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Abstract

This paper investigates ionized gas flow in the boundary layer
when its electroconductivity is varied. The flow is planar and
the contour is porous. At first, it is assumed that the ionized gas
electroconductivity σ depends only on the longitudinal variable.
Then we adopt that it is a function of the ratio of the longitudi-
nal velocity and the velocity at the outer edge of the boundary
layer. For both electroconductivity variation laws, by applica-
tion of the general similarity method, the governing boundary
layer equations are brought to a generalized form and numerically
solved in a four-parametric three times localized approximation.
Based on many tabular solutions, we have shown diagrams of the
most important nondimensional values and characteristic bound-
ary layer functions for both of the assumed laws. Finally, some
conclusions about influence of certain physical values on ionized
gas flow in the boundary layer have been drawn.
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Nomenclature

A, B boundary layer characteristics
a, b constants
Bm induction of outer magnetic field
cp specific heat of ionized gas at constant pressure
Fmp characteristic boundary layer function
f1 = f first form parameter
fk set of form parameters
g1 = g first magnetic parameter
gk set of magnetic parameters
H, H1 boundary layer characteristics
h enthalpy
h̄ nondimensional enthalpy
he enthalpy at the outer edge of the boundary layer
hw enthalpy at the wall of the body within the fluid
h1 enthalpy at the front stagnation point of the body

within the fluid
i, j iteration number
Le Lewis number
M discrete point
Pr Prandtl number
p pressure
Q nondimensional function
s new longitudinal variable
u longitudinal projection of velocity in the boundary layer
ue velocity at the boundary layer outer edge
Vw conditional transversal velocity
v transversal projection of velocity in the boundary layer
vw velocity of injection (or ejection) of the fluid
x, y longitudinal and transversal coordinate
Z∗∗ function
z new transversal variable
∆∗ conditional displacement thicknesses
∆∗∗ conditional momentum loss thickness
∆∗

1, ∆∗∗
1 conditional thicknesses

ζ nondimensional friction function
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η nondimensional transversal coordinate
κ = f0 local compressibility parameter
Λ1 = Λ first porosity parameter
Λk set of porosity parameters
λ thermal conductivity coefficient
µ dynamic viscosity
µ0 known values of dynamic viscosity of the ionized gas
µw given distributions of dynamic viscosity at the wall

of the body within the fluid
ν0 kinematic viscosity at a concrete point of the boundary

layer
ρ ionized gas density
ρe ionized gas density at the outer edge of the boundary

layer
ρ0 known values of density of the ionized gas
ρw given distributions of density at the wall of the body

within the fluid
σ electroconductivity
τw shear stress at the wall of the body within the fluid
Φ nondimensional stream function
ψ stream function
ψ∗ new stream function

1 Introduction

This paper investigates a very complex ionized gas (air) flow in the
boundary layer around a porous contour. The solution of this problem
is in a way similar to solution of other complex problems of fluid flow in
the boundary layer for both incompressible [1] and compressible fluid. At
supersonic flow velocities, gas dissociation is followed by ionization. As
a result, gas becomes electroconductive. When ionized gas is under the
influence of the magnetic field, an electric flow is formed in the gas. Due
to this flow, the so-called Lorentz force and Joule heat generate. These
two effects result in additional terms in the governing equations in which
the ionized gas electroconductivity σ appears. Electroconductivity is one
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of the most important properties of ionized gas, so investigation of the
influence of electroconductivity variation on this boundary layer flow is
very important both from the aspect of theory and methodology and
from the aspect of practical application.

Very important results in investigation of the dissociated gas flow are
given in the book by Dorrance [2]. In his works, Loitsianskii [1,3] and the
members of his school (e.g. Krivtsova [4,5]) performed a detailed inves-
tigation of the dissociated gas flow in the boundary layer. Investigators
of the so-called Belgrade School of the Boundary Layer, led by Saljnikov
[6], were also dedicated to investigation of these problems. Important
are the works of Boricic et al. [7,8], Ivanovic [9] which investigate MHD
boundary layer on a nonporous and porous contour of the body within
the fluid, and the works of Miric-Milosavljevic and Pavlovic [e.g. 10]
which investigate the temperature boundary layer. These and other
papers have successfully applied the general similarity method. This
method, developed by Loitsianskii and improved by Saljnikov, is ana-
lytical and numerical by nature and it represents a modern method for
calculation of the laminar boundary layers. Applying this method, the
governing equation system is in the first, analytic part, by means of suit-
able transformations, brought to a general form that defines universal
general similarity solutions, and then, the obtained equation system is
numerically solved in a corresponding parametric approximation. This
way, a generalized analysis of the influence of certain parameters on the
boundary layer development can be made without previously obtaining
solutions of concrete examples.
The book [1] studies the ionized gas flow in the boundary layer along
a flat nonporous plate when the magnetic field is present. Our paper,
however, studies the laminar boundary layer on a body of an arbitrary
shape, when the ionized gas flow is planar and steady and the contour of
the body within the fluid is porous. Perpendicularly to the porous wall,
the ionized gas of the same physical characteristics as the gas in the
basic stream is injected i.e. ejected with the velocity vw(x). The outer

