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Abstract

Due to the improvement of the signal processing and image tech-
nology, the clinical ultrasound system becomes an important tool
to assist doctors in detecting diseases. Hence, it is necessary to
know the biological effects of ultrasound in human tissue. In ul-
trasonic waves, the discrepancy between classic elasticity and ex-
perimental elasticity becomes a particularly important problem,
especially when there are higher frequencies and smaller wave-
lengths, i.e., in the case of wave propagation in human muscle and
compact bone. Consequently, the influence of the microstructure
is important and this fact leads to the generation of new types of
waves unknown in classic elasticity. General continuum theories,
such as couple stress theory and micropolar theory, have degrees of
freedom in addition to those of classic elasticity. Such theories are
thought to be applicable to composites with granular or porous
structure, effective chiral composite, and human compact bone.
In this work, a theoretical analysis concerning the reflected and
transmitted fields of an incident plane wave P propagating at the
human muscle-compact bone interface has been investigated. The
results show that the wave fields are affected by microstructures
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of the human bone. Knowledge of this occurrence may offer some
contribution to the understanding of the ultrasound propagation
in the biological effects of human tissue.

Keywords: Ultrasound, human tissue, microstructures, human
compact bone

1 Introduction

The joints of bones are the most commonly injured or diseased parts of the
human body. Ultrasonic assessment of bone is applied as radiation-based
bone densitometry for managing metabolic disease, especially in Osteo
Porosis [1,2]. Ultrasound is a mechanical wave, in contrast to current
ionizing electro magnetic radiation-based densitometric methods, and in-
teracts with human bone in a fundamentally distinct manner. Therefore,
ultrasound is widely used to diagnose not only bone mass but the archi-
tecture and the quality of bone as well [2].

The elastic behavior in bone has been studied by Wertheim and Rauber
[3,4] since the nineteenth-century. Many researchers in recent years have
demonstrated that bone is anisotropic as well as viscoelastic, and its
properties are dependent on direction [5]. Hence, more than two elastic
constants are required to describe its behavior. The constitutive equation
for an anisotropic solid is

τij = cijklεkl, (1)

where τijis the symmetric stress tensor, cijklis the fourth rank elastic mod-
ulus tensor, and εklis the strain tensor. Since bone is also a natural fibrous
composite [6-8], these conventional elasticity theories have a possibility
to vary the degree of freedom in bone. Consequently, the couple-stress
effects are explored in human compact bone for elastic behavior analysis
[7]. Besides, the ultrasonic waves which are generated into the human
bone have small wavelengths in comparison with the human tissue. The
size effects differences are also considered by couple-stress theory but not
by classical elasticity or viscoelasticity [9]. The couple-stress theory, sim-
ilar to classic force stress elasticity theory, is a continuum representation
of the phenomenology of mechanical behavior. It is possible to derive
this theory from microstructural or atomistic models as continuum ap-
proximations. Much work has been done in microelasticity, couple-stress
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theory, and multiple continuum mechanics to incorporate microstructure
effects into the continuum theory. Especially, Kroner [10] introduced and
developed a general nonlinear theory of micromorphic continua which
dealt with the indeterminate couple stress theory and multiple contin-
uum mechanics. This theory is however very complicated. It is perhaps
as complicated as comparison in the case of linear elastic solids. To sim-
plify the theory, Eringen recapitulated his works and then introduced the
terminology “micropolar elasticity” in his paper [11]. In his research, mi-
crostructure is assumed to consist of interconnected particles in the form
of small rigid bodies. These small rigid bodies undergo translational and
rotational motions when an external force is applied. The constitutive
equations may be summarized in Cartesian coordinates as

τij = λuk,kδij + µ(ui,j + uj,i) + κ(uj,i − εijkϕk), (2)

mij = αϕk,kδij + βϕi,j + γϕj,i, (3)

where τij is the force stress tensor, mij represent the couple stress tensor,
ui is the displacement, ϕi denotes the microrotation, λ and µ are the
Lame’s constants and κ, α, β and γ are additional elastic constants asso-
ciated with micropolar theory. It is a special case, when these discarded
in the constitutive equations then the equations of classical elasticity are
formed.

