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Abstract

An unsteady hydro-magnetic flow of a viscoelastic fluid from a ra-
diative vertical porous plate has been studied with mass transfer,
taking the effect of Hall currents into account. The resulting prob-
lem has been solved analytically and the closed form solutions are
obtained for velocity, temperature and concentration distributions
as well as for the shearing stress, rate of heat and mass transfer
at the wall. The influence of the various parameters like Hall pa-
rameter, magnetic parameter, visco-elastic parameter, frequency
parameter etc. on the flow field is examined with the help of fig-
ures and tables.
Keywords: hall effect, viscoelastic fluid, radiative transfer, mass
transfer, mixed-convection.

1 Introduction

Many transport processes can be found in various ways in both nature
and technology, in which the combined heat and mass transfer occur due
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to buoyancy forces caused by thermal diffusion (temperature differences)
and mass diffusion (concentration differences). Some of the convective
heat and mass transfer processes with phase change include the evapora-
tion of liquid at the interface between a gas and liquid or the sublimation
at a solid-gas interface. They can be described using the methods of
convective heat and mass transfer. The process of mass transfer affects
all separation processes in chemical engineering such as the drying of
solid materials, distillation, extraction and absorption. They also play a
role in the production of materials of desired properties. Mass transfer
often decisively determines chemical reactions, including combustion pro-
cesses. Boiling and condensation are characteristic for many separation
processes in chemical engineering. As examples of these types of pro-
cesses, the evaporation, rectification and absorption of a fluid should all
be mentioned (Baehr et al. [1]).

Natural convection induced by the simultaneous action of buoyancy
forces resulting from thermal and mass diffusion is of considerable interest
in many industrial applications such as geophysics, oceanography, drying
processes and solidification of binary alloy. Soundalgekar [2], Soundal-
gekar et al. [3], Perdikis et al. [4], and Lin et al. [5] are some of the
researchers who have studied the heat and mass transfer from a vertical
plate. The effect of the magnetic field on free convection flows is impor-
tant in liquid metals, electrolytes and ionized gases. The thermal physics
of MHD problems with mass transfer is of interest in power engineering
and metallurgy. Many cross galvano and thermo-magnetic effects occur
in the boundary zone between hydraulics and thermal physics and they
are relevant in the study of semiconductor materials. The mechanism of
conduction in ionized gases in the presence of a strong magnetic field is
different from that in a metallic substance. The electric current in ionized
gases is generally carried by electrons which undergo successive collisions
with other charged or neutral particles. In the ionized gases the current
is not proportional to the applied potential except when the electric field
is very weak. However, in the presence of strong electric field, the elec-
trical conductivity is affected by the magnetic field. Consequently, the
conductivity parallel to the electric field is reduced. Hence the current
is reduced in the direction normal to both electric and magnetic fields.
This phenomenon is known as the Hall Effect. The effect of magnetic
field (without Hall effect) on the unsteady free convection flow over an
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infinite vertical porous plate has been considered by Georgantopoulos et
al. [6] and Helmy [7]. The effect of Hall current on unsteady MHD free
convection flow along a vertical porous plate has been studied by Katagiri
[8], Hossain [9], Hossain et al. [10], Pop et al. [11] and Acharya et al. [12].
The unsteady free convection flow over an infinite vertical porous plate
due to the combined effects of thermal and mass diffusion along with

Hall currents have been considered by Hossain et al. [13], Aboeldahab
et al. [14] and Takhar et al. [15].

All the above investigations are restricted to MHD flow and heat trans-
fer problems. However, when the free convective flows occur at high
temperatures, radiation effects on the flow become significant. Many
processes in engineering areas occur at high temperatures and knowl-
edge of radiative heat transfer becomes very important for the design
of the pertinent equipment. Nuclear power plants, gas turbines and the
various propulsion devices for aircraft, missiles and space vehicles are
examples of such engineering areas. The inclusion of radiation effects
in the energy equation leads to a highly non-linear partial differential
equation. Soundalgekar and Takhar[16] have studied radiation effects on
the free convection flow of a gas past a semi-infinite plate using Cogley-
Vincentine-Giles equilibrium model. Takhar [17] investigated the effects
of radiation on the MHD free convection flow past a semi-infinite vertical
plate. Radiation effect on mixed convection along an isothermal verti-
cal plate was studied by Hossain and Takhar [18] using Rosseland ap-
proximation while Abo-elahab [19] discussed this problem using Cogley-
Vincentine-Giles equilibrium model. Recently, Muthucumaraswamy et al.
[20] discussed the heat and mass transfer effects on moving vertical plate
in the presence of thermal radiation. Kinyanjui et al. [21] analysed heat
and mass transfer of heat generating fluid past a vertical porous plate
with Hall current and radiation absorption.

