(0)

d β̂
(0)

= d̂ β̂
(0)

+ (L ∂
∂ξ3

β̂
(0)

) d ξ3
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where

d̂ β̂
(0)

≡ ∂

∂ξ1
β̂
(0)

d ξ1 +
∂

∂ξ2
β̂
(0)

d ξ2

From this it follows that, for q = 0, 1, 2:

d β̂
(q)

= d̂ β̂
(q)

+ d ξ3 ∧ (L ∂
∂ξ3

β̂
(q)

)

where d̂ acts on exterior forms generated by {d ξ1,d ξ2}. Note that for

all 2-forms β̂
(2)

one has d̂ β̂
(2)

= 0. Let the 3+1 split of the 4-current 3−form

be

j
(3)

(ξ) = −J
(2)

(ξ) ∧ d t + ρ
(0)

(ξ)#1 (16)

with i ∂
∂t

J
(2)

= 0. Then, from (7)

d j = 0 (17)

yields
d J

(2)
(ξ) + ρ̇

(0)

(ξ)#1 = 0

It is convenient to introduce the (Hodge) dual forms:

E
(2)

= # e
(1)

, D
(2)

= #d
(1)

, B
(2)

= #b
(1)

, H
(2)

= #h
(1)

so that the 3+1 split of the spacetime covariant Maxwell equations (7)
with respect to d t becomes

d e
(1)

= −Ḃ
(2)

(18)

d B
(2)

= 0 (19)
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d h
(1)

= J
(2)

+ Ḋ
(2)

(20)

d D
(2)

= ρ
(0)

#1 (21)

All p−forms (p ≥ 1) in these equations are independent of e0 but
may depend on t. Furthermore they are independent of the choice of
(stationary) spatial co-frame constructed from {d ξ1,d ξ2,d ξ3}, in any
chart with local coordinates ξ1, ξ2, ξ3.

In the following it is assumed that b
(1)

= µh
(1)

and d
(1)

= ε e
(1)

(with

constant ε, µ ) where ε = εrε0 , µ = µrµ0 . Thus in terms of e
(1)

, h
(1)

, E
(2)

, H
(2)

:

d e
(1)

= −µḢ
(2)

(22)

d H
(2)

= 0 (23)

d h
(1)

= εĖ
(2)

+ J
(2)

(24)

εd E
(2)

= ρ
(0)

#1 (25)

5 The Maxwell system inside a regular cylin-

der

Consider a regular hollow perfectly conducting cylinder of radius a, given
in cylindrical coordinates with {ξ1 ≡ r, ξ2 ≡ φ, ξ3 ≡ z} by r = a: A
convenient orthonormal coframe in this coordinate system is given by

{e1 = d r, e2 = r d φ, e3 = d z}

with the tensor ĝ = e1⊗ e1 + e2⊗ e2 = (d r⊗d r + r2d φ⊗d φ). One has
L ∂

∂z
ĝ = 0 and hence L ∂

∂z
#̂1 = 0 reflecting the translational symmetry of
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the regular cylinder. An important set of equations arises from taking
the exterior derivative of this coframe. These structure equations follow
simply as

d e1 = 0,

d e2 =
1

r
e1 ∧ e2

d e3 = 0

Thus for q = 0, 1, 2:

d ( β̂
(q)

∧ e3) = (d β̂
(q)

) ∧ e3

Construct the following 2+1 splits with respect to d z

e
(1)

= ê
(0)
∧ d z + ê

(1)
(26)

h
(1)

= ĥ
(0)
∧ d z + ĥ

(1)
(27)

Hence

H
(2)

= #h
(1)

= #̂ ĥ
(0)

+ (#̂ ĥ
(1)

) ∧ d z (28)

and the Maxwell equation d e
(1)

= −µḢ
(2)

yields:

d̂ ê
(0)
∧ d z + d̂ ê

(1)
+ d z ∧ L ∂

∂z
ê
(1)

= −µ#̂
˙̂
h
(0)
− µ#̂

˙̂
h
(1)
∧ d z

Projecting this with respect to d z gives the pair

d̂ ê
(0)
− L ∂

∂z
ê
(1)

= −µ#̂
˙̂
h
(1)

(29)

d̂ ê
(1)

= −µ#̂
˙̂
h
(0)

(30)

Similarly with the 2+1 split
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J
(2)

= Ĵ
(1)
∧ d z + Ĵ

(2)
(31)

the Maxwell equation d h
(1)

= εĖ
(2)

+ J
(2)

yields

d̂ ĥ
(0)
− L ∂

∂z
ĥ
(1)

= ε#̂ ˙̂e
(1)

+ Ĵ
(1)

(32)

d̂ ĥ
(1)

= ε#̂ ˙̂e
(0)

+ Ĵ
(2)

(33)

Next with the 2+1 splits

E
(2)

= #̂ ê
(0)

+ (#̂ ê
(1)

) ∧ d z (34)

and
d E

(2)
= d z ∧ (L ∂

∂z
ê
(0)

#̂1 + d̂ #̂ ê
(1)

) (35)

the Maxwell equation εd E
(2)

= ρ
(0)

#1 yields:

d̂ #̂ ê
(1)

+ L ∂
∂z

ê
(0)

#̂1 =
1

ε
ρ
(0)

#̂1 (36)

Similarly the Maxwell equation d H
(2)

= 0 yields

d̂ #̂ ĥ
(1)

+ L ∂
∂z

ĥ
(0)

#̂1 = 0 (37)

The 4-current conservation (compatibility) equation becomes:

d̂ Ĵ
(1)

+ L ∂
∂z

Ĵ
(2)

+ ρ̇
(0)

#̂1 = 0 (38)

In the following it proves convenient to introduce the longitudinal

current Ĵ
(0)

by

Ĵ
(0)

= #̂ Ĵ
(2)

(39)
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6 Dirichlet modes

LetD be the smooth 2-dimensional submanifold (ξ3=constant) with bound-
ary ∂D, embedded in Eucldean R3. The tensor ĝ on D is that induced
from the Euclidean metric g in R3. A real Dirichlet mode set {ΦN} is a

collection of real eigen 0−forms of the Laplacian operator −d̂ #̂d̂ on D
(associated with the metric ĝ and Hodge operator #̂) that vanishes on
∂D. This boundary condition and the nature of the domain determine
the associated (positive non-zero real) eigenvalues β2

N . The label N here
consists of an ordered pair of labels. Thus

ΦN : R2 → D, ξ̂ 7→ ΦN(ξ̂) (40)

satisfies

d̂ #̂d̂ ΦN + β2
N ΦN#̂1 = 0 (41)

with ΦN |∂D = 0. It is straightforward to show from these properties that
if β2

N 6= β2
M 6= 0 then

∫

D
ΦM ΦN #̂1 = 0 (42)

If one normalises these modes so that

∫

D
ΦM ΦN #̂1 = N 2

N δNM (43)

then it is also easy to show that

∫

D
d̂ ΦN ∧ #̂d̂ ΦM = β2

N N 2
N δNM (44)

7 Neumann modes

In a similar manner one defines a real Neumann mode set {ΨN} as a
collection of real eigen 0−forms of the Laplacian operator on D such
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that the pull back to ∂D of #̂d̂ ΨN vanishes5. This alternative boundary
condition and the nature of the domain determine the associated (positive
non-zero real) eigenvalues α2

N where again the label N here consists of an
ordered pair of real numbers. Thus

ΨN : R2 → D, ξ̂ 7→ ΨN(ξ̂) (45)

satisfies
d̂ #̂d̂ ΨN + α2

N ΨN#̂1 = 0 (46)

with #̂d̂ ΨN |∂D = 0. It is straightforward to show from these properties
that if α2

N 6= α2
M 6= 0 then

∫

D
ΨM ΨN #̂1 = 0 (47)

If one normalises these modes so that

∫

D
ΨM ΨN #̂1 = M2

N δNM (48)

then it is also easy to how that

∫

D
d̂ ΨN ∧ #̂d̂ ΨM = α2

N M2
N δNM (49)

Furthermore since

d̂ (ΦN#̂d̂ ΨM) = d̂ ΦN ∧ #̂d̂ ΨM + ΦN d̂ #̂d̂ ΨM (50)

the above properties imply that for all M,N if α2
M 6= β2

N 6= 0

∫

D
ΨM ΦN #̂1 =

1

α2
N − β2

M

∫

∂D
ΨM #̂d̂ ΦN (51)

5If the boundary ∂D is given by the equation f(ξ) = 0 in R3 this is equivalent to
d f ∧ #̂d̂ ΨN = 0
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8 Source free pure cylinder harmonic modes

For the parameters k, ω consider harmonic (propagating) fields in the
cylinder, free of sources j, defined by

ê
(1)

(r, φ, z, t) = ě
(1)

(r, φ)ei(kz−ωt) (52)

ê
(0)

(r, φ, z, t) = ě
(0)

(r, φ)ei(kz−ωt) (53)

ĥ
(1)

