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Abstract

A polynomial of degree greater than two that describes the inden-
ter concavity shape is proposed. From the proposed polynomial,
the gradient of the displacement is derived and combined with that
one determined by Timoshenko and Goodier to obtain the polyno-
mial distribution of the pressure in the cross direction of wire. By
using the polynomial pressure in the “stress function” proposed
by Flamant, a set of equations serving to know the stresses state
in the wire section is obtained. To extend the analysis to two op-
posite indenters, all contributions to total stress are considered,
to knowing: the stresses being produced by each one of the in-
denters; the biaxial tension to balance the free area of pressure.
Finally, by using all contributions to total stress and determin-
ing the principal stresses, the magnitude of maximum-shear-stress
at each point of elastic body it could be obtained. In order to
confront the model with the reality, by associating to each point
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its maximum-shear-stress respective, patterns of lines represent-
ing isostresses were obtained; such patterns were compared with a
photo-elasticity image, showing a good agreement.

Keywords: Indentation process; conformable contact; stress func-
tion; polynomial pressure; photo-elasticity technique; elastic regime.

1 Introduction

An important mechanical parameter in the indentation process is the load
required as well as the manner in that this load will be applied to the
sample. To determine this load, an analysis of how the pressure would be
distributed along the contact surface is mandatory. For a circular section,
the problem is something complex; however, based on the continuum me-
chanics theory and by considering certain restrictions as: conformable
contact; frictionless indentation; low strain rates; rigid indenters, the dif-
ficulty can be overcome and the load can be determined. Some models
have been proposed [1] but none of them is capable of predicting with
accuracy the value of the load for the case of a circular section. The
Hertz’s model for example, is not applicable to this case since this one
does not predicts the displacement of points staying apart of the contact
point. Accordingly, in this work we propose a more adequate distribution
of the pressure in the cross direction, by leaving the lengthwise direction
without modification, so that the model can agree with the experimental
results. For the analysis, by using a polynomial of degree greater than
two, a polynomial distribution of the pressure (polynomial pressure) in
the cross direction along an arc of circle for producing a homogeneous
strain was considered; remarking that this polynomial distribution of the
pressure is limited at indenter’s wedges.

2 Theoretical part

2.1 Geometrical assumptions and the polynomial
model

Figure 1. shows schematically a transversal cut of the elements that
act in the indentation process. In the scheme, it can see that single an
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indenter was depicted. In this figure, B represents the deformable solid
that is tested under load, whereas A represents the rigid indenter. In this
manner, the model is developed for a single indenter and later extended
for two opposite indenters.
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Figure 1: Schematic diagram showing a transversal cut of the indenter
(A) and elastic body (B).

By taking into account the geometrical parameters, if is assumed that
the secant of the arc of circle of the indenter is 2a long, the dimensionless
polynomial curve which coincides with the indenter cavity profile on the
plane (X, Z) is described by

Z =
X4

6R3
+

X2

2R
(1)
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where R = r/a, Z = z/a and X = x/a.
Since the strain will be homogeneous, every point in the surface will

experiment the same displacement u0; in this way, the displacement in
the z-direction uZ will be

uZ = u0 +
X4

6R3
+

X2

2R
(2)

Last equation is the dimensionless equation-of-displacement of the contact
surface. From equation (2), any variation of the displacement in the
surface in the x-direction can be determined by differentiation of this
equation with respect to X

∂uz

∂X
=

2X3

3R3
+

X

R
(3)

By using the “stress function” proposed by Flamant, for the case of the
unitary pressure that is produced by a concentrated normal force P , in the
Hooke’s law, Timoshenko and Goodier [2] determined the displacementuz

uz =
(1− ν2)

πE
2P ln |x| − (1 + ν)

πE
P (4)

In our case, as proposed, a nonuniform distribution of pressure is act-
ing. This condition will be satisfied if it is replaced the concentrated
normal force P by

∫ a

−a
p(s)ds in the last expression. On this condition,

the displacement results in

uz =
2 (1− ν2)

πE

∫ a

−a

p(s) ln |x− s| ds− (1 + ν)

πE

∫ a

−a

p(s)ds (5)

and, the gradient of displacement at contact surface [3] is

∂uz

∂x
= −2 (1− ν2)

πE

∫ a

−a

p(s)

x− s
ds (6)

As is noted, the x−variable has been changed by x−s in order to restrict
the integration to the load zone.

