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Abstract

Introducing the group of Loitskanskii [1] form-parameters and trans-
formations of Saljnikov [2], the set of governing equations of the in-
compressible laminar temperature boundary layer was transformed
in the universal form, with Prandtl number as parameter, for the
case of the constant wall temperature. Using the universal results
for air (Pr = 0.72) the procedure for calculation of the Nusselt
number (dimensionless heat transfer coefficient) on the particular
contour (airfoil NACA 0010-34) was developed. The dimensionless
temperature profiles within the boundary layer were presented also.
The parameter of rotation Ω0, as well as Eckert number, was var-
ied, and their influences on the heat transfer from the surface to the
working fluid were presented and analyzed.
Keywords: laminar temperature boundary layer, 2-D flow, rotat-
ing contour, heat transfer, local Nusselt number distribution.
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Nomenclature

a0; b0 constants
A0 dimensionless displacement thickness
B0 dimensionless momentum thickness
c coefficient of thermal conductivity
Ec Eckert number
f1 first form parameter
fk set of form parameters
F characteristic boundary layer function
H displacement/momentum thickness ratio
h heat transfer coefficient
Nu Nusselt number
Pr Prandtl number
P function determining the influence of friction on the

boundary layer temperature
R function determining the influence of the given wall

temperature on the boundary layer temperature
Sv transforming function
T temperature
Tw wall temperature (constant)
T∞ temperature of the outer flow (constant)
u; v velocity components
U; V velocities of the outer potential flow
U∞ velocity far afore the body (constant)
x′; y coordinates
x dimensionless coordinate
δ∗ displacement thickness
δ∗∗ momentum thickness
ζ dimensionless friction factor
η dimensionless transversal coordinate
θk recurrent function
θ dimensionless temperature
ν kinematics viscosity
ψ stream function
Φ universal dimensionless stream function
Ω parameter of rotation
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1 Introduction

Development of technology and resources for scientific computation in re-
cent years offers a solution of numerous problems in fluid mechanics. Using
CFD (Computational Fluid Dynamics) ready-made programs, solutions of
many certain problems can be obtained. The problem with solutions ob-
tained in this manner is their particularity – they belong to certain partic-
ular problem and even a minor variation of governing parameters demands
an entirely new numerical treatment of the problem concerned. More the-
oretical approach to the treated problem, on the other hand, leads to the
more general solution that covers, at least, a class or a group of the particu-
lar cases. In the laminar boundary layer theory, the method of Loitskianskii
[1], improved by Saljnikov [2] and his school, seems to be very promising
approach for theoretical treatment of various problems – Boricic et al [3],
Saljnikov et al [4], Miric-Milosavljevic, Pavlovic [5], Obrovic et al [6] and
Ivanovic D., Ivanovic V. [7].

The boundary layer flow on a rotating surface of arbitrary shape, such
as rotating radial impeller blade on the Fig.1, was intensively studied in
fluid mechanics due to its practical application in turbo machines. Pa-
pers of Jungclaus [8], Li [9], Glauert [10] and Saljnikov, Djordjevic [11],
demonstrating the interest for the treated problem, were the results of dis-
cussion on the problem of linearization of the influence of rotation. Using
the multi-parametric method of Loitskianskii [1], and transformations pro-
posed by Saljnikov [2] the solutions for the dynamic boundary layer on the
rotating surface were obtained and applied to different practical problems
in Saljnikov, Pavlovic [12].

The appropriate study of the heat transfer process is certainly of the
particular interest in order to understand better heating or cooling of the
rotating surface. In this paper method of determining the Nusselt number
is exposed. The procedure is based on the universal solutions of tempera-
ture boundary layer on the rotating surface obtained in the paper [13].