(r, φ, z, t) = ȟ
(1)

(r, φ)ei(kz−ωt) (54)

ĥ
(0)

(r, φ, z, t) = ȟ
(0)

(r, φ)ei(kz−ωt) (55)

If these fields are to exist in the guide without sources they must sat-
isfy (29), (30), (32),(33),(36),(37). Inserting the above in these Maxwell
equations yields the reduced system:

d̂ ě
(1)

= i µ ω ȟ
(0)

#̂1 (56)

d̂ ȟ
(1)

= −i ε ω ě
(0)

#̂1 (57)

d̂ #̂ ě
(1)

= −i k ě
(0)

#̂1 (58)

d̂ #̂ ȟ
(1)

= −i k ȟ
(0)

#̂1 (59)

d̂ ě
(0)
− i k ě

(1)
= iωµ#̂ ȟ

(1)
(60)

d̂ ȟ
(0)
− i k ȟ

(1)
= −iωε#̂ ě

(1)
(61)

It follows from (60) and (61) that provided k2 − ω2εµ 6= 0 then

(k2 − ω2εµ) #̂ ȟ
(1)

= −i k#̂d̂ ȟ
(0)

+ i ω εd̂ ě
(0)

(62)
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(k2 − ω2εµ) ě
(1)

= i ωµ#̂d̂ ȟ
(0)
− i k d̂ ě

(0)
(63)

Thus the transverse forms ě
(1)

and ȟ
(1)

are specified in terms of the

derivatives of the longitudinal forms ě
(0)

and ȟ
(0)

.

If one applies d̂ #̂ to (63) and uses (58) one finds that ě
(0)

must be an

eigen-form of the transverse cylinder Laplacian:

d̂ #̂d̂ ě
(0)

= (k2 − ω2εµ) ě
(0)

#̂1 (64)

Similarly if one applies d̂ to (62) and uses (59) one finds that ȟ
(0)

must

also be an eigen-form of the transverse cylinder Laplacian:

d̂ #̂d̂ ȟ
(0)

= (k2 − ω2εµ) ȟ
(0)

#̂1 (65)

But the geometry of the domain D (given here by z = constant,
0 ≤ r ≤ a, 0 < φ ≤ 2π) determines these eigen-forms once the boundary
conditions are specified. For a perfectly conducting cylinder one must
choose appropriate eigen-forms for these longitudinal fields so that the
proper boundary conditions for e

(1)
and h

(1)
are satisfied at r = a. One

requires that ě
(0)

be a Dirichlet mode (ΦN) and ȟ
(0)

be a Neumann mode

(ΨM). The eigenvalues of these modes follow by solving (41) and (46).
Thus the parameters k and ω are constrained to (kN , ωN) satisfying

k2
N − εµω2

N = −β2
N (66)

or (kM , ωM) satisfying or

k2
M − εµω2

M = −α2
M (67)

Since the eigenvalues α2
M , β2

N are real one sees that propagating modes
correspond to real k roots of this equation. Configurations in which the
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roots k are pure imaginary are called evanescent since they attenuate as
a function of z.

It is now possible to verify that field configurations in the hollow
cylinder satisfying all the above Maxwell equations decouple into two
sets. Those with ȟ

(0)
= 0, ě

(0)
= ΦN and k2

N − εµω2
N = −β2

N are termed

cylindrical TM modes. It follows from (62) and (63) that for these modes

(k2 − ω2εµ) #̂ ȟ
(1)

= i ω εd̂ ě
(0)

(68)

(k2 − ω2εµ) ě
(1)

= −i k d̂ ě
(0)

(69)

Those with ě
(0)

= 0, ȟ
(0)

= ΨM and k2
M − εµω2

M = −α2
M are termed

cylindrical TE modes. It follows from (62) and (63) that for these modes

(k2 − ω2εµ) #̂ ȟ
(1)

= −i k#̂d̂ ȟ
(0)

(70)

(k2 − ω2εµ) ě
(1)

= i ωµ#̂d̂ ȟ
(0)

(71)

For each TE mode configuration all propagating fields characterised
by the mode label N have a wavelength 2π

kN
= 2π√

εµω2
N−β2

N

, a phase speed

ωN/kN = ωN√
εµω2

N−β2
N

and a group speed (d ω
d k

)N = 1
εµ

kN

ωN
determined by

the geometry of D. Similarly each propagating TM mode configuration
characterised by the mode label M has a wavelength 2π

kM
= 2π√

εµω2
M−α2

M

,

a phase speed ωM/kM = ωM√
εµω2

M−α2
M

and a group speed (d ω
d k

)M = 1
εµ

kM

ωM
.

Since the source free system is linear in all fields, more general config-
urations can be generated by superposition of all possible TE and TM
modes. Since the cylinder is hollow the most general field configuration
follows by adding any static electric and/or magnetic field to these that
are compatible with the boundary conditions 6.

6If the cylinder has a metallic concentric cylindrical core there also exist propagat-
ing modes with both ĥ

(0)
and ê

(0)
simultaneously zero. Such TEM modes cannot arise

in the hollow cylinder under consideration here
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For completeness one may explicitly solve (41) and (46) to find the
transverse cylinder mode structure. It is convenient as usual 7 to com-
plexify. Using regularity at r = 0 and periodicity in φ one has the TE
mode labels N ≡ (m, p) with m = 0,±1,±2, . . .. Let xmp denote the p-th
root of the Jm Bessel function, i.e Jm(xmp) = 0. Then βN ≡ βmp = xmp

a

and

ΦN(r, φ) = Nmp Jm(xmp
r

a
)eimφ (72)

Similarly one has the TM mode labels M ≡ (m, p) with m = 0, ±1,
±2, . . .. Let x′mp denote the p-th root of the equation J ′m(x′mp) = 0. Then

αM ≡ αmp =
x′mp

a
and

ΨM(r, φ) = Mmp Jm(x′mp

r

a
)eimφ (73)

In a medium satisfying Ohm’s law J
(2)

= σE
(2)

with constant scalar

conductivity σ, the dispersion relations above are modified. For any field
mode m, p one replaces the factor eikz for real k by e−Γz for complex
Γ = α + ik with real attenuation parameter α > 0. Then the dispersion
relation becomes:

Γ2 − Γ2
0 = x2

mp

where Γ2
0 = iµωσ − ω2εµ. Thus the real parameters k, α that determine

the propagation characteristics of a particular mode are determined by
the real and imaginary parts of the above complex dispersion relation:

x2
mp = α2 − k2 + ω2εµ

2αk − µωσ = 0

For positive α = µωσ
2k

the loci with real ω and k 6= 0 satisfy:

x2
mp =

µ2ω2σ2

4k2
− k2 + ω2εµ

7One then uses mode orthonormality relations
∫
D Φ̄M ΦN #̂1 = N 2

N δNM ,∫
D Ψ̄M ΨN #̂1 = M2

N δNM
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and determine the manner in which the sharp cut-off for σ = 0 is modified
when σ 6= 0.

The above cylindrical coframe is also readily applicable to the theory
of the sector horn. A sector horn with a rectangular cross-section is com-
posed of the union of four planes in space. In cylindrical polar coordinates
they are given as

A : φ = 0 (74)

C : φ = φ0 (75)

B : z = 0 (76)

D : z = z0 (77)

Using Dirichlet and Neumann modes associated with the domain D
given by any surface with r = constant and inside the surface S = A ∪
B ∪ C ∪ D. A global analysis of the pure mode structure of the horn
satisfying perfectly conducting boundary conditions on S can be made in
terms of its spectral content.

9 Cylinder modes excited by internal

sources

In practice the source free pure cylinder modes above are excited by
external agencies. Some technological skill is often required to excite pure
TE or TM propagating modes. Mathematically these require specification
of precise initial conditions. When sources j, with mobile charge exist in
the cylinder they act as forcing terms and may excite a superposition of
allowable modes. Guided by the above mode analysis we explore modes
of the form

ĥ
(0)

= 0 (78)

ĥ
(1)

(t, z, r, φ) =
∑
N

IE
N (t, z) #̂d ΦN(r, φ) (79)

ê
(0)

(t, z, r, φ) =
∑
N

γE
N(t, z) ΦN(r, φ) (80)
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ê
(1)

(t, z, r, φ) =
∑
N

V E
N (t, z) d ΦN(r, φ) (81)

where the functions IE
N , γE

N , V E
N must be determined.