Since the indentation process is restricted to conformable contact, as
mentioned in the introduction section, equations (3) and (6) (in dimen-
sionless form) can be combined

∫ 1

−1

p(S)

X − S
dS = − πE

2(1− ν2)

(
2S3

3R3
+

S

R

)
(7)
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where S = s/a.
Equation (7) is a singular integral equation [4], which has the solution

p(X) = − E

2π (1− ν2) (1−X2)1/2

∫ 1

−1

(1− S2)
1/2

S −X

[
2S3

3R3
+

S

R

]
dS

+
2D

a (1−X2)1/2
(8)

Using the Cauchy’s principal value for the integral in equation (8), we get

p(X) = − E

2 (1− ν2) (1−X2)1/2

[
2X4

3R3
− X2

3R3
+

X2

R
− 1

12R3
− 1

2R

]

+
2D

a (1−X2)1/2
(9)

If W is the applied load and taking into account that W
a

=
∫ 1

−1
p (X) dX,

the D constant can be determined

D =
W

2π
(10)

Substituting equation (10) into equation (9) results in

p(X) = − E

2 (1− ν2) (1−X2)1/2

[
2X4

3R3
− X2

3R3
+

X2

R
− 1

12R3
− 1

2R

]

+
W

πa (1−X2)1/2
(11)

Last equation is the polynomial pressure in the cross direction of cylin-
drical body as a function of E and W . To obtain the polynomial pressure
as a function of W only, the symmetry condition of the distribution p(X)

must be used, that is ∂p(X)
∂X

= 0 at X = 0 since the pressure distribution
have a point of inflection in this point. Therefore, the polynomial pressure
as a function of W only is given by

p(X) =
4W

9πa

[
2X2 + 3R2 + 1

2R2 − 1

] (
1−X2

)1/2
+

2W

3πa (1−X2)1/2

(
3R2 − 2

2R2 − 1

)

(12)
To visualize graphically this result, Figure 2. schematically shows the
pressure distribution corresponding to equation (12).
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2.2 Stresses generated in the body of circular sec-
tion

The polynomial pressure acting on the surface (Figure 2) produces stresses
in the elastic body by reaction (Newton’s law). These stresses can be de-
termined by substituting the polynomial pressure (equation (12)) into
σx, σz, τxz of the function of stress proposed by Flamant. Thus, if it is
replaced X = x/a, S = s/a, Z = z/a and changed X by X-S in the
resultant equations, the dimensionless stresses acting in the elastic body
are given by

σx =

−2Z

π

[
4W

9πa (2R2 − 1)

∫ 1

−1

(2X2 + 3R2 + 1) (1− S2)
1/2

(X − S)2 dS[
(X − S)2 + Z2

]2

+
2W

3πa

[
3R2 − 2

2R2 − 1

] ∫ 1

−1

(X − S)2

(1− S2)1/2 [
(X − S)2 + Z2

]2dS

]

σz =

−2Z3

π

[
4W

9πa (2R2 − 1)

∫ 1

−1

(2X2 + 3R2 + 1) (1− S2)
1/2

dS[
(X − S)2 + Z2

]2

+
2W

3πa

[
3R2 − 2

2R2 − 1

] ∫ 1

−1

1

(1− S2)1/2 [
(X − S)2 + Z2

]2dS

]
(13)

τXZ =

−2Z2

π

[
4W

9πa (2R2 − 1)

∫ 1

−1

(2X2 + 3R2 + 1) (1− S2)
1/2

(X − S) dS[
(X − S)2 + Z2

]2

+
2W

3πa

[
3R2 − 2

2R2 − 1

] ∫ 1

−1

(X − S)

(1− S2)1/2 [
(X − S)2 + Z2

]2 dS

]

Last relations are the equations serving to determine the stresses in elastic
body of circular section when a polynomial pressure in the cross direction
is applied.

For the case of two symmetric polynomial pressures acting oppositely
to each other as depicted in Figure 3, the total stress can be determined
by superposition of all the contributions; to knowing
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1. the contribution produced by the upper indenter (equations (13)),

2. the contribution produced by the lower indenter (equations (13),
replacing Z by “2R− Z”),

3. the necessary biaxial tension to balance the free area of pressure

σbiaxial = −2 σZ |X=1.25
Y =1.25 = k(Z), for Z > 0.5 (14)

By using all contributions to total stress and determining the principal
stresses, the magnitude of maximum-shear-stress at each point of elastic
body it could be obtained. A collection of shear stress values has been
obtained and is summarized in Table 1. To visualize these values, in
the image of Figure 4. is shown an idealized circular section containing
patterns of lines. These lines are representing isostresses.

3 Experimental part

To test if proposed model of polynomial pressure predicts the elastic be-
havior of a body of circular section when being indented, the photo-
elasticity technique was employed [5]. A disk manufactured in polymeric
material of 100 mm in diameter and 25.4 mm thickness was tested un-
der diametrical compression. Two opposite indenters manufactured in
austenitic steel were utilized. At start, the radius of the cavities and the
radius of the disk were equals and the ratior/awas kept constant. An
optical photograph of disk by using the mentioned technique at moment
at which the disk is compressed was obtained.