All the studies cited above are restricted to the flow of Newtonian
fluids. However in reality, most of the liquids used in industrial appli-
cations, particularly in polymer processing applications, molten plastics,
food stuffs or slurries, display non-Newtonian behaviour. Rajagopal [22]
investigated the heat transfer in the forced convection flow of a visco-
elastic fluid of Walters’s model. Chowdhury et al. [23] studied the MHD
free convection flow of visco-elastic fluid past a vertical porous plate.
Bestman [24] included the radiation effect on free convection heat trans-
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fer flow of non-Newtonian fluid.
In all these studies, the combined effects of mass and radiative heat

transfer of visco-elastic fluid in addition to Hall currents have not been
considered simultaneously. We now propose to study the effect of radia-
tion heat absorption and mass transfer on the flow of visco-elastic fluid
past an infinite vertical porous plate taking Hall Effect into the account.

2 Mathematical Analysis

We consider the unsteady free convection flow of a viscous, incompress-
ible, electrically conducting fluid on an infinite vertical permeable plate
located at the plane y∗ = 0. The x∗-axis is chosen along the plate in the
upward direction and y∗-axis is taken perpendicular to the plate. Hall
currents give rise to the Lorentz force in z∗-direction which induces a
cross flow in that direction. Consequently, the flow field becomes three
dimensional. The z∗-axis is assumed to be normal to the x∗ − y∗ plane.
The fluid is assumed to be gray, emitting and absorbing heat but not
scattering and subjected to a transversely applied uniform magnetic field
of strength B0. Since the plate is infinite in extent all the physical quan-
tities are function of y∗ and t∗ only. At time t∗ > 0, the plate is kept at
the oscillating temperature and concentration.

The constitutive equations for the rheological equation of state for
visco-elastic fluid (Walters’s liquid B’) are:

pik = − pgik + p∗ik (1)

p∗ ik = 2

∫ t

−∞
ψ (t− t∗)e(1)

ik (t∗)dt∗ (2)

in which

ψ (t− t∗) =

∫ ∞

0

N(τ)

τ
e(−(t−t∗) /τ) dτ (3)

N(τ) is the distribution function of relaxation times τ . In the above
equations pik is the stress tensor, p an arbitrary isotropic pressure, gik is
the metric tensor of a fixed coordinate system xi and eik (1) is the rate of
strain tensor. It was shown by Walters [25] that equation (2) can be put
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in the following generalized form which is valid for all types of motion
and stress

p∗ ik(x, t) = 2

∫ t

−∞
ψ(t− t∗)

∂xi

∂x∗m
∂xk

∂x∗r
e(1) mr (x∗t∗) dt∗ (4)

where x∗i = x∗i(x, t, t∗ ) is the position at time t∗ of the element which is
instantaneously at the position xi at time t. The fluid with equation of
state (1) and (4) has been designated as liquid B′. In the case of liquids
with short memories, i.e. short relaxation times, the above equation of
state can be written in the following simplified form

p∗ ik(x, t) = 2η0 e(1) ik − 2k0
∂e(1) ik

∂t
(5)

where η0 =
∫ ∞

0
N(τ) dτ is limiting viscosity at small rates of shear. k0 =

∫ ∞

0
τ N(τ)dτ and

∂

∂t
denotes the convected time derivative.