magnetic field with the induction ~Bm is perpendicular to the wall of the
body within the fluid, therefore Bmx = 0, while Bmy = Bm . The thick-
ness of the boundary layer is small, so based on [1], it is considered that
the power of the field is Bm = Bm(x) and that the magnetic Reynold’s
number is very small. Therefore, for the case of the ionized gas flow
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in the magnetic field, the complete equation system of the steady pla-
nar laminar boundary layer in the conditions of equilibrium ionization,
based on [1], is:

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0 ,

ρu
∂u

∂x
+ ρv

∂u

∂y
= −dp

dx
+

∂

∂y

(
µ

∂u

∂y

)
−σ B2

m u ,

ρu
∂h

∂x
+ ρv

∂h

∂y
= u

dp

dx
+ µ

(
∂u

∂y

)2

+
∂

∂y

(
µ

Pr

∂h

∂y

)
+ σ B2

m u2.

(1)

The term σ B2
m u represents Lorentz force and the term σ B2

m u2 Joule
heat. The ionized gas electroconductivity σ appears only in these (un-
derlined) terms, therefore only they will differ when the electroconduc-
tivity is varied.

The corresponding boundary layer conditions are:

u = 0 , v = vw(x) , h = hw for y = 0 ,

u → ue(x) , h → he(x) for y →∞,
(2)

where v = vw(x) points out to a porous wall of the body within the
fluid.

In the equation system (1) and in the boundary conditions (2) the
notation common in the boundary layer theory is used: u(x, y) - longitu-
dinal projection of velocity in the boundary layer, v (x, y) - transversal
projection, ρ - ionized gas density, p - pressure, h - enthalpy, µ - coeffi-
cient of dynamic viscosity, σ - ionized gas electroconductivity and Pr -
Prandtl number. The indices denote w - values on the wall of the body
within the fluid and e - physical values at the outer edge of the boundary
layer.

In order to enrich the literature on the boundary layer, the ionized
gas electroconductivity is varied in the paper. Since the exact law on
variation of the ionized gas electroconductivity is not known, by analogy
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with MHD boundary layer, it is first assumed to be a function of the
longitudinal coordinate [11], and then to be a function of the ratio of the
velocity [12] in the boundary layer and the velocity at the outer edge of
the boundary layer, i.e. that it is:

a) σ = σ(x) ,

b) σ = σ0

(
1− u

ue

)
, (σ0 = const.).

(3)

If the pressure is eliminated from the equation system (1), based
on the conditions for the outer edge of the boundary layer (u(x, y) →
ue(x) ,

(
∂u
∂y

)
e
→ 0 , ρ → ρe ) , the system will take the following form:

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0 ,

ρu
∂u

∂x
+ ρv

∂u

∂y
= ρeue

due

dx
+

∂

∂y

(
µ

∂u

∂y

)
+ σ B2

m (ue − u) ,

ρu
∂h

∂x
+ ρv

∂h

∂y
= −u ρeue

due

dx
+ µ

(
∂u

∂y

)2

+

∂

∂y

(
µ

Pr

∂h

∂y

)
+σB2

m (u2 − uue) ;

(4)

where the boundary conditions (2) remain unchanged.
The equation system (4) applies to the electroconductivity variation

law (3a). In case when the electroconductivity is a function of the ve-
locity ratio, the underlined terms have the following form:

b) − σ B2
m u , +σB2

m u2. (4’)

2 Transformation of the boundary layer

equations

Modern methods of solution of the boundary layer equations involve the
usage of the momentum equation. In case of the ionized gas flow in the
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boundary layer along a porous wall, this equation will have the simplest
form if, instead of the physical coordinates x and y, we introduce new
variables [3] in the form of the following transformations:

s(x) =
1

ρ0 µ0

x∫

0

ρwµw dx , z(x, y) =
1

ρ0

y∫

0

ρ dy (5)

and if we introduce the stream function ψ(s, z) using the relations:

u =
∂ψ

∂z
, ṽ =

ρ0µ0

ρwµw

(
u

∂z

∂x
+ v

ρ

ρ0

)
= −∂ψ

∂s
. (6)

Here the values ρ0 and µ0 denote the known values of the density and
the dynamic viscosity of the ionized gas (air) at a concrete point.