It follows immediately that such modes satisfy

d̂ ê
(1)

= 0 (82)

and

d̂ ĥ
(1)

= −
∑
N

β2
N IE

NΦN #̂1 (83)

Inserting the above expressions into the Maxwell system with sources
(29), (30), (32), (33), (36), (37) and integrating over D using the orthog-
onality relations for the ΦN modes yields the E-mode reduced system:

β2
M IE

M(t, z) + ε ˙γE
M(t, z) = − 1

NM
2

∫

D
Ĵ
(0)

(t, z, r, φ) ΦM(r, φ) #̂1 (84)

IE
M

′
(t, z) + ε ˙V E

M = − 1

NMβ2
M

∫

D
d ΦM(r, φ) ∧ Ĵ

(1)
(t, z, r, φ) (85)

V E
N

′
(t, z)− γE

N(t, z) + µ ˙IE
N (t, z) = 0 (86)

V E
M (t, z)β2

N − γE
M

′
(t, z) = − 1

εNM
2

∫

D
ρ
(0)

(t, z, r, φ) ΦM(r, φ) #̂1 (87)

where f ′ ≡ ∂
∂z

f for any scalar field f . In these equations the sources are
constrained to satisfy the conservation relation (38) that here takes the
form:

d̂ Ĵ
(1)

+

(
∂

∂z
Ĵ
(0)

+
∂

∂t
ρ
(0)

)
#̂1 = 0 (88)

Since

d̂ (ΦM ∧ Ĵ
(1)

) = d̂ ΦM ∧ Ĵ
(1)

+ ΦM d̂ Ĵ
(1)
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and ΦM |∂D = 0 one finds from (88) that

∫

D
d ΦM ∧ Ĵ

(1)
=

∫

D
ΦM(r, φ) ( Ĵ

(0)

′
(t, z, r, φ) + ρ̇

(0)

(t, z, r, φ)) #̂1 (89)

Suppose any 0−form F depends on r, φ and a collection of other vari-
ables and one has:

F(r, φ, . . .) =
∑
N

< F >N (. . .)ΦN(r, φ) (90)

then by orthogonality of the ΦN :

< F >N (. . .) =
1

NN
2

∫

D
F(r, φ, . . .) ΦN #̂1 (91)

In terms of the projected sources < Ĵ
(0)

>N (t, z) and < ρ
(0)

>N (t, z)

the reduced E-mode system

˙γE
M +

β2
M

ε
IE
M = −1

ε
< Ĵ

(0)
>M (92)

˙V E
M +

1

ε
IE
M

′
= − 1

ε β2
M

(
∂

∂z
< Ĵ

(0)
>M +

∂

∂t
< ρ

(0)

>M

)
(93)

γE
M = V E

M

′
+ µ ˙IE

M (94)

γE
M

′ − β2
M V E

M =
1

ε
< ρ

(0)

>M (95)

is seen to be system of p.d.e.’s for IE
M(t, z), V E

M (t, z), γE
M(t, z).

In a similar manner we expect to find a mode system generated from
expansions with

ê
(0)

= 0 (96)

ê
(1)

(t, z, r, φ) =
∑
N

V H
N (t, z) #̂d ΨN(r, φ) (97)
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ĥ
(0)

(t, z, r, φ) =
∑
N

γH
N (t, z) ΨN(r, φ) (98)

ĥ
(1)

(t, z, r, φ) =
∑
N

IH
N (t, z) d ΨN(r, φ) (99)

It follows immediately that for these modes

d̂ ĥ
(1)

= 0 (100)

and
d̂ ê

(1)
= −

∑
N

V H
N α2

N ΨN #̂1 (101)

Inserting the above expansions in the Maxwell system and using the
ΨM orthogonality to project as before yields

Ĵ
(0)

= 0 (102)

ε ˙V H
M + γH

M − IH
M

′
=

1

α2
M M2

M

∫

D
d ΨM ∧ #̂ Ĵ

(1)
(103)

µ ˙γH
M − V H

M α2
M = 0 (104)

µ ˙IH
M − V H

M

′
= 0 (105)

γH
M

′ − IH
M α2

M = 0 (106)

ρ
(0)

= 0 (107)

Clearly such configurations are only excited by particular types of
source. Using Stokes theorem on the identity

∫

D
d̂ ΨM ∧ #̂ Ĵ

(1)
=

∫

D
d̂ (ΨM#̂ Ĵ

(1)
)−

∫

D
ΨM d̂ #̂ Ĵ

(1)
(108)
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gives ∫

D
d̂ ΨM ∧ #̂ Ĵ

(1)
=

∫

∂D
ΨM#̂ Ĵ

(1)
−

∫

D
ΨM d̂ #̂ Ĵ

(1)
(109)

Since ΨM does not vanish on ∂D one sees that this system can get
excitations from boundary currents and (103) can be written

ε ˙V H
M + γH

M − IH
M

′
+

1

α2
M

<< #̂ d̂ #̂ Ĵ
(1)

>>M − 1

α2
M M2

M

∫

∂D
ΨM#̂ Ĵ

(1)
= 0

(110)
where here,

<< F >>M≡ 1

MM
2

∫

D
FΨM#̂1

A general mixed configuration in a hollow cylinder with arbitrary

internal sources, ρ
(0)

(z, t, r, φ), Ĵ
(0)

(z, t, r, φ), Ĵ
(1)

(z, t, r, φ) satisfying (38), will

take the form

ê
(1)

=
∑
N

V E
N d ΦN +

∑
M

V H
M #̂d ΨM (111)

ĥ
(1)

=
∑
N

IE
N #̂d ΦN +

∑
M

IH
Md ΨM (112)

ê
(0)

=
∑
N

γE
N ΦN (113)

ĥ
(0)

=
∑
M

γH
MΨM (114)

and the p.d.e.’s for V E
N , V H

M , IE
N , IH

M , γE
N , γH

M derived from (29), (30), (32),(33),
(36), (37) will be fully coupled8 in general.

If additionally one has inside the cylinder fields due to sources external
to D then they must be solutions to the above system with ρ

(0)

(z, t, r, φ) =

8Note that when all the sources vanish the equations can be decoupled into TE
and TM cylindrical modes with the various amplitudes V, I, γ, all proportional to
exp(k z − ω t) with parameters k and ω constrained by the pure mode dispersion
relations above.
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0, Ĵ
(0)

(z, t, r, φ) = 0, Ĵ
(1)

(z, t, r, φ) = 0 satisfying appropriate boundary con-

ditions. These will arise if one attempts to control dynamic sources with
external fields produced by prescribed (control) charges or currents. Thus,
for example, one has the exact static solutions

e
(1)

ext = dV(z, r, φ)

h
(1)

ext
= dM(z, r, φ)

for any potentials satisfying

d #dV = 0

d #dM = 0

in D and satisfying metallic boundary conditions.

10 The initial value problem

If the compatible sources in the systems above are prescribed one may
formulate an initial value problem for the resulting fields. This will be
illustrated for the reduced E-mode system. From this it is straightforward
to deduce that γE

M(t, z) satisfies

γ̈E
M − v2γE

M

′′
+ v2β2

MγE
M = J E

M (115)

where J E
M = −1

ε
<

˙
Ĵ
(0)

>M − v2

ε
< ρ

(0)

′ >M and v2 = 1
εµ

.

The causal solution (having γE
M = 0 for t < 0) of this partial differ-

ential equation with prescribed values of γE
M(0, z) and ˙γE

M(0, z) has been
exhaustively studied in the literature, see e.g. [6]. If the data and sources
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are sufficiently smooth one has:

γE
M(t, z) =

1

2
{γE

M(0, z − vt) + γE
M(0, z + vt)}

+
1

2v

∫ z+vt

z−vt

˙γE
M(0, ζ) J0(β

2
M

√
v2t2 − (z − ζ)2) dζ

−vtβM

2

∫ z+vt

z−vt

γE
M(0, ζ)

J1(β
2
M

√
v2t2 − (z − ζ)2)√

v2t2 − (z − ζ)2
dζ

+
1

2v

∫ t

0

∫ z+v(t−t′)

z−v(t−t′)
J E

M(t′, ζ) J0(β
2
M

√
v2(t− t′)2 − (z − ζ)2) dt′ dζ

(116)

This solution can be generalized to a distributional solution for sources
modeled by moving point charges. The remaining fields can be computed
in terms of γE

M .