2 Universal equations of the boundary layer

When the influence of rotation is present in the stream field, the governing
equations of the dynamic and temperature boundary layers on the rotating
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Figure 1: Boundary layer on the rotating surface.

surface can be obtained in the following form:
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where U, V are velocities of the outer potential flow. It is important to
notice that the equations (1-3) are relevant to the dynamic and thermal
plane boundary layers on the rotating surface of an incompressible fluid.
The corresponding boundary conditions are:

y = 0 : u = v = 0, T = Tw; y → ±∞ : u = U0 ± 2ω0y, T = T∞ (4)

where: ω0 - angular velocity of the rotating surface, Fig.1. In (4) and
further sign ‘+’ corresponds to the leading surface and sign ‘-‘ to the trailing
surf ace of the blade impeller. The influence of rotation was analyzed and
introduced in the form (4) by Jungclaus [8].

Instead of velocity, as usually for the incompressible flows, the stream
function ψ is introduced:
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u =
∂ψ

∂x
; v =

∂ψ

∂y
(5)

In order to universalize the governing equations (1-3) Lotskianskii’s
method [1], improved by Saljnikov [2] is used. A new transversal coordinate
η and universal stream function Φ are involved:

Sv =


a0ν

x∫

0

U bo−1
0 dx



− 1

2

; a0 = 0.4408; b0 = 5.714 (6)
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U
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2

0

Sv
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U

b0
2
−1

0

Sv

ψ(x, yω0). (7)

The influence of rotation is defined by the means of particular parameter:

Ω =
2ω0Sv

U
b
2+1
0

. (8)

Considering the boundary condition (4), temperature can be assumed
as a sum of two functions:

T = T∞ +
U2

0

2c
P (x, η, Pr, Ω) + (Tw − T∞) R (x, η, Pr, Ω) . (9)

Function P determines the influence of friction, and R the influence of the
given wall temperature.

Assuming that the rotational parameter Ω (8) is small, functions Φ, P
and R can be used in a linear form:

Φ(x, η, Ω) = Φ0(x, η) + ΩΦ1(x, η) + ... ∼= Φ0(x, η) + ΩΦ1(x, η), (10)

P (x, η, Pr, Ω) = P0 (x, η, Pr) + ΩP1 (x, η, Pr) + ... ∼=
P0 (x, η, Pr) + ΩP1 (x, η, Pr) ,
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R (x, η, Pr, Ω) = R0 (x, η, Pr) + ΩR1 (x, η, Pr) + ... ∼=
R0 (x, η, Pr) + ΩR1 (x, η, Pr) .

On the development of the dynamic and temperature boundary layer, there
is strong influence of the change of the shape in longitudinal direction.
Instead of the longitudinal coordinate x the group of Lotskianskii’s form
parameters fk, like in [1], can be introduced:

fk = Uk−1
0

dkU0

dxk

(
δ∗∗20

ν

)k

; k = 1, 2, 3...∞. (11)

In this way derivatives in x are transformed in derivatives in fk using
the operator:

∂

∂x
=

∞∑
1

dfk

dx

∂

∂fk

=
U ′

0

U0f1

∞∑
1

θk
∂

∂fk

,

(12)

θk = [k (f1 + F )− f1] fk + fk+1.

New universal functions F , H and ξ are used in this transformation:

F = 2 [ξ − (2 + H) f1] ; H =
A0

B0

; ξ = B0(Φ0ηη)η=0. (13)

Also, dimensionless displacement thickness A0 and momentum thick-
ness B0 are introduced:
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∞∫

0
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b
2
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
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b
2
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0
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
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2
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When the system of governing equations for the dynamic boundary
layer (1-2) is transformed, by the means of shown transforming proce-
dure, the system of partial differential equations is obtained for universal
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stream functions Φ0 and Φ1. These results were presented in the paper
[12]. For the functions P0 and P1, and R0 and R1 two independent systems
of partial differential equations with corresponding boundary conditions
are obtained:

1
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1

2B2
0

[
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]
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Differential equations (19-22) are not strictly universal, since Prantdl
number remains as parameter. First equation in each system, equations
(16) and (18), determines the solution of the basic flow, and the second one,
equations (17) and (18), gives the solutions that represents the influence
of rotation.
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3 The results and their application

Since in paper [1], as well as in numerous other applications, were confirmed
that first parameter f1 of the group of parameters fk is ”strong”, that
means that the practical influence of the parameters of orders higher than
one is feeble, the equations (16) were derived in so-called one-parametric
approximation. That means: f1 6= 0, f2 = f3 = ... = 0. One-parametric
solutions were obtained numerically using finite difference method in the
paper [13] for two values of the Prandtl number, Pr = 0, 72 and Pr = 1,
since the incompressible fluid is treated.