Applying transformations (5) and (6), the governing equation sys-
tem, together with the boundary conditions, is transformed and bought
to the form:

∂ψ

∂z

∂2ψ

∂s∂z
− ∂ψ

∂s

∂2ψ

∂z2
=

ρe

ρ
ue

due

ds
+ ν0

∂

∂z

(
Q

∂2ψ

∂z2

)

+
ρ0 µ0

ρw µw

σB2
m

ρ

(
ue − ∂ψ

∂z

)
,

∂ψ

∂z

∂h

∂s
− ∂ψ

∂s

∂h

∂z
= − ρe

ρ
ue

due

ds

∂ψ

∂z
+ ν0 Q

(
∂2ψ

∂z2

)2

+

ν0
∂

∂z

(
Q

Pr

∂h

∂z

)
+

ρ0 µ0

ρw µw

σB2
m

ρ

∂ψ

∂z

(
∂ψ

∂z
− ue

)
;

(7)

∂ψ

∂z
= 0 ,

∂ψ

∂s
= − µ0

µw

vw = − ṽw , h = hw for z = 0 ,

∂ψ

∂z
→ ue(s) , h → he(s) for z →∞ .

The equation system (7) applies to the case when the electrocon-
ductivity is varied in accordance with the law (3a). For the electrocon-
ductivity variation law (3b), the obtained equations differ from the ones
above only in the underlined terms. In that case these terms are:
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b) −σ0B
2
m

ρue

ρ0 µ0

ρw µw

(
ue − ∂ψ

∂z

)
∂ψ

∂z
,

(7’)

+
σ0B

2
m

ρue

ρ0 µ0

ρw µw

(
ue − ∂ψ

∂z

) (
∂ψ

∂z

)2

.

In the transformed equations (7), the nondimensional function Q and
Prandtl number Pr are determined with the expressions:

Q =
ρ µ

ρwµw

, Pr =
µ cp

λ
, (8)

where λ - thermal conductivity coefficient and cp - specific heat of ionized
gas at constant pressure.

In order to solve the equation system (4), it is necessary to derive the
momentum equation of the ionized gas on a body with a porous contour.
It has been derived in this paper, it has the same form for both of the
assumed forms of the electroconductivity variation law, and it is:

dZ∗∗

ds
=

Fmp

ue

. (9)

While obtaining the momentum equation, the usual values are in-
troduced: parameter of the form f(s), magnetic parameter g(s), condi-
tional displacement thickness ∆∗, conditional momentum loss thickness
∆∗∗, conditional thicknesses ∆∗

1 and ∆∗∗
1 , shear stress at the wall of the

body within the fluid τw, nondimensional friction function ζ(s), nondi-
mensional values H and H1 and characteristic function of the boundary
layer on a porous wall Fmp. For the ionized gas flow, these values are
for both electroconductivity variation laws, defined by the relations:

Z∗∗ =
∆ ∗∗2

ν0

, f(s) = f1(s) =
u′e ∆∗∗2

ν0

= u′e Z∗∗,

g (s) = g1 (s) = NσZ
∗∗, Nσ =

ρ0 µ0

ρw µw

N̄ ,
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∆ ∗(s) =

∞∫

0

(
ρe

ρ
− u

ue

)
dz, ∆ ∗∗(s) =

∞∫

0

u

ue

(
1 − u

ue

)
dz ,

τw(s) =

(
µ

∂u

∂y

)

y=0

=
ρw µw

ρ0

ue

∆ ∗∗ ζ ;

ζ(s) =

[
∂ (u/ue)

∂ (z/∆∗∗)

]

z=0

, H =
∆ ∗

∆ ∗∗ ;

(10)

a) N̄ =
σB2

m

ρe

, H1 =
∆∗

1

∆ ∗∗ , ∆∗
1(s) =

∞∫

0

ρe

ρ

(
1 − u

ue

)
dz ,

Fmp = 2 [ ζ − (2 + H) f ]− 2gH1 − 2Λ ,

b) N̄ =
σ0B

2
m

ρe

, H1 =
∆∗∗

1

∆ ∗∗ , ∆∗∗
1 (s) =

∞∫
0

u

ue

(
1 − u

ue

)
ρe

ρ
dz ,

Fmp = 2 [ ζ − (2 + H) f ] + 2gH1 − 2Λ .