Hence the equations governing the flow of fluid together with Maxwell’s
electromagnetic equations are expressed as:-

Continuity equation

∇. ~V = 0 (6)

Momentum equation

∂~V

∂t∗
+ (~V .∇) ~V = − 1

ρ
∇P + ν∇2~V + ∇. pij+

gβ (T ∗ − T ∗
∞) + gβc(C

∗ − C∗
∞) +

1

ρ
( ~J x ~B) (7)

Energy equation

∂T ∗

∂t∗
+ (~V .∇) T ∗ =

K

ρ cp

∇2 T ∗ − 1

ρ cp

∇ qr (8)

Species Concentration equation

∂C∗

∂t∗
+ (~V .∇) C∗ = D∇2 C∗ (9)

Generalized Ohm’s law
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~J = σ ( ~E + ~V x ~B) − σ

ene

( ~J x ~B − ∇ Pe) (10)

Maxwell’s equations

∇ x~H = ~J , ∇ x~E = 0 , ∇ . ~B = 0 (11)

Here ~V (u∗, v∗, w∗) is the velocity vector, u∗, v∗, w∗ are the velocity

components along x∗, y∗, z∗ directions, ~B (0, B0, 0) is the magnetic in-

duction, ~E (Ex∗, Ey∗, Ez∗) is the electric field vector, Ex∗, Ey∗, Ez∗ are

the components of electric field along x∗, y∗, z∗ directions, ~H is the mag-
netic field strength vector, ~J (Jx∗, Jy∗, Jz∗) is the current density vector,
Jx∗, Jy∗, Jz∗ are the components of current density along x∗, y∗, z∗ direc-
tions , P is the pressure of fluid, Pe is the electron density, pij is the stress
tensor, qr is the radiative heat flux, e is the electron charge, ne is electron
number density, T ∗

∞ is the temperature of the fluid far away from the
plate, C∗

∞ is the species concentration far away from the plate, K is ther-
mal conductivity, cp is specific heat at constant pressure, ρ is the density,
σ is the electrical conductivity, β is the volumetric coefficient of thermal
expansion, βc is volumetric coefficient of expansion with concentration, g
is acceleration due to gravity, D is the chemical molecular diffusivity, ν
is the kinematic viscosity.

In addition, the analysis is based on the following assumptions:

1. The equation of continuity (6) on integration gives

v∗ = constant = − v0, v0 > 0 (12)

where v0 is the constant normal velocity of suction at the plate.

2. The divergence equation of magnetic field ∇. ~B = 0 gives By∗ =
constant = B0

By assuming a very small magnetic Reynolds number (Rem =

µmσ ~V L << 1) the induced magnetic field is neglected in compar-
ison to the applied magnetic field so that By∗ = Bz∗ = 0 hence
~B = (0, B0, 0).

Here L is the characteristic length and µm is the magnetic perme-
ability.
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3. Since no polarization voltage is imposed on the flow field, the electric
field vector ~E = 0 , this then corresponds to the case when no
energy is added or extracted from the fluid by the electric field.

4. The equation of conservation of charge ∇. ~J = 0 gives, Jy∗ =
constant. Since the plate is not conducting Jy∗ = 0 at the plate,
and, hence zero everywhere.

5. Considering the magnetic field strength to be very large the gener-
alized Ohm’s law including Hall current in the absence of electric
field takes the following form:

~J +
ωe τe

B0

( ~J x ~B) = σ

(
~V x ~B +

∇Pe

ene

)
(13)

where ωe is the electron frequency and τe is the electron collision
time. For weakly ionized gases the thermoelectric pressure and ion
slip are considered negligible.

Equation (8) reduces to

Jx∗ =
σ B0

1 + m2
(mu∗ − w∗) (14)

Jz∗ =
σ B0

1 + m2
(u∗ + mw∗) (15)

where m = ωeτe is the Hall parameter. Thus the governing equations of
flow under the usual Boussinesq approximation now become:

Momentum equation

∂u∗

∂t∗
− v0

∂u∗

∂y∗
= ν

∂2u∗

∂y∗2
− k0

∂3u∗

∂y∗2 ∂t∗
− σ B2

0 (u∗ + mw∗)
ρ(1 + m2)

+

gβ (T ∗ − T ∗
∞) + gβc (C∗ − C∗

∞) (16)

∂w∗

∂t∗
− v0

∂w∗

∂y∗
= ν

∂2w∗

∂y∗2
− k0

∂3w∗

∂y∗2 ∂t∗
+

σ B2
0 (mu∗ − w∗)
ρ (1 + m2)