11 The Maxwell system inside a conical guide

Suppose a hollow perfectly conducting cone with apex angle 2θ0 is given
in spherical polar coordinates with {ξ1 = θ, ξ2 = φ, ξ3 = r} by θ = θ0: A
convenient coframe in these coordinates is

{e1 = r d θ, e2 = r sin θ d φ, e3 = d r}

with the tensor ĝ = e1 ⊗ e1 + e2 ⊗ e2 = r2(d θ ⊗ d θ + sin2 θd φ ⊗ dφ).
One now has L ∂

∂r
ĝ = 2

r
ĝ and hence L ∂

∂r
#̂1 = 2

r
#̂1. This coframe has the

structure equations: d e1 =
1

r
e3 ∧ e1

d e2 =
1

r
e3 ∧ e2 +

cot θ

r
e1 ∧ e2

d e3 = 0

Using the 2+1 decompositions

e
(1)

= ê
(0)
∧ d r + ê

(1)
(117)



On the effects of geometry on guided electromagnetic waves 25

h
(1)

= ĥ
(0)
∧ d r + ĥ

(1)
(118)

the Maxwell equation d e
(1)

= −µḢ
(2)

yields:

d̂ ê
(0)
∧ d r + d̂ ê

(1)
+ d r ∧ L ∂

∂r
ê
(1)

= −µ#̂
˙̂
h
(0)
− µ#̂

˙̂
h
(1)
∧ d r

or the pair

d̂ ê
(0)
− L ∂

∂r
ê
(1)

= −µ#̂
˙̂
h
(1)

(119)

d̂ ê
(1)

= −µ#̂
˙̂
h
(0)

(120)

Similarly with the 2+1 split

J
(2)

= Ĵ
(1)
∧ d r + Ĵ

(2)
(121)

the Maxwell equation d h
(1)

= εĖ
(2)

+ J
(2)

yields the pair

d̂ ĥ
(0)
− L ∂

∂r
ĥ
(1)

= ε#̂ ˙̂e
(1)

+ Ĵ
(1)

(122)

d̂ ĥ
(1)

= ε#̂ ˙̂e
(0)

+ Ĵ
(2)

(123)

The structure of the Maxwell system for the cone so far coincides with
that for the cylinder. However this changes when one splits the remaining
Maxwell equations since #̂1 is not invariant under Lie differentiation with
respect to radial variations (generated by ∂

∂r
). Thus with the 2+1 splits

E
(2)

= #̂ ê
(0)

+ (#̂ ê
(1)

) ∧ d r (124)

and
d E

(2)
= d r ∧ (L ∂

∂r

(
ê
(0)

#̂1
)

+ d̂ #̂ ê
(1)

)
(125)
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the Maxwell equation εd E
(2)

= ρ
(0)

#1 yields:

d̂ #̂ ê
(1)

+ (L ∂
∂r

ê
(0)

+
2

r
ê
(0)

) #̂1 =
1

ε
ρ
(0)

#̂1 (126)

Similarly the final Maxwell equation d H
(2)

= 0 yields

d̂ #̂ ĥ
(1)

+ (L ∂
∂r

ĥ
(0)

+
2

r
ĥ
(0)

) #̂1 = 0 (127)

Finally 4-current conservation yields in this case:

d̂ Ĵ
(1)

+ L ∂
∂r

Ĵ
(2)

+ ρ̇
(0)

#̂1 = 0 (128)

12 Source free pure harmonic conical

modes

The analysis of the pure cylinder harmonic modes emphasised the role
played by eigen-forms of the Laplacian associated with the coordinate
surface D given by z = constant in cylindrical polar coordinates. Due to
translational symmetry the geometry of this cross-section of the cylinder
was constant. For the cone the analagous surface is given in spherical
polar coordinates (centred at the cone apex) by r = constant. Although
for different constants such surfaces are similar they do not share the
translation symmetry property exhibited by the cylinder. However one
may explore the consequences of using the eigen-forms of the 2−sphere to
explore the pure electromagnetic mode structure of the cone. The scalar
eigen-forms for a spherical patch D will be denoted Y m

l and for some
numbers m, l they satisfy:

d #̂d Y m
l = − 1

r2
l(l + 1)Y m

l #̂1 (129)

For the complete sphere l = 0, 1, 2, . . . and for each l, the range m =
−l,−l+1, . . . l ensures that Y m

l is a polynomial in cos θ and periodic in φ.
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However for the cone under consideration the domain D does not cover
the surface of a full sphere so the range of m and l are not in general
those appropriate for the full sphere. If one defines D as r = r0 and
parametrises it by θ, φ with 0 ≤ φ < 2π, 0 ≤ θ ≤ θ0 then periodicity of
all fields in φ is demanded so m must be integer. The value of l will be
fixed by demanding that the electromagnetic fields satisfy the perfectly
conducting boundary conditions on ∂D given by θ = θ0. The eigen-forms
Y m

l (θ, φ) are then to be expressed as eimφPm
l (cos θ) in terms of associated

Legendre functions Pm
l (µ).

From applying d̂ #̂ to (119) and using (126) and (123) one finds that
ê
(0)

must satisfy:

d̂ #̂d̂ ê
(0)

+

(
( ê
(0)

′ +
2

r
ê
(0)

)#̂1

)′
− µε ¨̂e

(0)
#̂1 = 0 (130)

Similarly applying d̂ #̂ to (122) and using (127) and (120) one finds
that ĥ

(0)
must satisfy:

d̂ #̂d̂ ĥ
(0)

+

(
( ĥ
(0)

′
+

2

r
ĥ
(0)

)#̂1

)′
− µε

¨̂
h
(0)

#̂1 = 0 (131)

where now, for any form F , F ′ ≡ L ∂
∂r
F .

Guided by the separability structure of the cylindrical pure modes one
now expects to solve (130) and (131) with the forms:

ê
(0)

(t, r, θ, φ) = Ce exp(iωt)Φe(r)ΦN(θ, φ) (132)

ĥ
(0)

(t, r, θ, φ) = Ch exp(iωt)Φh(r)ΨM(θ, φ) (133)

for some constants ω,Ce, Ch. The Dirichlet modes are

ΦN(θ, φ) = Y m
l (θ, φ) (134)

while the Neumann modes are

ΨN(θ, φ) = Y m
L (θ, φ) (135)
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with N ≡ (m, l), M ≡ (m,L) for some m, l, L to be determined. Using
(129) to determine Φe and Φh, one finds that instead of the functions
exp(ikr) defining plane fronted propagating waves for some k as in the
pure cylindrical mode case one must have:

Φe(r) =
Zl

(
ω
v
r
)

r
(136)

Φh(r) =
ZL(ω

v
r)

r
(137)

defining spherical fronted propagating waves for some M and N . The
function Zl is any solution of the spherical Bessel equation:

ζ2 d2

dζ2
Zl(ζ) + 2ζ

d

dζ
Zl(ζ) +

(
ζ2 − l(l + 1)

)Zl(ζ) = 0 (138)

A basis of such solutions is the set containing the real functions often
denoted jl(ζ) and yl(ζ).9 Outgoing (ingoing) complex propagating fields
can be constructing in terms of the spherical Hankel functions:

h1,2
l = jl ± i yl (139)

These are really only appropriate for a truncated cone (frustum). If
the apex of the cone is maintained then the yl functions must be excluded
since they are singular at r = 0.

Furthermore from (119) and (122) one finds

ĥ
(1)

′′
+

ω2

v2
ĥ
(1)

= (d̂ ĥ
(0)

)′ − iω ε#̂d ê
(0)

(140)

ê
(1)

′′ +
ω2

v2
ê
(1)

= (d̂ ê
(0)

)′ + iω µ#̂d ĥ
(0)

(141)

9In terms of the Bessel functions Jl and Yl one has jl(ζ) =
√

π
2ζ Jl+ 1

2
(ζ) and

yl(ζ) =
√

π
2ζ Yl+ 1

2
(ζ) ...
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where v2 ≡ 1
εµ

.
The ratio of Ce to Ch will be determined from the first order Maxwell

system. Again one has TM pure conical modes with ĥ
(0)

= 0 and TE pure

conical modes with ê
(0)

= 0. Since the structure of the longitudinal modes

has been determined up to a relative scale the remaining fields follow by
substitution into (130) and (131). One finds pure (complex) TM modes:

ĥ
(0)

= 0 (142)

ĥ
(1)

= eiωt ω

v
rZl

(ω

v
r
)

#̂d Y m
l (143)

ê
(0)

= i
ω

ε v2
l(l + 1)eiωtZl

(
ω
v
r
)

ω
v
r

Y m
l (144)

ê
(1)

= − i

εv
eiωt d

dζ
(ζZl(ζ)) |ζ=ωr

v
d Y m

l (145)

The TM mode spectrum is determined by values of l that ensure the
pure conical modes satisfy the appropriate boundary conditions. This can
be achieved by requiring Y m

l |∂D = 0 or (since one demands periodicity in
φ)

Pm
l (cos θ0) = 0 (146)

This transcendental equation has infinitely many (real) roots for each
integer m and real value θ0:

l = l̂(m, θ0) (147)

Similarly one finds pure (complex) TE modes:

ê
(0)

= 0 (148)

ê
(1)

= eiωt ω

v
rZL(

ω

v
r) #̂d Y m

L (149)
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ĥ
(1)

= −i
1

µv
eiωt d

dζ
(ζZL(ζ)) |ζ=ωr

v
d Y m

L (150)

ĥ
(0)

= −i
ω

µv2
L(L + 1) eiωt ZL(ω

v
r)

ω
v
r

Y m
L (151)

For pure TE modes the boundary conditions require d θ∧#̂d Y m
L |∂D =

0 or
d

dµ
Pm

L (µ)|µ=cos θ0 = 0 (152)

This transcendental equation also has infinitely many (real) roots for
each integer m and real value θ0:

L = L̂(m, θ0) (153)

Thus one may label the pure conical modes by N = (m, l) and M =
(m, L) where l and L are determined by the electromagnetic boundary
conditions above. Unlike the cylindrical case there is no simple sharp
cut off in ω for propagating modes in the truncated cone with fixed apex
angle θ0. Here the propagation characteristics are determined for each
mode by the behaviour of the factor eiωtZl

(
ω
v
r
)

or eiωtZL(ω
v
r). If a pure

conical mode is excited near the narrow end of a truncated cone then
the appropriate description will have outgoing (r → ∞) propagating

configurations with Zl = h
(2)
l or ZL = h

(2)
L . A detailed analysis of such a

mode reveals that the electromagnetic field pattern does not have radial
oscillations for all r. Again this difference from the cylindrical case can be
attributed to the lack of translation invariance in the cone. The precise
manner in which the radial oscillations begin as a function of r however
is controlled by the root l or L and hence by m and the apex angle 2θ0.