As a result of the porous wall of the body within the fluid, an addend
appears in the momentum equation. It is now necessary to introduce a
new parameter – the so-called porosity parameter Λ(s):

Λ = − µ0

µw

vw∆ ∗∗

ν0

= −Vw∆ ∗∗

ν0

= Λ(s) (11)

defined with the value

Vw(s) =
µ0

µw

vw = ṽw

which is in our investigations [11] called a conditional transversal velocity
at the inner edge of the boundary layer when the wall of the body within
the fluid is porous.

For the application of the general similarity method, it is very im-
portant that the boundary conditions and the stream function on the
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wall of the body within the fluid, for both electroconductivity variation
laws, remain the same as with the nonporous wall. That is why, as with
incompressible fluid, a new stream function ψ∗(s, z) is introduced in the
form of the relation

ψ(s, z) = ψw(s) + ψ∗(s, z) , ψ∗(s, 0) = 0 (12)

where ψ(s, 0) = ψw(s) stands for the stream function along the wall of
the body within the fluid.

Applying the relations (12), the system (7) is transformed into the
equation system:

∂ψ∗

∂z

∂2ψ∗

∂s∂z
− ∂ψ∗

∂s

∂2ψ∗

∂z2
− dψw

ds

∂2ψ∗

∂z2
=

ρe

ρ
ueu

′
e + ν0

∂

∂z

(
Q

∂2ψ∗

∂z2

)
+

σB2
m

ρ

ρ0 µ0

ρw µw

(
ue − ∂ψ∗

∂z

)
,

∂ψ∗

∂z

∂h

∂s
− ∂ψ∗

∂s

∂h

∂z
− dψw

ds

∂h

∂z
= − ρe

ρ
ueu

′
e

∂ψ∗

∂z
+ ν0 Q

(
∂2ψ∗

∂z2

)2

+

ν0
∂

∂z

(
Q

Pr

∂h

∂z

)
+

σB2
m

ρ

ρ0 µ0

ρw µw

[
∂ψ∗

∂z

(
∂ψ∗

∂z
− ue

)]
;

ψ∗ = 0 ,
∂ψ∗

∂z
= 0 , h = hw for z = 0 ,

∂ψ∗

∂z
→ ue(s) , h → he(s) z →∞ .

(13)

It applies to the electroconductivity variation law (3a). For the form
(3b) the underlined terms in the dynamic and energy equation are:

b) − σ0B
2
m

ρue

ρ0 µ0

ρw µw

(
ue − ∂ψ∗

∂z

)
∂ψ∗

∂z
,

+
σ0B

2
m

ρue

ρ0 µ0

ρw µw

(
ue − ∂ψ∗

∂z

) (
∂ψ∗

∂z

)2

. (13’)
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3 General mathematical model

In order to obtain the generalized boundary layer equations, it is nec-
essary from the very beginning to introduce new transformations in the
form of the expressions:

s = s, η(s, z) =
u

b/2
e

K(s)
z,

ψ∗(s, z) = u
1−b/2
e K(s) Φ [η , κ , (fk) , (gk) , (Λk)] ,

h(s, z) = h1 · h̄ [η , κ , (fk) , (gk) , (Λk)] ;

he + u2
e

2
= h1 = const.,

K(s) =

(
aν0

s∫
0

ub−1
e ds

)1/2

; a, b = const.

(14)

In thus defined similarity transformations, the common notation is
used: η(s, z) - newly introduced transversal variable, Φ - newly intro-
duced stream function and h̄ - nondimensional enthalpy.

Based on the expressions for the variable η(s, z), certain important
values and characteristics of the boundary layer (10) can be written in
the form of suitable relations:

u = ue
∂Φ

∂η
, ∆∗∗(s) =

K(s)

u
b/2
e

B(s) , B(s) =

∞∫

0

∂Φ

∂η

(
1 − ∂Φ

∂η

)
dη ,

∆∗(s)
∆∗∗(s)

= H =
A(s)

B(s)
, A(s) =

∞∫

0

(
ρe

ρ
− ∂Φ

∂η

)
dη ,

ζ = B

(
∂2Φ

∂η2

)

η=0

,
f

B2
=

a u′e
ub

e

s∫

0

ub−1
e ds ; (15)

a)
∆∗

1(s)

∆∗∗(s)
= H1 =

A1(s)

B(s)
; A1(s) =

∞∫

0

ρe

ρ

(
1− ∂Φ

∂η

)
dη ,
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b)
∆∗∗

1 (s)

∆∗∗(s)
= H1 =

A1(s)

B(s)
; A1(s) =

∞∫

0

∂Φ

∂η

(
1− ∂Φ

∂η

)
ρe

ρ
dη .