(17)
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Energy equation

∂ (T ∗ − T ∗
∞)

∂t∗
− v0

∂ (T ∗ − T ∗
∞)

∂y∗
=

K

ρ cp

∂2(T ∗ − T ∗
∞)

∂y∗2
− 1

ρ cp

∂qr

∂y∗
(18)

Species concentration equation

∂ (C∗ − C∗
∞)

∂t∗
− v0

∂ (C∗ − C∗
∞)

∂y∗
= D

∂2(C∗ − C∗
∞)

∂y∗2
(19)

By using the Cogley et al. [26] relation, the radiative heat flux (qr)
for the optically thin limit non-gray gas near equilibrium is given by:

∂qr

∂y∗
= 4I(T ∗ − T ∗

∞) where I =

∫ ∞

0

Kλw

(
∂ ebλ

∂T ∗

)

w

dλ (20)

Here Kλw is the mean absorption coefficient, ebλ is Plank’s function
and T ∗ is the temperature.

In equation (18) the viscous dissipation and Ohmic dissipation are ne-
glected and in equation (19) the term due to chemical reaction is assumed
to be absent. Using T ∗(y∗, t∗) − T ∗

∞ = θ∗(y∗, t∗) in equation (18) and
C∗(y∗, t∗) − C∗

∞ = C̄(y∗, t∗) in equation (19) subjecting to the initial
and boundary conditions:

t∗ ≤ 0 : u∗(y∗, t∗) = w∗ (y∗, t∗) = 0
θ∗ (y∗, t∗) = 0, C̄(y∗, t∗) = 0

}
for all y∗

t∗ > 0 : u∗ (0, t∗) = 0, w∗ (0, t∗) = 0, θ∗(0, t∗) = aeiω∗t∗

C̄ (0, t∗) = beiω∗t∗

: u∗(∞, t∗) = w∗ (∞, t∗) = θ∗ (∞, t∗) = C̄ (∞, t∗) = 0





(21)
where ω∗ is frequency of oscillations, a and b are taken as temperature
and concentration difference respectively and subscript w and ∞ denotes
the physical quantities at the plate and in the free stream respectively
and using the following non-dimensional parameters:
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η =
v0 y∗

ν
, t =

v2
0 t∗

4ν
, Ω =

4ν ω∗

v2
0

,

u =
u∗

v0

, w =
w∗

v0

, θ =
θ∗

a
, C =

C̄

b
,

Gr =
4gβν a

v3
0

, Gc =
4gβc ν b

v3
0

, M =
4σ B2

0 ν

ρ v2
0

, P r =
µ cp

K
,

Sc =
ν

D
, F =

16 ν I

v2
0 ρ cp

, k =
k0 v2

0

ν2
(22)

Equations (16) to (19) are transformed to their corresponding non-
dimensional form as:

∂u

∂t
− 4

∂u

∂η
= 4

∂2u

∂η2
− k

∂3u

∂η2 ∂t
− M

1 + m2
(mw+u)+Grθ + GcC (23)

∂w

∂t
− 4

∂w

∂η
= 4

∂2w

∂η2
− k

∂3w

∂η2∂t
+

M

1 + m2
(mu− w) (24)

∂θ

∂t
− 4

∂θ

∂η
=

4

Pr

∂2θ

∂η2
− Fθ (25)

∂C

∂t
− 4

∂C

∂η
=

4

Sc

∂2C

∂η2
(26)

The modified boundary conditions become

t ≤ 0 : u(η, t) = w(η, t) = θ (η, t) = C(η, t) = 0 for all η

t > 0 : u(0, t) = w(0, t) = 0, θ(0, t) = eiΩt, C(0, t) = eiΩt

u(∞, t) = w(∞, t) = θ (∞, t) = C(∞, t) → 0





(27)

The equations (23) and (24) can be combined into a single equation
by introducing the complex velocity
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ψ = u + iw where i =
√−1 (28)

giving,

∂2ψ

∂η2
− k

4

∂3ψ

∂η2 ∂t
− 1

4

∂ψ

∂t
+

∂ψ

∂η
− M(1− im)ψ

4(1 + m2)
= − Grθ

4
− GcC

4
(29)