A general mixed configuration that may be excited by sources in the
cone can now be written in the form (111), (112), (113), (114) but with
mode functions (134) and (135) and mode summations over N = (m, l)
and M = (m,L). The V E

N , V H
M , IE

N , IH
M , γE

N , γH
M follow by substitution into

(119), (120), (122), (123), (126), (127) after projection, using the (com-
plexified) orthogonality properties of the Dirichlet and Neumann func-
tions for D: ∫

D
Φ̄N ΦM #̂1 = NM

2δMN (154)
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∫

D
Ψ̄N ΨM #̂1 = MM

2δMN (155)

13 Approximation schemes for fields in ir-

regular cylindrical guides

13.1 Scalar fields in a tapered cylinder without sources

In the above, attention has been concentrated on regular guides. The
particular geometrical properties of such structures ensures that they
are amenable to a global analysis in terms of functions with established
properties. For guides with irregular geometric properties this is rarely
possible. If the irregularity is in some sense a localised variation in an
otherwise regular structure approximation methods may be applicable.
Since the vector nature of the electromagnetic field adds an additional
layer of complexity to such methods it is useful to consider first localised
modifications to a scalar field subject to Dirichlet boundary conditions
at the surface of an irregular guide. Consider then an irregularly tapered
cylinder which in cylindrical coordinates (ρ, φ, z) has as its surface of rev-
olution about the z axis the form ρ = aχ(z) for some function χ and
constant a. For the immediate analysis it is assumed that χ is smoothly
varying in the vicinity of z = 0. It will be called a surface perturbation if
additionally it takes the form

χ(z) = 1 + εχ̂(z) (156)

where in this section ε << 1 denotes a small parameter.
Suppose the amplitude of the harmonic scalar field eiω tΦ(ρ, φ, z) is

required to satisfy

d # d Φ + (
ω

c
)2 Φ#1 = 0 (157)

for 0 ≤ φ ≤ 2π, −∞ ≤ z ≤ ∞, 0 ≤ ρ ≤ aχ(z) and

Φ(aχ(z), φ, z) = 0 (158)
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For a general χ(ζ) it is unlikely that (157) will have exact solutions
that are products of functions of a single coordinate or are expressible in
terms of known functions.

One can use the freedom to change coordinates to “straighten out the
taper”. Thus (with c=1) pass from the chart with coordinates ρ, φ, z to
r, θ, ζ with the transformation:

ρ = r χ(ζ), φ = θ, z = ζ (159)

Then the local coframe {e1 = d ρ, e2 = ρd φ, e3 = d z} in the “physi-
cal chart” becomes {f 1 = d (rχ(ζ)), f 2 = r χ(ζ)d θ, f 3 = d ζ in the new
chart. Furthermore the surface ρ = aχ(z) is r = a in the new chart and
one is confronted with solving:

d #d Q + ω2 Q#1 = 0 (160)

for Q(r, θ, ζ) = Φ(ρ, φ, z) in the region 0 ≤ θ ≤ 2π, −∞ ≤ ζ ≤ ∞, 0 ≤
r ≤ a subject to

Q(a, θ, ζ) = 0 (161)

The structure equations for the coframe in the new coordinates are
now:

d f 1 = 0, d f 2 =
1

rχ(ζ)
f 1 ∧ f 2, d f 3 = 0 (162)

and the tensor g takes the form

g =
3∑

i=1

f i ⊗ f i

Hence the 3−D Laplacian −d #d has a representation in the (r, θ, ζ)
chart that depends on χ and its derivatives. However it is only the ζ
dependence that makes it different from the regular case where ε = 0. So
since Q must be periodic in θ and regular at r = 0 one may write (with
m integer):

Q(r, θ, ζ) =
∞∑

m=−∞

∑
p

Cmp(ζ)Jm

(
xmp

r

a

)
eimθ (163)



On the effects of geometry on guided electromagnetic waves 33

for some functions Cmp(ζ) to be determined. Clearly when ε = 0 one
has the special (complex) solutions Cmp

0(ζ) = exp(i kmpζ) where k2
mp =

ω2− (xmp

a
)2. Note that, with Jm(xmp) = 0, Q is constructed to satisfy the

required boundary condition at r = a. For ε 6= 0, Q must satisfy (160):

1

r2χ2
∂2

θθQ− 2εr
χ̂′

χ
∂2

rζ Q + ∂2
ζζQ + Λ(r, ζ) ∂2

rrQ + H(r, ζ) ∂rQ + ω2 Q = 0

(164)
where

Λ(r, ζ) =
1 + r2ε2χ̂′2

χ2
(165)

H(r, ζ) = 2ε2r

(
χ̂

χ

)2

− εr
χ̂′′

χ
+

1

rχ2
(166)

A first order perturbative approach in the new (r, θ, ζ) chart is sug-
gested with

Cmp(ζ) = Cmp
0(ζ) + ε Cmp

1(ζ) (167)

Suppose one takes for the zeroth approximation (ε = 0 ) the real
solution with Cmp

0(ζ) = Amp sin(kmpζ) for some constant Amp.
Since χ is independent of θ one seeks a system of ordinary differential

equations for Cmp
1(ζ) for each allowed integer m but coupled by the mode

index p.
A simple example will illustrate the additional technology required to

extricate this system. Suppose one has χ̂(ζ) = ζ. 10

Inserting (163) into (160) or (164) one finds that for all allowed m, p
and all r, ζ the amplitudes Cmp

1(ζ) must satisfy to first order in ε:

∑
m

eimθ
∑

p

(
βm

p (ζ)Jm

(
xmp

r

a

)
+ r αm

p (ζ) Jm+1

(
xmp

r

a

))
= 0 (168)

10This of course will generate a cone and a global analysis of this case can be deduced
from the analysis in earlier sections above. Here it is for illustrative purposes alone
and should be regarded in the spirit of a perturbation in the vicinity of z = 0.
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where

αm
p (ζ) =

2xmp

a
Ampkmp cos(kmpζ)

and

βm
p (ζ) =

(
C1′′

mp(ζ) + (ω2 − x2
mp

a2 ) C1
mp + 2ζAmp

x2
mp

a2 sin(kmpζ)−

2 Ampmkmp cos(kmpζ))

All derivatives of the Bessel function have be re-expressed in terms of
Bessel functions using standard Bessel relations. Since the xmp are roots
satisfying Jm(xmp) = 0 one can then use the classical relations:

∫ a

0

Jm

(
xmp

r

a

)
Jm(xmp′

r

a
) r dr = δpp′N

m
p (169)

where Nm
p = 1

2
J2

m+1(xmp). Thus applying the operation
∫ a

0
r dr Jm(xmq

r
a
)

to the equation (168) yields:

∑
m

eimθ
∑

p

(
βm

p (ζ)δpqN
m
q + αm

p (ζ)Mm
pq

)
= 0 (170)

where

Mm
pq ≡

∫ a

0

r2 d rJm

(
xmq

r

a

)
Jm+1

(
xmp

r

a

)
(171)

Since the {eimθ} are complete with

1

2π

∫ 2π

0

eimθ dθ = δ0m

this requires

βm
q (ζ) +

1

Nm
q

∑
p

αm
p (ζ) Mm

pq = 0 (172)

where m = 0,±1,±2, . . . and p, q range over root labels. Thus for each
integer m one has to solve at this order in ε an infinitely coupled system of
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second order o.d.e.’s for Cmp
1(ζ) in terms of the amplitudes Amp associated

with the zeroth order solutions. A natural requirement to fix the solution
is that Cmp

1(ζ) = 0 when Cmp
0(ζ) = 0. The nature of the (p, q) coupling is

governed by the matrix element Mm
pq for each m. A further simplification

is to truncate the sum over p. In particular if one keeps just the term with
p = q then one gets a correction to one of the regular cylindrical modes
produced by the linear taper. The resulting o.d.e. can be readily solved
in terms of trigonometric functions. In terms of the original physical
coordinates (ρ, φ, z) such first order corrected modes take the form:

Φ(ρ, φ, z) ' {
Amp sin(kmpz) + ε Cmp

1(ζ)
}

Jm

(
xmp

a

ρ

χ(z)

)
eimφ (173)

corresponding to a modified standing wave. This might be thought of as
follows. Suppose the time harmonic scalar standing wave amplitude

Φ0(ρ, φ, z) = Amp sin(kmpz) Jm

(xmp

a
ρ
)

eimφ (174)

is established in a regular cylinder of radius a. If the tube is slowly
tapered to have the surface of revolution r = aχ(ζ) then for small ε the
standing wave distorts to the approximate form Φ(ρ, φ, z) above. Note
that this is a first order in ε correction in the (r, θ, ζ) chart (where the
boundary conditions are easy to apply) but not in the physical (ρ, φ, z)
chart.