When the ultrasonic waves are generated in human bone, the waves
propagate as shown in figure 1. The interface between the human muscle
and compact bone are assumed to contact completely in the figure 1. A
plane wave P , the magnitude is considered as a unit, is applied into the
elastic medium with an incident angle θ1. The material properties of this
medium are the mass density ρ1, Lame’s elastic constant λ1 and µ1. The
reflected waves are also propagated on this plane.

The behavior of micropolar elastic solids have been investigated by
several authors [12,13]. Parfitt and Eringen studied the propagation of
micropolar elastic waves in an infinite medium and the problems of re-
flection of plane waves from flat boundaries and free surfaces [12]. In
addition, Tomar and Gogna extended these results to discuss the prob-
lem of reflection and refraction of a longitudinal microrotational wave at
an interface between two micropolar elastic solids [12]. Yang and Hsia
in their discussion on wave propagation between elastic-chiral interfaces
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have hypothesized the value of the modulus [13]. Furthermore, the classi-
cal and Cosserat elastic technical constants of human bone were studied
by Lakes et al. through their torsional resonance experiments [7,8,14].
However, few efforts have been made to verify wave propagation between
the human muscle-compact bone interface. In this article, we report the
microstructure effects and wave fields so as to understand how simulated
waves are propagated in bone in the clinical application of ultrasonic
techniques.

2 Summary of micropolar theory

The constitutive equation of linear isotropic micropolar elasticity without
regarding body forces, and body coupled forces, can be written in the
following vector form [11]:

(c2
1 + c2

3)∇(∇ • u)− (c2
2 + c2

3)∇× (∇× u) + c2
3∇×ϕ = ü, (4)

(c2
4 + c2

5)∇(∇ •ϕ)− c2
4∇× (∇×ϕ) + ω2

0∇× u− 2ω2
0ϕ = ϕ̈, (5)

where

c2
1 =

λ + 2µ

ρ
, c2

2 =
µ

ρ
, c2

3 =
κ

ρ
, c2
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λ

ρ J
,

c2
5 =

α + β

ρ J
, ω2

0 =
c2
3

J
=

κ

ρ J
. (6)

ρ is the mass density of the material, and J is microinertia.
Decompose the displacement vector u and the microrotation vector ϕ

into scalar and vector potentials as follows

u = ∇φ +∇×ψ, ∇ •ψ = 0, (7)

ϕ = ∇ζ +∇×H, ∇ •H = 0. (8)

Substituting (7) and (8) into the equations of motion (4) and (5), we
obtain the equations

(c2
1 + c2

3)∇2φ = φ̈, (9)

(c2
4 + c2

5)∇2ζ − 2ω2
0ζ = ζ̈ , (10)
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(c2
2 + c2

3)∇2ψ + c2
3∇×H = ψ̈, (11)

c2
4∇2H + ω2

0 ∇×ψ − 2ω2
0H = ψ̈. (12)

Assume that the plane waves travel in an infinite micropolar elastic
medium, there are four basic waves traveling with different phase ve-
locities. These are as follows:
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where x = 2ω2
0/ω

2. V1 is the phase velocity of longitudinal displacement
plane waves, V2 is the phase velocity of longitudinal microrotation plane
waves, V3 and V4 are two coupled sets of the phase velocity that consist
of the transverse displacement waves and the transverse microrotation
waves.

3 Wave fields for human muscle and com-

pact bone media

Let the plane longitudinal wave be incident on the plane boundary z = 0
that separates human muscle 1 and human compact bone 2, and as shown
in Figure 1. The plane of incidence of the wave is coincident with the
xz-plane and therefore

u = u1 i + u3 k, (16)

ϕ = ϕ2 j, (17)
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with u2 = 0, ϕ1 = 0, ϕ3 = 0 and ∂/∂y = 0. In this figure, the material
properties of the human muscle 1 where the incident and the reflected
waves propagate are ρ1, λ1 and µ1. The material constants of the human
compact bone 2 for transmission waves are ρ2, λ2, µ2, κ, α, β, γ and J .