Again, on using equation (28), the boundary conditions in equation
(27) are transformed to:

t ≤ 0 : ψ(η, t) = θ (η, t) = C(η, t) = 0 for all η

t > 0 : ψ(0, t) = 0, θ(0, t) = C(0, t) = eiΩt

ψ(∞, t) = θ (∞, t) = C(∞, t) → 0





(30)

Substituting θ (η, t) = eiΩt f(η) in equation (25), we get

f ′′(η) + Prf ′(η)− 1

4
(FPr + iΩ Pr)f(η) = 0 (31)

which has to be solved under the boundary conditions

f(0) = 1, f(∞) = 0 (32)

Hence f(η) = e−
η
2 [Pr+

√
Pr2+FPr+iΩ Pr ]

⇒ θ (η, t) = eiΩt− η
2 [Pr+

√
Pr2+ FPr+iΩPr ]

Separating real and imaginary parts, the real part is given by

θr(η, t) =
{

cos
(
Ωt− η

2
D1sin

α

2

)}
e−

η
2 [Pr+D1 cos α

2 ] (33)

Where

D1 = [(Pr + F )2 + Ω2]1/4 Pr1/2 , α = tan−1

(
Ω

Pr + F

)
(34)

Now, putting C(η, t) = eiΩtg(η) in equation (26), we get
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g′′(η) + Scg′(η)− iΩ Sc

4
g(η) = 0 (35)

which has to be solved under the boundary condition

g(0) = 1, g(∞) = 0 (36)

Hence, g(η) = e−
η
2 [Sc2+

√
Sc2+iΩ Sc ]

⇒ C(η, t) = eiΩt− η
2 [Sc2+

√
Sc2+ iΩ Sc ]

Separating real and imaginary parts, the real part is given by

Cr(η, t) =

{
cos

(
Ωt− η

2
D2sin

β

2

)}
e−

η
2 [Sc+D2cos β

2 ] (37)

where,

D2 = [Sc2 + Ω2]1/4 Sc1/2 , β = tan−1

(
Ω

Sc

)
(38)

In order to solve equation (29), we substitute ψ = eiΩtF (η) and the
corresponding boundary conditions now become:

F (0) = 0, F (∞) = 0 (39)

On separating real and imaginary parts, we get

u = [B15cos(Ωt− B6η) − B16sin(Ωt− B6η)] e−B5η

− [GrB11cos(Ωt−B2η) − GrB12 sin(Ωt− B2η)] e−B1η

−[GcB13 cos(Ωt− B4η)− GcB14sin(Ωt−B4η)] e−B3η (40)

w = [B16cos(Ωt− B6η) + B15sin(Ωt−B6η)] e−B5η

− [GrB12cos(Ωt− B2η) + GrB11sin(Ωt− B2η)] e−B1η

− [GcB14cos(Ωt−B4η) + GcB13sin(Ωt− B4η)] e−B3η (41)
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If τ1 and τ2 are the axial and the transverse components of skin-friction
respectively, then

τ1 + iτ2 = µ

(
∂ψ

∂η

)

η=0

In non-dimensional form τ1 becomes

τ1 =

(
∂u

∂η

)

η=0

= B5B16 + B6B15 − Gr(B1B12 + B2B11)− (42)

Gc(B3B14 + B4B13)

Similarly, shearing stress at the wall along z-axis is given by

τ2 =

(
∂w

∂η

)

η=0

= −B5B15 + B6B16 + Gr(B1B11 −B2B12)+ (43)

Gc(B3B13 −B4B14)

From the temperature field, the heat transfer coefficient in terms of
Nusselt number is given by:

Nu = − ∂θr(η, t)

∂η

∣∣∣∣
η=0

=
1

2

[
PrcosΩt + D1cos

(
Ωt +

α

2

)]
(44)

Further from the concentration field, the coefficient of mass transfer
in terms of Sherwood number is given by

Sh = − ∂Cr(η, t)