13.2 Maxwell fields in a tapered cylinder with in-
ternal sources

A direct application of the method above to the Maxwell system of cou-
pled vector fields leads to further coupling between different components
of the vector fields. However a process of “diagonalisation”is afforded by
exploiting the orthogonality of the appropriate Dirichlet and Neumann
modes. This will now be made explicit for the irregular cylinder and
generalises the previous discussion of fields excited by sources in the per-
fectly conducting cylinder. The methods are however readily applicable
to other geometries.
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In the (r, θ, ζ) chart we have introduced the coframe.

{f 1 = d (rχ(ζ)), f 2 = r χ(ζ)d θ, f 3 = d ζ} (175)

It is also convenient to introduce in this chart the coframe

{ĕ1 = d r, ĕ2 = r d θ, ĕ3 = d ζ} (176)

These two frames coincide when ε = 0 so, for small ε, (175) is a
perturbation of frame (176) and

f 1 = χ(ζ)ĕ1 + rχ′(ζ) ĕ3, f 2 = χ(ζ) ĕ2, f 3 = ĕ3 (177)

Now we have the Hodge map # associated with the orthonormal
coframe {f 1, f 2, f 3} so introduce the “unperturbed”Hodge map #̆ as-
sociated with the orthonormal unperturbed coframe {ĕ1, ĕ2, ĕ3}. Thus

#1 = f 1 ∧ f 2 ∧ f 3 = #̂1 ∧ d ζ

#̂1 = f 1 ∧ f 2

#̆1 = ĕ1 ∧ ĕ2 ∧ ĕ3 =
˘̂
#1 ∧ d ζ

˘̂
#1 = ĕ1 ∧ ĕ2 = r d r ∧ d θ

Guided by the need to apply boundary conditions in this chart intro-
duce the Dirichlet and Neumann mode functions satisfying

d
˘̂
#d ΦN(r, θ) = −β2

N ΦN(r, θ) r d r ∧ d θ (178)

d
˘̂
#d ΨM(r, θ) = −α2

M ΨM(r, θ)r d r ∧ d θ (179)

in the domain D defined by 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π. It is straightforward
to verify that

#d r =
(
1 + r2 (χ′)2

)
#̆d r − r χχ′#̆d ζ (180)
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#d θ = #̆d θ (181)

and #̆d r = rd θ ∧ d ζ, #̆d ζ = r d r ∧ d θ. Hence for any scalar ψ(r, θ)

#d ψ = #̆d ψ + (
∂

∂r
ψ)

(
(r χ′)2r d θ ∧ d ζ − χχ′ r2 d r ∧ d θ

)
(182)

where

#̆d ψ = #̆

(
∂

∂r
ψ d r +

∂

∂θ
ψ d θ

)
= (

˘̂
#d ψ) ∧ d ζ (183)

and

#(d ζ ∧ d ψ) =
˘̂
#d ψ − χ′

χ

∂

∂θ
ψ d ζ (184)

In terms of d ζ

#d ψ = (
˘̂
#d ψ)∧d ζ +(

∂

∂r
ψ)

{
(r χ′)2

}
r d θ∧d ζ− (

∂

∂r
ψ) rχχ′#̆1 (185)

and so with (178), (179)

d #(d ζ ∧ d ΨM) = −α2
M ΨM r d r ∧ d θ − χ′

χ

∂

∂r

∂

∂θ
ΨM d r ∧ d ζ

−χ′

χ

∂

∂θ

∂

∂θ
ΨM d θ ∧ d ζ

(186)

d #(d ζ ∧ d ΦN) = −β2
N ΦN r d r ∧ d θ − χ′

χ

∂

∂r

∂

∂θ
ΦN d r ∧ d ζ

−χ′

χ

∂

∂θ

∂

∂θ
ΦN d θ ∧ d ζ

(187)

d #d ΨM = −(
α2

M rΨM − ∂r(r
3∂rΨM)(χ′)2 +

r2 (∂rΨM)∂ζ(χχ′)
)
d ζ ∧ d r ∧ d θ (188)
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d #d ΦN = −(
β2

N rΦN − ∂r(r
3∂rΦN)(χ′)2 +

r2 (∂rΦN)∂ζ(χχ′)
)
d ζ ∧ d r ∧ d θ (189)

These formulae express the manner in which expressions involving #
(particularly the Laplacians) are perturbed when χ 6= 1 and will be used
in the development below.

The current source is the 2−form J
(2)

where J
(2)

= Ĵ
(1)
∧ d ζ + Ĵ

(0)
#̂1. In

the {t, z, ρ, φ} spacetime chart write:

Ĵ
(1)

= Jρ(t, z, ρ, φ) d ρ + Jφ(t, z, ρ, φ) d φ (190)

and in the {t, ζ, r, θ} chart (see (159)) let:

Sρ(t, ζ, r, θ) = Jρ(t, z, ρ, φ) (191)

Sθ(t, ζ, r, θ) = Jφ(t, z, ρ, φ) (192)

S0(t, ζ, r, θ) = J0(t, z, ρ, φ) (193)

so the current 2-form has the representation

S
(2)

(t, ζ, r, θ) =
(
Sρ(t, ζ, r, θ) d

(
rχ(ζ)

)
+ Sθ(t, ζ, r, θ) d θ

)
∧ d ζ

+S0(t, ζ, r, θ) r χ(ζ) d
(
rχ(ζ)

) ∧ d θ
(194)

Let the scalar source charge density in the (t, z, r, θ) chart be denoted
ρ̃(t, z, r, θ).

The methodology now is to take the Maxwell field expansions

e
(1)

=
∑
N

V E
N (ε, t, ζ) d ΦN +

∑
M

V H
M (ε, t, ζ)#(d ζ ∧ d ΨM) +

∑
N

γE
N(ε, t, ζ) ΦNd ζ (195)
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h
(1)

=
∑
N

IE
N (ε, t, ζ) #(d ζ ∧ d ΦN) +

∑
M

IH
M(ε, t, ζ)d ΨM +

∑
M

γH
M(ε, t, ζ)ΨM d ζ (196)

appropriate for the boundary conditions that are accommodated by the
mode functions ΦN(r, θ) and ΨM(r, θ) and substitute into the Maxwell
system11

d e
(1)

+ µ#
˙
h
(1)

= 0 (197)

d h
(1)
− µY2# ė

(1)
− J

(2)
= 0 (198)

d #h
(1)

= 0 (199)

µY2d # e
(1)
− ρ̃#1 = 0, (200)

simplify the results using the relations above and project into 0−form
longitudinal equations (coefficients of d ζ), 0− form equations (coeffi-
cients of #1) and transverse 1−form equations (independent of d ζ). All
the ε dependence resides in the amplitudes V E

N , IH
M , γE

N , γH
M and the shape

perturbation χ and their derivatives. The (r, θ) dependence of the result-
ing system is therefore made explicit and by judicious use of the mode
orthogonality relations an over-determined coupled p.d.e. system for the
amplitudes can be calculated in terms of the prescribed sources. If ε << 1
one can effect a perturbative approach to this system.

Following this procedure one finds after some calculation that to ze-
roth order:

V
E(0)
N

′ + µİ
E(0)
N − γ

E(0)
N = 0 (201)

V
H(0)
N

′ − µİ
H(0)
N = 0 (202)

11Since ε is here a perturbation parameter the permittivity of the medium will
henceforth be denoted by µY2 in terms of the medium characteristic admittance Y.
Similarly the 0-form ρ̃ is used for the charge density in order to distinguish it from
the coordinate ρ.
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V
H(0)
N α2

N − µγ̇
H(0)
N = 0 (203)

(I
E(0)
N

′+µY2V̇
E(0)
N )N 2

Nβ2
N−

∫

D
Sρ d r∧d ΦN−

∫

D
Sθ d θ∧d ΦN = 0 (204)

(I
H(0)
N

′ − µY2V̇
H(0)
N − γ

H(0)
N )M2

Nα2
N −

∫
D Sρ r d θ ∧ d ΨN+

∫
D Sθ d r ∧ d ΨN = 0

(205)

(µY2γ̇
E(0)
N + I

E(0)
N β2

N)N 2
N +

∫

D
S0 ΦN r d r ∧ d θ = 0 (206)

I
H(0)
N α2

N − γ
H(0)
N

′ = 0 (207)