It should be noted that the micropolar medium contains a longitudi-
nal microrotation plane wave (denoted by P1), and two sets of coupled
transverse displacement and transverse microrotation waves (denoted by
S3 and S4). To satisfy the boundary conditions at the human muscle-
compact bone interface, it is necessary to postulate that the longitudinal
microrotation wave is discarded. Consequently, a plane wave incident
from the upper half-space (z < 0) of the compact bone generates the P1,
S3, and S4 waves. The incident P wave can be represented with the
displacement potential in the form

φI1 = φI exp [i kL (x sin θ1 + z cos θ1)] . (18)

For the reflected P and SV waves, we have

φR1 = φR exp [i kL (x sin θ2 − z cos θ2)] , (19)

ψR1 = jψR exp [i ks (x sin θ3 − z cos θ3)] . (20)

Similarly, the transmitted P1, S3, and S4 waves in the lower half-space
(z > 0) are

φT2 = φT exp [i k1 (x sin θ1 + z cos θ1)] , (21)

ψT2 = j ψT
qy exp [i kq (x sin αq + z cos αq)] , q = 3, 4, (22)

HT2 =
(
HT

qx i + HT
qz k

)
exp [i kq (x sin αq + z cos αq)] q = 3, 4, (23)

where φs, ψs and Hs are the amplitudes of the propagation waves deter-
mined by the boundary conditions, θs are the incident angle and reflected
angle, αs are the transmitted angles, ks are wave numbers (k1 corresponds
to P1, k3 corresponds to S3, and k4 corresponds to S4) , and i, j, k are
the Cartesian unit vectors. The time dependence (e−iωt) has been sup-
pressed. For a further convenience in identification, the fields associated
with the incident wave are denoted by the superscript ”I1”, those with
the reflected wave by ”R1”, and those with the transmitted waves by
”T2”. Since the vectors ψ and H are perpendicular to each other, they
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are coupled and cannot exist individually. Thus, the following relations
are to hold:

HT
qx = ikq cos αq∆qψ

T
qy, (24)

HT
qz = −ikq sin αq∆qψ

T
qy, (25)

where
∆q =

κ

ω2ρ2J − γκ2
q − 2κ

. (26)

The nonvanishing components of the stress-displacement and the couple-
stress-rotation relations are

τ33 = λ (u1,1 + u3,3) + (2µ + κ)u3,3, (27)

τ31 = µ (u3,1 + u1,3) + κ(u1,3 − ϕ2), (28)

m32 = β ϕ3,2 + γ ϕ2,3. (29)

Six boundary conditions are obtained from the behavior of the wave
continuity for the components of the displacement u, the rotation ϕ, the
stress τ and the coupled-stress m at z = 0. This yields

uI1
1 + uR1

1 = uT2
1 , uI 1

3 + uR 1
3 = uT2

3 , ϕI 1
2 + ϕR 1

2 = ϕT2
2 , (30)

and

τ I 1
33 + τR 1

33 = τT2
33 , τ I 1

31 + τR 1
31 = τT2

31 , mI 1
32 + mR 1

32 = mT2
32 . (31)

By substituting (7) and (8) into (27)-(29), the stresses may be written
of the potentials. Then, with a combination of the boundary conditions
(30) and (31), we arrive at the six equations as follows

(−kL sin θ3)φ
R − (ks cos θ4)ψ

R
y + (k1 sin α1)φ

T−
(k3 cos α3)ψ

T
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T
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(k3 sin α3)ψ
T
3y + (k4 sin α4)ψ

T
4y = (kL cos θ1)φ

I ,
(33)

k2
3∆3ψ

T
3y + k2

4∆4ψ
T
4y = 0, (34)



230 Shao-Yi Hsia, Shih-Ming Chiu, Jyin-Wen Cheng
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2
1φ
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2
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T
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sψ
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y + (2µ2 + κ)

(sin α1 cos α1)k
2
1φ

T − (µ2 cos 2α3 + κ cos2 α3 + κ ∆3)k
2
3ψ

T
3y−

(µ2 cos 2α4 + κ cos2 α4 + κ ∆4)k
2
4ψ

T
4y = (µ sin 2θ1)k

2
LφI ,

(36)

k3
3(cos α3)∆3ψ

T
3y + k3

4(cos α4)∆4ψ
T
4y = 0. (37)

To solve five unknowns {φR, ψR
y , φT , ψT

3y, ψT
4y} at the human muscle-

compact bone interface, only five boundary conditions are needed. To
simplify the analysis, the boundary condition A is defined by equations
(32)-(36), and the boundary conditions B by equations (32)-(33), and
(35)-(37). These two sets of conditions are discussed in the remainder of
the paper.