∂η

∣∣∣∣
η=0

=
1

2

[
SccosΩt + D2cos

(
Ωt +

β

2

)]
(45)

where,

B1 =
1

2

[
Pr + D1cos

α

2

]
, B2 =

D1

2
sin

α

2
,
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B3 =
1

2

[
Sc + D2 cos

β

2

]
, B4 =

D2

2
sin

β

2
,

D3 =

[[
1 +

M

1 + m2
− k Ω

4

(
Mm

1 + m2
− Ω

)]2

+

[
Ω − 4Mm + k Ω M

4(1 + m2)

]2
]1/4

γ = tan−1


 Ω −

(
4Mm+kΩM

4(1+m2)

)

1 + M
1+m2 − k Ω

4

(
Mm

1+m2 − Ω
)

 , D4 = kΩ/4

B5 =
1 + D3

(
cosγ

2
− D4sin

γ
2

)

2(1 + D2
4)

, B6 =
D4 + D3

(
D4cos

γ
2

+ sinγ
2

)

2(1 + D2
4)

B7 = 4(B2
1 − B2

2) + 2B1 B2 kΩ + 4B1 − M/1 + m2

B8 = (B2
1 − B2

2)kΩ − 8B1B2 − 4B2 + Ω − Mm/1 + m2

B9 = 4(B2
3 − B2

4) + 2kΩ B3B4 + 4B3 − M

1 + m2

B10 = − 8B3 B4 + kΩ (B2
3 − B2

4) − 4B4 + Ω − Mm

1 + m2

B11 =
B7

B2
7 + B2

8

, B12 =
B8

B2
7 + B2

8

,

B13 =
B9

B2
9 + B2

10

, B14 =
B10

B2
9 + B2

10

B15 = GrB11 + GcB13 , B16 = GrB12 + GcB14.
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3 Discussion and conclusion

In order to illustrate the influence of various parameters on the velocity,
temperature, concentration fields, shearing stress, rate of heat and mass
transfer, numerical calculations of the solutions, obtained in the preceding
section, have been carried out for both cases corresponding to cooling
and heating of the porous plate by free convection currents. The value of
Prandtl number is taken equal to 3 which physically correspond to Freon.
Freon represents several different chlorofluorocarbons or CFCs which are
used in commerce and industry.

Figures 1 and 2 depict the primary velocity profiles u against η for
cooling (Gr > 0) and heating (Gr < 0) of the plate by free-convection
currents taking different values of Ω (frequency), F (radiation param-
eter), Sc (Schmidt number), M (Magnetic parameter), k (visco-elastic
parameter) and m (Hall parameter). From figure 1 it is seen that for
higher values of frequency the velocity is of oscillatory nature ; however
as Ω decreases the oscillations in the profiles get damped. The velocity
is greater for Ammonia (Sc = 0.78, at 250C temperature and 1 atmo-
spheric pressure) than for Helium (Sc = 0.30, at 250C temperature and
1 atmospheric pressure). The effect of increasing magnetic parameter is
to enhance the primary velocity but on moving farther away from the
plate (η > 6) this behaviour reverses. This figure further indicates that
primary velocity decreases with increase in Hall parameter. Moreover,
the velocity of Newtonian fluid (k = 0) is more than the velocity of non-
Newtonian fluid (k 6= 0). On increasing the radiation parameter (F ),
the values of u differed only by small amounts therefore the curves could
not be shown distinctly in the figures. From figure 2 it is revealed that
the involved parameters exhibit similar behaviour for heating of the plate
(Gr < 0) like in case of cooling of the plate.

The secondary velocity profiles w for cooling of the plate are plotted in
figure 3 and the profiles due to heating of the porous plate are depicted in
figure 4. The analysis of the graphs reveals that on increasing the values
of frequency (Ω) parameter, a sharp rise in the magnitude of velocity
profiles is observed near the plate but at a certain distance away from the
plate it falls rapidly and finally decay to the free stream value. A close
examination of the data presented in figure 3 shows that the radiation
parameter tends to reduce the fluid velocity in secondary flows for Gr >
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0 but reverse happens for the case Gr < 0. The retardation in the
secondary velocity field due to the increase in magnetic parameter and
Hall parameter is noticed for Gr > 0 and Gr < 0. This observation can
be explained by the fact that as M increases, the Lorentz force, which
opposes the flow, also increases and leads to enhanced deceleration of the
flow. The velocity of Helium is greater than the velocity of Ammonia in
secondary flows. Further, it is seen from these figures that w-component
of velocity of Newtonian fluid is lower than that of visco-elastic fluid. For
both the cases under consideration (Gr > 0 and Gr < 0) it turns out that
the maximum velocity occurs in the vicinity of the plate and as η → ∞
the velocity profiles terminate to zero.