In the case of constant wall temperature it is important to determine
heat transfer process in boundary layer, between the surface and fluid. For
such purpose the values of second derivation on the surface of the treated
functions P0,P1, R0 and R1 were calculated and presented on the Fig.2.
It is evident that the basic influence of friction, expressed by the function
(P0η)η=0, is relatively feeble, since it decreases slowly along the boundary
layer. On the other hand, the influence of the given wall temperature,
expressed by the function (R0η)η=0 is strong, particularly approaching the
separation point. The influence of rotation on frictional part of heat trans-
fer process, expressed by the function (P1η)η=0 is also strong, rising along
the boundary layer. From Fig. 2 it is obvious that the rotation has fee-
ble influence on the part of heat transfer process due to given constant
wall temperature, since the function (R1η)η=0 along the boundary layer is
almost constant.

To study heat transfer process on a rotating surface the obtained uni-
versal results were applied on the NACA 0010-34 airfoil. Using from [14]
dimensionless velocity distribution Ũ0 = U0/U∞ as a function of dimen-
sionless coordinate x = x′/L for this foil characteristic function (f1/B

2
0)p:

(
f1

B2
0

)

p

= a0
Ũ ′

0

Ũ b0
0

x∫

0

Ũ b0−1
0 dx =

(
f1

B2
0

)

u

, (20)

was calculated and compared with its value obtained from the universal
solution: (f1/B

2
0)u, in order to find the section on the foil to apply the

universal solutions. In that way correlation between local coordinate of
the contour x and form parameter f1 is established.

Heat transfer process within the boundary layer is characterized by
local heat transfer coefficient. In dimensionless form it is known as Nusselt
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Figure 2: Distribution of parietal values (P0η)η=0, (R0η)η=0, (P1η)η=0,
(R1η)η=0 for Pr = 0.72.

number, and can be defined as:

Nu =
h (x) L

c
=

1

Tw − T∞

(
∂T

∂η

)

η=0

=

[
1

2
EcPη(x, 0, Pr) + ΩRη(x, 0, Pr)

]
=

= −
{[

1

2
EcP0η(x, 0, Pr) + R0η(x, 0, Pr)

]
+

Ω̃Ω0

[
1

2
EcP1η(x, 0, Pr) + R1η(x, 0, Pr)

]}

(21)

Eckert number, manifesting the ratio of the functions P and R, is
defined as:

Ec =
U2
∞

2c (Tw − T∞)
. (22)
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The influence of rotation (8) can be presented as:

Ω = Ω0Ω̃, (23)

where:

Ω0 =
2ω0L

U∞
√

Re∞
(24)

is specific rotational parameter, depending on particular flow conditions;

Ω̃ =

(
a0ν

x∫
0

Ũ bo−1
0 dx

)− 1
2

Ũ
1+bo/2
0

(25)

is local rotational parameter depending on velocity distribution, i.e. con-
tour form.

On the Fig. 3 the Nusselt number distribution along the foil contour
is shown, with Eckert number as parameter, for the case without rotation
(Ω0 = 0). It is obvious that heat transfer process increases along the
boundary layer approaching the separation point. Decreasing the Eckert
number also intensifies the heat process.

The Fig. 4 shows the influence of rotation on heat transfer process in
boundary layer. In general, this influence is feeble, rising with the growth
of the Eckert number.