4 Results and discussion

The photographic image obtained “in situ” by using the photo-elasticity
technique is shown in Figure 5. In the illuminated zone, contrasted bands
(orange) are clearly seen. These bands are associated with critical vari-
ations of the internal stresses with respect to the yellow regions. In the
dark zone, the profiles of the upper indenter and the lower indenter can
be distinguished. In front of the indenter’s wedges, inside the illuminated
zone, the orange bands delineate elongated and concentric small curves,
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which indicates a stress concentration in these points. By observing the
patterns of lines which were built using the polynomial approach (Figure
4), a great similarity exist between the lines and the orange bands of the
photographic image for the considered points. However, a discrepancy is
noted in the central zone when comparing the images; about this, there
is work in process.

It is worth to mention that the indenter design plays an important
role, since, in our case, the indenter concavity shape allowed reaching
the theoretical pressure of model. As for the analysis, the application of
the components σx, σz, τxz of the function of stress proposed by Flamant
to a non-planar surface is justified, since the direction of stress remain
valid even in this case. Moreover, the substitution of the normal force
by a distribution of pressure is justified, since such distribution can be
considered as a collection of concentrated normal forces with magnitudes
depending on position. For our case, it is clear that the forces of such
collection located at X 6= 0 are not normal, but thinking that such forces
have a normal component to contact surface, the problem is overcome.

Finally, the selection of the polynomial was made by numerical method
of manner that the polynomial proposed could describe, possible closest,
the profile of the cavity of the indenter.

5 Conclusions

Based on the theoretical reasoning established, it is concluded that, the
function of stress proposed by Flamant, for the case of the unitary pres-
sure that is produced by a concentrated normal force in elastic half-space,
it is applicable to a circular section.

The similarity between the patterns of lines predicted by the poly-
nomial model and the photo-elasticity image indicates that the model
agrees, at least qualitatively (which is an advantage over other models),
with the experiment for the elastic regime.
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work.
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Polinomijalni pristup odredjivanju napona u
elastičnom telu kružnog poprečnog preseka
utiskivanjem konformabilnim kontaktom

UDK 620.171.5

Polinom stepena vǐseg od dva koji opisuje konkavnost utiskivača je predložen.
Time je gradijent pomeranja izveden i kombinovan sa odgovarajućim
predloženim od Timošenka i Gudijera u cilju dobijanja polinomijalnog
rasporeda pritiska u poprečnom pravcu žice. Korǐsćenjem “polinomi-
jalnog” pritiska u naponskoj funkciji predloženoj od Flamanta dobijaju
se jednačine naponskog stanja u poprečnom preseku žice. Za proširenje
analize na dva suprotna utiskivača posmatraju se: naponi izazvani svakim
utiskivačem kao i dvoosni napon za balansiranje slobodne površine pri-
tiska. Konačno, korǐsćenjem svih doprinosećih ļanova totalnom naponu
kao i odredjivanjem glavnih napona dobija se maksimalna vrednost smičuég
napona. U cilju provere realnosti modela mreže linija jednakih napona se
uporedjuju sa fotoelastičnom slikom pokazujući dobro slaganje.
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Figure 2: Schematic diagram showing the polynomial distribution of pres-
sure along the arch of circle. Note the symmetrical character of the pres-
sure distribution.
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Figure 3: Schematic diagram showing two opposite pressures with poly-
nomial distributions.
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Figure 4: Schematic diagram showing patterns of lines inside the circular
section for the case of two opposite pressures with polynomial distribu-
tions. The lines are representing isostresses.
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Figure 5: Photo-elasticity image showing patterns of bands (orange) at
interior of illuminated zone. The bands indicate critical variations of the
internal stresses in the body of polymeric material when is compressed.
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x/a =
0

x/a =
0.2

x/a =
0.4

x/a =
0.6

x/a =
0.8

x/a =
1

x/a =
1.25

z/a = 0 0.246 0.243 0.235

z/a = 0.1 0.302 0.302 0.3 0.304

z/a = 0.2 0.361 0.362 0.368 0.394

z/a = 0.3 0.417 0.421 0.436 0.491 0.719

z/a = 0.4 0.469 0.474 0.495 0.557 0.728

z/a = 0.5 0.115 0.52 0.541 0.593 0.699 0.806

z/a = 0.6 0.554 0.558 0.574 0.609 0.664 0.702

z/a = 0.7 0.585 0.588 0.598 0.615 0.635 0.635

z/a = 0.8 0.61 0.611 0.613 0.616 0.613 0.591

z/a = 0.9 0.628 0.628 0.624 0.615 0.596 0.562

z/a = 1 0.641 0.639 0.631 0.614 0.585 0.543

z/a = 1.1 0.65 0.646 0.635 0.613 0.578 0.531

z/a = 1.2 0.654 0.65 0.637 0.612 0.575 0.526 0.457

Table 1: Values of the dimensionless maximum-shear-stress
τ

p0

, for

0 ≤ x

a
≤ 1.25 and 0 ≤ z

a
≤ 1.2, obtained using a polynomial dis-

tribution of the pressure in the cross direction of the circular body.
The assumed values for ′′r′′ and ′′a′′ were 3 and 2.4 respectively.
∗The value of the function p(X) at X = 0 is p0