Since the energy flux will be conserved at the interface, the energy of
the incident waves must equal the sum of the energies of the reflected and
transmitted waves. The energy flux (energy per unit time per unit area)
at z = 0 is given by

P = τ31u̇1 + τ33u̇3 + m32ϕ̇2, (38)

where u̇i = ∂ ui/∂ t (i = 1, 3), ϕ̇2 = ∂ φ2/∂ t.
Therefore, the energy flux for the incident longitudinal waves is

P I
p = −(λ + 2µ)(cos θ1) ω k3

L(φI)2. (39)

The energy flux for the reflected longitudinal wave and transverse
waves are

PR
p = (λ + 2µ)(cos θ3) ω k3

L(φR)2, (40)

PR
sv = µ(cos θ4) ω k3

s(ψ
R
y )2. (41)
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The energy flux for the transmitted longitudinal wave and transverse
wave are

P T
p1 = −(λ2 + 2µ2 + κ)(cos α1) ω k3

1(φ
T )2, (42)

P T
s3 = −(µ2 + κ + κ ∆3 + γ k2

3∆
2
3)(cos α3) ω k3

3(ψ
T
3y)

2, (43)

P T
s4 = −(µ2 + κ + κ ∆4 + γ k2

4∆
2
4)(cos α4) ω k3

4(ψ
T
4y)

2, (44)

where the superscripts R and T of P denote the reflected and transmitted
fields, respectively, the subscripts P and SV represent the reflected waves,
and P1, S3, and S4 represent the transmitted waves.

There is no dissipation of energy during transmission. We have the
energy ratio E:

1 =
PR

p

P I
p

+
PR

sv

P I
p

+
P T

p1

P I
p

+
P T

s3

P I
p

+
P T

s4

P I
p

= ER
p + ER

sv + ET
p1 + ET

s3 + ET
s4. (45)

4 Numerical results and discussion

The material properties of the elastic medium 1 are obtained from the
human muscle: longitudinal wave velocity VL = 1560m/sec and den-
sity ρ = 1074kg/m3. Results for the mechanical properties of the hu-
man compact bone, as obtained by several authors, are as follows in
reference 7 and 8 that were obtained from donated fresh-frozen autopsy
tissue. They are consistent with the following results: Young’s modu-
lus E = 12GPa, shear modulus G = 4.2MPa, characteristic length of
torsion lt = 0.22mm, characteristic length of bending lb = 0.45mm, cou-
pling number N2 = 0.3844 and polar ratio ξ = 1.5. Consequently, the
mechanical elastic constants of medium 2 are found to yield through the
formulas E = (2µ + κ) (3λ + 2µ + κ) / (2λ + 2µ + κ), G = (2µ + κ) /2,

lt = [(β + γ) / (2µ + κ)]1/2, lb = [γ/2 (2µ + κ)]1/2, N = [κ/2 (µ + κ)]1/2

and ξ = (β + γ) / (α + β + γ).
Hence, the material constants of the human bone can be obtained

by substituting the formulas and listed them in Table 1. The variation
of the microinertia with the cut off frequency is shown in figure 2 for
human compact bone. Figure 2 represents the cut off frequency which is
calculated by

√
2 ω0 = ωc for the wave’s propagation of refracted coupled

wave S3. The set of coupled waves S3 traveling at speed V3 propagates
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only if ω > ωc is found degenerating into a distance decaying sinusoidal
vibration otherwise. Hence, the excited frequency should be higher than
the cut off frequency in interested microinertia, and then the refracted
coupled transverse waves are found to have a possible propagation S3 in
the human compact bone. It is noted in figure 2 for the lower value of the
microinertia that the cut off frequency is almost infinite, which means it
is difficult to generate the transverse wave S3 at the higher frequency. For
this reason, the range from 0.15×10−6 to 2.0×10−6 m2 of the microinertia
is investigated herein for the longitudinal plane wave incident from human
muscle to human compact bone. Since the longitudinal plane wave is
a nondispersive propagating wave, the phase velocities are independent
of frequency. The transmitted longitudinal plane wave P1 is hence a
nondispersive propagating wave shown as figure 3, and the considered
ranges (0.15 × 10−6 to 2.0 × 10−6 m2) of the microinertia vary linearly
with the wave number.