Although the main practical interest in the treated case is to determine
local heat transfer coefficient along the boundary layer, the results obtained
can be also used to study how the process develops in normal to surface
direction - y. For this reason dimensionless temperature profiles, defined
as:

θ̃ =
T − T∞
Tw − T∞

= 1
2
EcP (f1, η, 0.72) + R(f1, η, 0.72) =

[
1

2
EcP0(f1, η, 0.72) + R0(f1, η, 0.72)

]
+

Ω0Ω̃

[
1

2
EcP0(f1, η, 0.72) + R0(f1, η, 0.72)

]
(26)
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Figure 3: Nuselt number distribution along the aerofoil NACA 0010 − 34
for Pr = 0.72 without rotation (Ω0 = 0) with Eckert number as parameter.
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Figure 4: Infuence of rotation (Ω0 = Oo) on Nuselt number distribution
along the aerofoil NACA0010− 34 for sPr = 0.72 (Ec = 6).
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were calculated for the air, Pr = 0.72, for the section where f1 = 0. This
section, corresponding to the point of maximal velocity/minimal pressure,
is quite suitable, since boundary layer is fully developed.

On the Fig. 5 the influence of the Eckert number is presented, for the
case without rotation. It is evident that the growth of Eckert number leads
to the increase of temperature within the boundary layer.
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Figure 5: Infuence of the Eckert number on temperature profiles for Pr =
0.72, f1 = 0, Ω0 = 0.

The influence of rotation is presented on the Fig. 6, for the Eckert
number Ec = 2. The weak influence of rotation is obvious, particularly
near to the surface, in the inner part of the boundary layer, increasing the
temperature on the leading surface and lessening it on the trailing surface.
In the outer part of the boundary layer the influence of the rotation is
a little stronger, decreasing the temperature on the leading surface and
rising it on the trailing surface.

4 Conclusions

Procedure presented in this paper, showing the method for calculating dis-
tinctive features of the temperature boundary layer for the case of constant
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Figure 6: Infuence of rotation (Ω0 = Oo) on temperature profiles for Pr =
0.72, f1 = 0, Ec = 2.

wall temperature, seems to be quite suitable for application in technical
practice. Proceeding from the solutions of the universal functions for par-
ticular Prandtl number, heat transfer process between the surface and a
working fluid can be defined, calculating the Nusselt number on the par-
ticular contour (here aerofoil NACA 0010-34 was chosen). If necessary,
for certain section of the aerofoil, profiles of the dimensionless tempera-
ture can be calculated in order to clarify the heat transfer process within
the boundary layer. Procedure is rather simple and can be completed us-
ing standard programs for spreadsheet calculations (EXCEL for example).
Precision of the calculations is very high, what is not evident, since the
results are shown graphically.

Presented results enable the estimation of working parameters, signif-
icant in the treated case of the constant wall temperature. It is evident
that heat transfer between the surface and a working fluid, defined by the
Nusselt number, rises along the contour from the stagnation point towards
the separation point. Decreasing of the Eckert number results in growth
of the Nusselt number. From the presented results it seems that the influ-
ence of rotation is particularly feeble, particularly in the inner part of the
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boundary layer, near to wall.
The principal limitations of the presented model of the temperature

boundary layer lie in the assumption of incompressibility. In order to
avoid these restrictions more realistic model of the compressible boundary
layer has to be taken in further work.
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Temperaturski granični sloj na rotirajućoj konturi -
slučaj konstantne temperature zida

UDC 532.526, 536.24

Za slučaj konstantne temperature konture jednačine nestǐsljivog lam-
inarnog temperaturskog graničnog sloja transformisane su u univerzalni
oblik uvodjenjem grupe parametara Lojscjanskog [1] i transformacijama
Saljnikova [2], sa Prantlovim brojem kao parametrom. Koristeći univerzalne
rezultate za vazduh (Pr = 0.72) razvijen je postupak za proračun Nusel-
tovog broja (bezdimenzionog koeficijenta prelaza toplote) na odredjenoj
konturi (aeroprofil NACA 0010-34). Takodje su dati bezdimenzioni profili
temperature u graničnom sloju. Variran je parametar obrtanja 0, kao i
Ekertov broj, i prikazan je i analiziran njihov uticaj na prelaz toplote sa
površine na radni fluid.