Figure 5 represents the temperature profiles θr against η for different
values of Pr, Ω and F taking Ωt = π/2. In the neighborhood of the
surface the temperature profiles become maximum and then decreases
and finally take asymptotic values.

The thermal boundary layer thickness is greater for fluids with small
Prandtl number. The reason is that smaller values of Pr are equivalent to
increasing thermal conductivity and therefore heat is able to diffuse away
from the heated surface more rapidly than for higher values of Pr. It is
observed that the temperature rises with increasing frequency. Moreover,
the effect of radiation is to increase the rate of energy transport to the
fluid and accordingly increase the fluid temperature.

Figure 6 displays concentration profiles Cr vs. η for various gases like
Hydrogen (Sc = 0.22), Helium (Sc = 0.30), Watervapour (Sc = 0.60),
Oxygen (Sc = 0.66) and Ammonia (Sc = 0.78) taking Ωt = π/2. It is
reported that the effect of increasing values of Schimdt number (Sc) is to
decrease the concentration profiles. This is consistent with the fact that
the increase of Sc means a decrease of molecular diffusivity (D) that result
in decrease of concentration boundary layer. Hence the concentration of
species is higher for smaller value of Sc and lower for larger value of
Sc. Furthermore, it is observed that near the boundary the thickness
of concentration boundary layer increases significantly with increasing
frequency but opposite trend is noted far away from the plate (η > 4).

Figures 7 and 8 illustrate the effects of F, Sc, M and k on shearing
stress along x-axis τ1 for cooling and heating of the plate respectively
while the shearing stress along z-axis τ2 is shown in figure 9. The axial
and the transverse components of skin-friction are plotted against Hall
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parameter. It is observed that for Sc = 0.30 both τ1 and τ2 decreases
with increasing m for Gr > 0 and Gr < 0 but for Sc = 0.78 the shearing
stress along x-axis and z-axis increases with increasing m. Further, since
the velocity in primary flows increases with increasing M therefore τ1

also increases as M increases, because the friction increases as the fluid
velocity increases. Similarly, the velocity in secondary flows decreases as
M increases therefore τ2 also exhibit similar behaviour for increasing M .
Due to an increase in F , the velocity gradient in primary flows increases,
but the velocity gradient in secondary flows decreases for Gr > 0 while
reverse happens for the case Gr < 0. Finally, it is seen that the trans-
verse component of skin-friction τ2 is lower for non-Newtonian fluid as
compared to Newtonian fluid but opposite trend is noted for the axial
component of skin friction τ1. Figures 8 and 9 reveal that since the Hall
parameter (m) gives rise to the secondary flow field, the transverse com-
ponent of skin friction is greater than the axial component of skin friction
at and near the wall.

The quantity of heat exchanged between the body and the fluid is
given by temperature gradient Nu (Nusselt Number) which is given below
in Table I.

Table 1: Rate of heat transfer (Nu)

Nu
Ω F Pr = 3.0 Pr = 5.0
1.0 1.0 - 0.786 - 1.169
2.0 1.0 - 0.902 - 1.286
3.0 1.0 - 1.018 - 1.404
1.0 2.0 - 1.145 - 1.673

It is inferred that the rate of heat transfer Nu falls with increasing
values of Prandtl number. Further it is noticed that higher values of
frequency and radiation parameter reduces temperature gradient. Rate
of mass transfer Sh (Sherwood number) for different values of Sc and Ω
is shown below in table II.