Although the refracted transverse waves S3 and S4 are dispersive,
the wave number of the S4 wave is almost linear in frequency in human
compact bone as shown in figure 4(b). In contrast to the S4 wave, the
wave number of the S3 wave shown in figure 4(a) has a large distinction
at lower frequency. So, the phase velocity of the S3 wave is dependent on
frequency at lower frequency. It should be noted that there is an increase
in wave number for the S3 wave from 0.15 × 10−6 to 0.49 × 10−6 m2

of the microinertia, and it is a constant wave number above the value
0.49× 10−6 m2 of the microinertia. In figure 4, both of the S3 wave and
the S4 wave have a greater variation for J = 0.49 × 10−6 m2, which is
calculated by γ/J ≥ µ+κ due to a consistent solution (15). It represents
what has been found that the S3 wave and the S4 wave may have some
interesting phenomenon at the specified value of microinertia.

According to the phenomenon mentioned above, the reflected longitu-
dinal wave P always has some variations when the value of microinertia
is near 0.49× 10−6 m2 as shown in figure 5. The energy ratio of reflected
longitudinal wave P begins the fixed value when θ1 = 0◦. It has maxi-
mum value at θ1 = 22◦ due to the grazing transmitted P1 wave and the
other maximum value when incident angle is above 54o due to the grazing
transmitted S4 wave. In the refracted field, the longitudinal plane wave
P1 is generated below the incident angle 22o. From the profiles shown in
figure 6, the energy ratio of P1 also exists with a fixed value when θ1 = 0◦.
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The energy ratio of P1 doesn’t exhaust until the incident angle is found
increasing to θ1 = 22◦. The phenomenon of the grazing transmitted P1
wave is known as the Rayleigh-Wood anomalies. This consequence may
imply that it is possible for doctors to detect diseases on human bone
using ultrasonic assessment below the incident angle 22◦. The S3 wave
as shown in figure 7 has the maximum value on the microinertia above
0.49× 10−6 m2, which increase quickly and then have a fixed value when
microinertia is found to be greater. At the same time, the influence of the
S3 wave will vanish gradually when the incident angle is above θ1 = 50◦

or microinertia is lower than 0.49 × 10−6 m2. It is interesting to see in
figure 8, that the S4 wave can be transmitted in unexpected ranges of
the microinertia. The transverse field is obviously dominated by the S4
wave from θ1 = 22◦ to 53◦. Hence, in the case of wave propagation in
human muscle and compact bone, the S4 wave has a significant microp-
olar effect on the interface if only J ≤ 0.49 × 10−6 m2 used. The results
of these figures show that the wave propagation in the considered ranges
will obey the Snell’s law between the incident-reflected and transmitted
plane waves.

The wave propagation at the interface between human muscle, and
human compact bone, is different from the classic case. Two sets of
boundary conditions, A and B, are necessary to find the unknown coef-
ficients. The numerical results have been done for a propagating wave
at the chiral-chiral interface by Lakhtakia et al. [13,16]. They indicated
that a great distinction was obtained for simulation between boundary
conditions A and B. This naturally leads to the problem of the difference
in the two kinds of boundary conditions during wave propagating in the
case of human muscle-compact. Hence, the case of the wave propagation
on the human muscle-compact bone is the other interesting topic, and will
be mentioned below. In this study, take the case of J = 0.4 × 10−6 m2

for example it is shown that the numerical results of oblique incidence
on the human muscle-compact bone interface for boundary conditions A
and B at 4 MHz in figure 9. The results show that a normal incidence is
implied, and hence no mode conversion occurs in the two cases, because
the longitudinal plane wave incident on the interface generates only the
reflected and transmitted longitudinal plane waves. By comparison, the
results in figure 9 (a) and (b), the profiles of energy ratio P T