(γ
E(0)
N

′ − V
E(0)
N β2

N)µY2N 2
N −

∫

D
ρ̃ ΦN r d r ∧ d θ = 0 (208)

and to first order
(
V

E(1)
N

′ − γ
E(1)
N + µİ

E(1)
N

)
β2

NN 2
N+

∑
M

(− V
H(0)
M χ̂

∫
D(∂2

rθΨM) rd r ∧ d ΦN

+V
H(0)
M χ̂

∫
D

1
r
(∂2

θθΨMd θ ∧ d ΦN+µ γ̇
H(0)
M χ̂′

∫
D ΨM rd θ ∧ d ΦN

)
= 0
(209)

(
V

H(1)
N

′ − µ İ
H(1)
N

)
α2

NM2
N −

∑
M

(
V

H(0)
M χ̂

∫
D ∂2

rθΨM d r ∧ d ΨN

+V
H(0)
M χ̂

∫
D ∂2

θθΨM d θ ∧ d ΨN + µ γ̇
H(0)
M χ̂′

∫
D r2ΨM d θ ∧ d ΨN

)
= 0
(210)

(µγ̇
H(1)
N + 2µγ̇

H(0)
N χ̂− V

H(1)
N α2

N)M2
N−

µ χ̂′İH(0)
N

∑
M

∫
D ΨN(∂rΨM)r2 d r ∧ d θ = 0

(211)
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(I
E(1)
N

′ + µY2V̇
E(1)
N )β2

NN 2
N +

∑
M

(− I
E(0)
M χ̂′

∫

D
(∂2

rθΦM)d r ∧ d ΦN

−χ̂

∫

D
Sρ d r ∧ d ΦN − I

E(0)
M χ̂

′
∫

D
(∂2

θθΦM)d θ ∧ d ΦN

+µY2γ̇
E(0)
M χ̂′

∫

D
ΦM r2d θ ∧ d ΦN + χ̂′

∫

D
S0 r2d θ ∧ d ΦN

)
= 0

(212)

(I
H(1)
N

′ − µY2V̇
H(1)
N − γ

H(1)
N )α2

NM2
N+

∑
M

(− I
E(0)
M χ̂

∫
D ∂2

rθΦM r d θ ∧ d ΨN

I
E(0)
M χ̂

∫
D

1
r
∂2

θθΦM d r ∧ d ΨN − µY2γ̇
(0)
M χ̂

′ ∫
D ΦM r d r ∧ d ΨN−

χ̂
′ ∫
D S0 r d r ∧ d ΨN − χ̂

∫
D Sρ r d θ ∧ d ΨN

)
= 0

(213)

(2µY2γ̇
E(0)
N χ̂ + µY2γ̇

E(1)
N + I

E(1)
N β2

N)N 2
N + 2χ̂

∫

D
S0ΦN r d r ∧ d θ

−µY2
∑
M

V̇
E(0)
M χ̂′

∫

D
ΦN (∂rΦM) r2 d r ∧ d θ = 0

(214)

(I
H(1)
N α2

N − 2γ
H(0)
N

′χ̂− γ
H(1)
N

′)M2
N

+
∑
M

(
χ̂′IH(0)

M
′ + χ̂′γH(0)

M + χ̂′′IH(0)
M

) ∫

D
ΨN(∂rΨM) r2 d r ∧ d θ = 0

(215)

(−V
E(1)
N β2

N + 2γ
E(0)
N

′χ̂ + γ
E(1)
N )N 2

N

−
∑
M

{
(V

E(0)
M

′χ̂′ + V
E(0)
M χ̂′′ + γ

E(0)
M χ̂′)

∫

D
ΦN(∂rΦM) r d r ∧ d θ

}

−2
χ̂

µY2

∫

D
ρ̃ ΦN r d r ∧ d θ = 0

(216)

where V E
N = V

E(0)
N + εV

E(1)
N + . . . etc.
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Given the sources one must solve the zeroth order system for the fields
V

E(0)
N , V

H(0)
N , I

E(0)
N , I

H(0)
N , γ

E(0)
N , γ

H(0)
N . These together with the sources

and the shape function χ̂ are then used in the first order system to deter-
mine the corrections V

E(1)
N , V

H(1)
N , I

E(1)
N , I

H(1)
N , γ

E(1)
N , γ

H(1)
N . These systems

imply constraints since the sources must be compatible with 4−current
conservation d j = 0. For a regular cylinder one has χ̂(ζ) = 0 and for a
source-free (irregular or regular) cylinder ρ̃ = 0, Sρ = 0, Sθ = 0, S0 = 0.

By adapting the coframe to other geometries and using the appropri-
ate Dirichlet and Neumann mode functions the above methodology can
be readily adapted to other irregular confining domains such as those
based on the conical and sector guides discussed earlier.

14 Maxwell fields in a toroid without inter-

nal sources

The effects of slight bending and twisting of a guide in space can also
be estimated by these perturbative techniques. Suppose a guide with
a circular cross section (with radius a) is not straight. Let each cross-
section centre trace out a space curve with Frenet curvature κ(z) and
torsion T (z) where z denotes arc-length along this space-curve. If the
curvature is not too large one can then use a Frenet frame based on this
curve to set up a coordinate system {r, θ, z} for the interior of the guide. If
the space-curve is given parametrically in terms of the Euclidean position
vector C(z) then points in the interior have Euclidean positions:

r = C(z) + r cos θ n + r sin θ b (217)

where n is the Frenet normal and b is the Frenet bi-normal to the space-
curve. A convenient orthonormal coframe for the interior domain is then

{e1 = d x1 − x2T (z)d z, e2 = d x2 + x1T (z)d z,

e3 =
(
1− κ(z) x1

)
d z} (218)

where x1 = r cos θ and x2 = r sin θ. Further details on Frenet coordinates
can be found in [5].

To illustrate the effects of curvature consider the perturbation on the
sourceless modes produced by deforming a long cylinder into a toroid with
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small constant curvature κ0 ≡ 2
R
. Thus the fiducial space-curve in this

case has zero torsion T . One may use the same Dirichlet and Neumann
modes as for the cylinder since the metallic surface of the toroid is r = a.
Inserting the expansions above for e

(1)
and h

(1)
in the Maxwell system in

the absence of sources and noting

#(d z ∧ dΨN) = #̂dΨN/(1− εκ0r cos θ)

#(d z ∧ dΦN) = #̂dΦN/(1− εκ0r cos θ)

#d ΨN = (1− εκ0r cos θ) (#̂dΨN) ∧ d z

#d ΦN = (1− εκ0r cos θ) (#̂dΦN) ∧ d z

d #d ΨN = −(1−εκ0r cos θ)α2
NΨN r d r∧d θ∧d z−(#̂dΨN)∧d

(
(1−εκ0r cos θ) d z

)

d #dΦN = −(1−εκ0r cos θ)β2
NΦN r d r∧d θ∧d z−(#̂dΦN)∧d

(
(1−εκ0r cos θ) d z

)

one finds, to zero and first order in ε:

∑
N

(
V

E(0)
N

′ + µİ
E(0)
N − γ

E(0)
N

)
d ΦN +

(
V

H(0)
N

′ − µİ
H(0)
N

) ˘̂
#d ΨN = 0 (219)

∑
N

(
V

E(1)
N

′ + µİ
E(1)
N − γ

E(1)
N

)
d ΦN+

+
(
V

H(0)
N

′κ0 r cos θ + V
H(1)
N

′ − µİ
H(1)
N +

+ µκ0r cos θ İ
H(0)
N

) ˘̂
#d ΨN = 0

(220)

∑
N

(
µγ̇

H(0)
N − V

H(0)
N α2

N

)
ΨN r d r ∧ d θ = 0 (221)

∑
N

(
µγ̇

H(1)
N − V

H(1)
N α2

N

)
ΨN r d r ∧ d θ + µκ0γ̇

H(0)
N cos θ ΨN r2 d r ∧ d θ

−κ0 cos θ V
H(0)
N (

˘̂
#d ΨN) ∧ d r + κ0 r sin θ V

H(0)
N (

˘̂
#d ΨN) ∧ d θ = 0

(222)
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∑
N

(
I

H(0)
N

′ − µY2V̇
H(0)
N − γ

H(0)
N

)
d ΨN +

(
I

E(0)
N

′ + µY2 V̇
E(0)
N

) ˘̂
#d ΦN = 0

(223)

∑
N

(
I

H(1)
N

′ − µY2V̇
H(1)
N − γ

H(1)
N

)
d ΨN+

+
(
I

E(1)
N

′ + µY2 V̇
E(1)
N + κ0 r cos θ I

E(0)
N

′−
− µY2κ0r cos θ V̇

E(0)
N

) ˘̂
#d ΦN = 0

(224)

∑
N

(
I

E(0)
N β2

N + µY2γ̇
E(0)
N

)
ΦN r d r ∧ d θ = 0 (225)