It is revealed that Sh is greater for lower values of Sc and Ω.
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Table 2: Rate of mass transfer (Sh)

Sh
Ω Sc = 0. 22 Sc = 0.30 Sc = 0.78
1.0 - 0. 105 - 0. 124 - 0. 251
2.0 - 0.180 - 0.214 - 0.372
3.0 - 0.241 - 0. 283 - 0.474
4.0 - 0.291 - 0. 341 - 0.562
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FIGURE 1:VARIATION OF VELOCITY COMPONENT u FOR

Pr = 3.0,Gc = 2.0,Gr = 5.0,W t = p /2.
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Figure 1: Variation of velocity component u for Pr = 3.0, Gc =
2.0, Gr = 5.0; Ωt = π/2.
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FIGURE 2:VARIATION OF VELOCITY COMPONENT u FOR

Pr = 3.0,Gr = - 5.0,Gc = 2.0,W t = p /2.
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Figure 2: Variation of velocity component u for Pr = 3.0, Gc =
2.0, Gr = −5.0; Ωt = π/2.
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FIGURE 3:VARIATION OF VELOCITY COMPONENT w FOR

Pr = 3.0,Gc = 2.0,Gr = 5.0,W t = p /2.
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Figure 3: Variation of velocity component w for Pr = 3.0, Gc =
2.0, Gr = 5.0; Ωt = π/2.
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FIGURE 4: VARIATION OF VELOCITY COMPONENT w FOR

Pr = 3.0,Gr = - 5.0,Gc = 2.0,W t = p /2.

-0.01

0.04

0.09

0.14

0.19

0.24

0.29

0.34

0 2 4 6 8 10 12 14 16

h

w

? F Sc M k m

1 1 0.3 5 0.05 0.5

3 1 0.3 5 0.05 0.5

1 10 0.3 5 0.05 0.5

1 1 0.78 5 0.05 0.5

1 1 0.3 10 0.05 0.5

1 1 0.3 5 0.05 1

1 1 0.3 5 0.0 0.5

W

Figure 4: Variation of velocity component w for Pr = 3.0, Gc =
2.0, Gr = −5.0; Ωt = π/2.
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FIGURE 5:VARIATION OF TEMPERATURE qr.
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Figure 5: Variation of temperature Θr.
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FIGURE 6: VARIATION OF CONCENTRATION Cr.
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Figure 6: Variation of concentration Cr
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FIGURE 7:VARIATION OF SHEARING STRESS t1 FOR

Pr=3.0,Gc=2.0,W=1.0,Wt=p /2.
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Figure 7: Variation of shearing stress τ1 for Pr = 3.0, Gc = 2.0, Ω =
1.0, Ωt = π/2.
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FIGURE 8:VARIATION OF SHEARING STRESS t1 FOR

Pr=3.0,Gc=2.0,W=1.0,W t=p /2.
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Figure 8: Variation of shearing stress τ1 for Pr = 3.0, Gc = 2.0, Ω =
1.0, Ωt = π/2.
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FIGURE 9 : VARIATION OF SHEARING STRESS t2 FOR

Pr=3.0,Gc=2.0,W=1.0,W t=p /2.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

m

t2

F Sc M k Gr

1 0.3 5 0.05 5

1 0.3 10 0.05 5

1 0.78 5 0.05 5

10 0.3 5 0.05 5

1 0.3 5 0.0 5

1 0.3 5 0.05 -5

1 0.3 10 0.05 -5

1 0.78 5 0.05 -5

10 0.3 5 0.05 -5

1 0.3 5 0.0 - 5

Figure 9: Variation of shearing stress τ2 for Pr = 3.0, Gc = 2.0, Ω =
1.0, Ωt = π/2.
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Halov efekt na MHD konvekciono strujanje
viskoelastičnog fluida preko beskonačne vertikalne

porozne ploče sa prenosom mase i zračenjem

UDK 539.42, 539.421

Posmatra se nestacionarno hidromagnetsko strujanje viskoelastičnog flu-
ida sa zračeće vertikalne porozne ploče sa prenosom mase i uzimanjem u
obzir Halovih struja. Rezultujući problem je rešen analitički i dobijena su
eksplicitna rešenja za rasporede brzine, temperature i koncentracije kao i
za smičući napon, brzinu promene toplote kao i prenos mase na zidu.

Uticaj raznih parametara kao: Halovog parametra, magnetskog parame-
tra, viskoelastičnog parametra, frekventnog parametra itd. na tečenje je
prikazan slikama i tabelama.