p1 are nearly
the same as the results for boundary conditions A and B. The normal-
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ized energy ratio of the S3 and S4 waves will be the grazing transmitted
transverse waves when incident angle are above 43.5o and 53o respectively
for both boundary conditions A and B as shown as figure 9. Both of the
cases show that S4 will dominate the transmitted field. The consequence
is similar with the phenomena shown in Figs.7 and 8. It becomes evident
that the use of boundary condition A or B can lead to the different con-
sequence presented in the reflected and refracted field. The conclusion is
the same when compared with the wave propagation at the achiral-chiral
interface based on the results of Lakhtakia et al. In general, different cou-
pled transverse waves S3 or S4 will dominate the wave fields according
to which value of microinertia we are looking at.

5 Conclusions

The wave propagation that occurs in the human muscle-compact bone
has been examined in this study. The unbalance of energy is observed for
the specified region of microinertia, and hence only the suitable values
can be used to know the phenomenon of wave propagation that occurs
in human compact bone. This consequence leads us to induce that the
wave fields will be affected by the critical value of microinertia, especially
the transmitted transverse waves S3 and S4. Above the critical value
of microinertia, only the S3 wave can transmit in the human compact
bone. Below that, the S4 dominates the wave fields that contain all
the reflected and transmitted plane waves. The simulated result also
indicates that there are some significant distinctions in the reflection and
transmission characteristics from the two sets of boundary condition for
a variety incident angle. Knowledge of this occurrence leads us to imply
that it is possible to solve the wave response by using the micropolar
structural theory, and hence can be referred to the understanding of the
ultrasound propagation in biological effects of human tissue.

Acknowledgments This investigation was supported in part by the
National Science Council of Taiwan, Republic of China, through grant
NSC 94-2212-E-132-002.



Wave propagation at the human muscle-compact bone interface 235

References

[1] D. Hans, A. M. Schott and P.J. Meunier, Ultrasonic assessment of
bone: a review, Eur. J. Med., 2(3), (1993), 157-163.

[2] J. J. Kaufman, T.A. Einhorn, Perspective: ultrasound assessment of
bone, J.Bone. Miner Res., 8(5), (1993), 517-525.

[3] G. Wertheim, Memoire Sur Elasticite et la Cohesion des principaux
Tissus du Corps Human, Ann de Chirn et de Phys., 21, (1847),
385-414.

[4] A. A. Rauber: Elasticitat und Festigkeit der Knochen, Anatomisch-
Physiologische Studie, (1876).

[5] W. T. Dempster and R. T. Liddicoat, Compact bone as a non-
isotropic material, American Journal of Anatomy, 91, (1952), 331-
362.

[6] R. S. Lakes, H. S. Yoon and J. L. Katz, Ultrasonic wave propagation
and attenuation in wet bone, J. Biomed Eng., 8, (1986), 143-148.

[7] R. S. Lakes, Dynamical study of couple stress effects in human com-
pact bone, Trans. ASME, 104, (1982), 6-11.

[8] J. F. C. Yang and R. S. Lakes, Experimental study of micropolar and
couple stress elasticity in compact bone in bending, J. Biomechanics,
15, (1982), 91-98.

[9] R. D. Mindlin and H. F. Tiersten, Effects of couple-stress in linear
elasticity, Archive for Rational Mechanics and Analysis, 11, (1962),
415-448.

[10] E. Kroner, Mechanics of Generalized Continua, Springer-Verlag,
Berlin, 1968.

[11] A.C. Eringen, Theory of micropolar elasticity, Fracture: A Treatise,
Vol.2, H. Liebowitz (ed.), p.621; Academic Press, New York, 1968.



236 Shao-Yi Hsia, Shih-Ming Chiu, Jyin-Wen Cheng

[12] S. K. Tomar and M. L. Gogna, Reflection and refraction of longi-
tudinal microrotational wave at aniinterface between two micropolar
elastic media in welded contact,, Int. J. Eng. Sci., 30, (1992), 1637-
1646.