∑
N

−(
I

E(1)
N β2

N + µY2γ̇
E(1)
N

)
ΦN r d r ∧ d θ−

−
(
µY2γ̇

E(0)
N + I

E(0)
N β2

N

)
r2κ0 cos θ ΦN d r ∧ d θ−

− I
E(0)
N κ0 cos θ (

˘̂
#d ΦN) ∧ d r+

+ I
E(0)
N κ0 sin θ (

˘̂
#d ΦN) ∧ rd θ = 0

(226)

∑
N

(
γ

H(0)
N

′ − α2
N I

H(0)
N

)
r ΨN d r ∧ d θ ∧ d z = 0 (227)
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∑
N

(
γ

H(1)
N

′ − α2
N I

H(1)
N +

+ r κ0 cos θ γ
H(0)
N + rI

H(0)
N α2

N κ0 cos θ
)

r ΨN d r ∧ d θ ∧ d z+

+ κ0 cos θ I
H(0)
N (

˘̂
#d ΨN) ∧ d r ∧ d z−

− κ0r sin θ I
H(0)
N (

˘̂
#d ΨN) ∧ d θ ∧ d z

= 0

(228)

∑
N

(
γ

E(0)
N

′ − β2
NV

E(0)
N

)
µY2 ΦN r d r ∧ d θ ∧ d z = 0 (229)

µY2
{ ∑

N

(
γ

E(1)
N

′ − β2
NV

E(1)
N +

+ rV
E(0)
N β2

Nκ0 cos θ+

+ γ
E(0)
N r κ0 cos θ

)
ΦN r d r ∧ d θ ∧ d z+

+ V
E(0)
N κ0 cos θ (

˘̂
#d ΦN) ∧ d r ∧ d z−

− V
E(0)
N κ0 r sin θ (

˘̂
#d ΦN) ∧ d θ ∧ d z

}
= 0

(230)

By integrating these equations over D with either ΦM ,
˘̂
#d ΦM , ΨM

or
˘̂
#d ΨM and using the mode orthogonality relations, one may project

out a system that can be analysed for the perturbed amplitudes, as in
the case of the cylinder with a surface perturbation. The above equations
are deliberately not projected here to facilitate their modification when
internal sources are included.

One may generalise this toroidal case by treating a guide with gener-
ating space-curve with arbitrary curvature κ(z) and torsion T (z). This
can be generalised yet further by changing to a chart adapted to a twist-
ing guide with a variable cross-section radius given by ρ = a χ(z) as
in the cylinder case. In the new adapted chart {r, θ, z} the appropriate



46 Robin W Tucker

orthonormal coframe now takes the form:

{e1 = d x1 − x2T (z)d z, e2 = d x2 + x1T (z)d z,

e3 = (1− κ(z) x1) d z} (231)

where x1 = rχ(z) cos θ and x2 = rχ(z) sin θ.

15 Dynamic sources

In the above little discussion has been given about the structure of the
current and charge densities other than the necessity that they satisfy
the local conservation equation (88). It is important to realise that for
applications to accelerators these sources are often strongly dynamically
coupled to the fields that they produce. The interaction is fundamentally
given by the Lorentz force on moving charges and the equation of motion
for such charges depends non-linearly on their velocity. Since the current
itself is proportional to this velocity the coupled problem is non-linear
and recourse to some approximation scheme or numerical simulation is
required. For sources that are produced by high speed charged particles
(compared with the speed of light) the longitudinal velocity component
v in a guiding structure is generally large compared with the transverse
velocity so a natural first approximation is to neglect the latter. A further
approximation is to assume that the longitudinal current depends on only
one of the single longitudinal variables ξ3 ± v t depending on the overall
direction of motion of the high velocity source. Some authors then assume
further that this approximate current is restricted to a line parallel to the
design orbit in the guide. Some delicate manipulations are then required
to eliminate singularities in the fields that arise from such line sources.

To construct a fully coupled system of sources and fields in the guide
one must supplement the Maxwell system with an equation for the cur-
rents. A simple approach is to assume that the source is a charged rel-
ativistic fluid [7], [8], [9], [10] with 4−velocity V and 4−acceleration A
satisfying the equation of motion

mA = −q iV F (232)

where m and q denote the mass and charge of the elementary constituents
of the fluid respectively. In terms of the Levi-Civita covariant derivative
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∇, A ≡ ∇V Ṽ and V is a unit time-like future pointing vector field on
spacetime:

g(V, V ) = −1 (233)

with the 1− form Ṽ = g(V,−). The sources are then the components of
the the 4−current 3−form

j
(3)

= ρV ? Ṽ (234)

and ρV is the proper charge density of the source.
It is convenient to recast (232) in terms of the exterior derivative on

spacetime

iV
(
d Ṽ +

q

m
F

)
= 0 (235)

since one can now dimensionally reduce this equation in a similar manner
to that applied to the Maxwell system. In terms of the guide frame sources
J
(2)

(ξ) and ρ
(0)

(ξ)

j
(3)

(ξ) = −J
(2)

(ξ) ∧ d t + ρ
(0)

(ξ)#1 (236)

where the 2+1 split with respect to d ξ3 gives

J
(2)

= Ĵ
(1)
∧ d ξ3 + Ĵ

(0)
#̂1 (237)

Thus the proper charge density is given in terms of the guide frame
sources since

ρ2
V = − ?

(
j
(3)

∧ ? j
(3)

)
(238)

and the 4− velocity follows from (234). It remains to supplement (232)
with boundary conditions for the independent components of V . This is
a delicate issue since the effects of the guide boundary on the sources can
be very complex.

One approach is to base a perturbative scheme on an ultra-relativistic

zeroth-order approximation ρ(0)

(0)

(ξ), Ĵ (0)

(0)
(ξ), Ĵ (1)

(1)
(ξ) in which the sources

are prescribed, compatible with (88) and specified external (accelerating)
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fields. The boundary conditions on the higher order perturbations (gen-
erating higher order wake fields) are then prescribed in terms of source
components associated with the Dirichlet and Neumann electromagnetic
modes excited in the guide.

To effect this methodology one first splits (235) with respect to d ξ3

and adopts the following source expansions:

ρ
(0)

(ξ) = ρ(0)

(0)

(ξ) +
∑
N

ε ρE
N

(0)

(ε, t, ξ3)ΦN(ξ1, ξ2) +
∑
M

ε ρH
M

(0)

(ε, t, ξ3)ΨM(ξ1, ξ2)

(239)

Ĵ
(0)

(ξ) = Ĵ (0)

(0)
(ξ) +

∑
N

ε γEJ
N
(0)

(ε, t, ξ3)ΦN(ξ1, ξ2) +

∑
M

ε γHJ
M
(0)

(ε, t, ξ3)ΨM(ξ1, ξ2) (240)

Ĵ
(1)

(ξ) = Ĵ (0)

(1)
(ξ) +

∑
N

ε V EJ
N
(0)

(ε, t, ξ3)d ΦN(ξ1, ξ2) +

∑
N

ε V HJ
N
(0)

(ε, t, ξ3)#̂ d ΦN(ξ1, ξ2)

+
∑
M

ε IHJ
M
(0)

(ε, t, ξ3)#̂d ΨM(ξ1, ξ2) +

∑
M

ε IEJ
M
(0)

(ε, t, ξ3)d ΨM(ξ1, ξ2) (241)

The source amplitudes ρE
N

(0)

(ε, t, ξ3), ρH
N

(0)

(ε, t, ξ3), γEJ
N
(0)

(ε, t, ξ3),

γHJ
N
(0)

(ε, t, ξ3), V EJ
N
(0)

(ε, t, ξ3), V HJ
N
(0)

(ε, t, ξ3), IHJ
M
(0)

(ε, t, ξ3), IEJ
M
(0)

(ε, t, ξ3) are taken

analytic in ε and the mode summations follow the ranges specified by the
spectral content as indicated in the earlier sections. Thus by a Taylor
expansion of these amplitudes about ε = 0 one may project the fully
coupled system consisting of the Maxwell equations and (235) into a per-
turbative scheme based on the zeroth-order sources and the prescribed
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externally applied electromagnetic fields. The results of this strategy for
different guide geometries and bunched source configurations will be pre-
sented elsewhere.
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O efektima geometrije na vodjene elektromagnetne
talase

Metoda pokretnih Kartanovih sistema se koristi za analizu uticaja ge-
ometrije na ponašanje elektromagnetnih polja u vodiv cima i efekat takvih
polja na ultra-relativističke izvore. Takva pitanja su značajna za jedan
broj problema u nauci akceleratora gde je potreba za kontrolom kretanja
snopova zračećih izvora mikrometarske veličine i visoke gustine struje os-
taje tehnički i teorijski izazov. Vršeći dimenzionu redukciju spoljašnjih
jednačina za izvore i polja na prostor-vremenu koristeći simetrije uslovl-
jene vodičima dobija se jedinstveni pogled koji nudi prirodne perturba-
cione pristupe za razmatranje neuniformnih i krivolinijskih vodiča. Prob-
lem reakcije radijacionih polja unazad na izvore je razmatran prostim
relativističkim modelom naelektrisanja.
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