[13] S.Y. Hsia and J.W. Cheng, Longitudinal plane wave propagation
in elastic-micropolar porous media, Jpn. J. Appl. Phys., 45(3A),
(2006), 1743-1748.

[14] V.R. Parfitt and A.C. Eringen, Reflection of plane waves from the
flat boundary of a micropolar elastic half-space, J. Acoust. Soc. Am.
(JASA), 45/5, (1969), 1258-1272.

[15] P.M. Buechner and R.S. Lakes, Size effects in the elasticity and vis-
coelasticity of bone, Biomechan Model Mechanobiol, 1, (2003), 295-
301.

[16] S. K. Tomar and M. L. Gogna, Reflection and refraction of longi-
tudinal wave at an interface between two micropolar elastic solid in
welded contact, J. Acoust. Soc. Am. (JASA), 97/2, (1995), 822-830.

[17] A. Lakhtakia, V. K. Varadan and V. V. Varadan, Reflection of elastic
plane waves at a planar achiral-chiral interface, J. Acoust. Soc. Am.
(JASA), 87/6, (1990), 2314-2318.



Wave propagation at the human muscle-compact bone interface 237

Human muscle Human compact bone

ρ1 = 970kg/m3 ρ2 = 1012kg/m3

λ1 = 2289.22MPa λ2 = 2124.7Mpa

µ2 = 1.58 MPa

α = 3× 106N

β = 3× 106N

γ = 4× 106N

C3 = 16× 106Nm−1

J = 0.01m2

Table 1: The material constants of human muscle and compact bone

Figure 1: Reflection and transmission of the incident longitudinal plane
wave; plane 1 is the human muscle, and plane 2 represents the human
compact bone.
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Figure 2: Cut off frequency as functions of the microinertia

Figure 3: Wave numbers of P1 as functions of frequency and microinertia.
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Figure 4: Wave numbers of S3 and S4 coupled waves as functions of
frequency and microinertia: (a) S3 wave, (b) S4 wave
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Figure 5: The energy ratio of reflected P wave as functions of incident
angle and microinertia.

Figure 6: The energy ratio of transmitted P1 wave as functions of incident
angle and microinertia.
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Figure 7: The energy ratio of transmitted S3 wave as functions of incident
angle and microinertia.

Figure 8: The energy ratio of transmitted S4 wave as functions of incident
angle and microinertia.
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Figure 9: The energy ratio of wave fields at J = 0.4× 10−6m2 for 4 MHz:
(a) boundary conditions A, (b) boundary conditions B.
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Prostiranje talasa na medjupovrši ljudskog mǐsića i
kompaktne kosti

UDK 534.16

Zahvaljujući progresu tehnologije procesiranja signala i slika, klinički
ultrazvučni sistem je postao značajan pomoćni alat lekarima pri dijag-
nostici bolesti. Dakle, potrebno je poznavati biološke efekte ultrazvuka
u ljudskom tkivu. Kod ultrazvučnih talasa razlika izmedju klasične i
eksperimentalne elastičnosti postaje posebno značajan problem pogotovu
pri vǐsim učestanostima i manjim talasnim dužinama - što znači u slučaju
prostiranja talasa u ljudskom mǐsiću i kompaktnoj kosti. Prema tome,
uticaj mikrostrukture je značajan i ova činjenica vodi ka generaciji novih
tipova talasa nepoznatih u klasičnoj elastičnosti. Opšte teorije kontinu-
uma, kao teorija naponskih spregova i mikropolarna teorija, imaju dop-
unske stepene slobode u odnosu na klasičnu elastičnost. Za takve teorije
se smatra da su primenjive na kompozite sa zrnastom i poroznom struk-
turom, efektivno hiralne kompozite kao i ljudsku kompaktnu kost. U
ovom radu izvodi se teorijska analiza odbijenih i propuštenih talasa jednog
ulaznog ravanskog P -talasa. Rezultati pokazuju da na talasna polja utiče
mikrostruktura ljudske kosti. Poznavanje ove pojave može da ponudi
doprinos razumevanju ultrazvučnog prostiranja u tkivu ljudske kosti.