In the nondimensional functions Φ and h̄ and in the generalized
similarity transformations (14), we introduce: local parameter of the
ionized gas compressibility κ = f0, set of parameters of the form fk of
Loitsianskii type [3], set of magnetic parameters gk and a set of porosity
parameters Λk [13]:

κ = f0(s) =
u2

e

2h1

, fk(s) = uk−1
e u

(k)
e Z∗∗k,

gk(s) = uk−1
e N

(k−1)
σ Z∗∗k,

Λk(s) = −uk−1
e

(
Vw√
ν0

)(k−1)

Z∗∗k−1/2 ( k = 1, 2, 3, ... ) .

(16)

They represent new independent variables, instead of the longitudi-
nal variable s.

The local compressibility parameter κ = f0 and the stated sets of
parameters satisfy the corresponding simple recurrent differential equa-
tions in the form of:

ue

u′e
f1

dκ

ds
= 2 κ f1 = θ0 ,

ue

u′e
f1

dfk

ds
= [ (k − 1)f1 + kFmp ] fk + fk+1 = θk,

ue

u′e
f1

dgk

ds
g′k = [ (k − 1) f1 + k Fmp ] gk + gk+1 = γk,

ue

u′e
f1

dΛk

ds
= { (k − 1)f1 + [ (2k − 1)/2 ] Fmp } Λk + Λk+1 = χk.

(k = 1, 2, 3, ...)
(17)
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Applying the similarity transformations (14) and (16) to the sys-
tem (13), i.e. (13’), the boundary layer equation system is obtained as
follows:

∂

∂η

(
Q

∂2Φ

∂η2

)
+

aB2 + (2− b) f1

2 B2
Φ

∂2Φ

∂η2
+

f1

B2

[
ρe

ρ
−

(
∂Φ

∂η

)2
]

+
g1

B2

ρe

ρ

(
1− ∂Φ

∂η

)
+

Λ1

B

∂2Φ

∂η2
=

1

B2

[ ∞∑

k=0

θk

(
∂Φ

∂η

∂2Φ

∂η ∂fk

− ∂Φ

∂fk

∂2Φ

∂η2

)
+

+
∞∑

k=1

γk

(
∂Φ

∂η

∂2Φ

∂η ∂gk

− ∂Φ

∂gk

∂2Φ

∂η2

)

+
∞∑

k=1

χk

(
∂Φ

∂η

∂2Φ

∂η ∂Λk

− ∂Φ

∂Λk

∂2Φ

∂η2

)]
,

∂

∂η

(
Q

Pr

∂h̄

∂η

)
+

aB2 + (2− b) f1

2 B2
Φ

∂h̄

∂η
−

2κf1

B2

ρe

ρ

∂Φ

∂η
+ 2κQ

(
∂2Φ

∂η2

)2

−

− 2κg1

B2

ρe

ρ

(
1− ∂Φ

∂η

)
∂Φ

∂η
+

Λ1

B

∂h̄

∂η
= (18)

1

B2

[ ∞∑

k=0

θk

(
∂Φ

∂η

∂h̄

∂fk

− ∂Φ

∂fk

∂h̄

∂η

)
+

+
∞∑

k=1

γk

(
∂Φ

∂η

∂h̄

∂gk

− ∂Φ

∂gk

∂h̄

∂η

)
+

∞∑

k=1

χk

(
∂Φ

∂η

∂h̄

∂Λk

− ∂Φ

∂Λk

∂h̄

∂η

)]
;
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b) − g1

B2

ρe

ρ

(
1− ∂Φ

∂η

)
∂Φ

∂η
,

(18’)

+
2κg1

B2

ρe

ρ

(
1− ∂Φ

∂η

) (
∂Φ

∂η

)2

.

The transformed boundary conditions are:

Φ =
∂Φ

∂η
= 0 , h̄ = h̄w = const. for η = 0 ,

∂Φ

∂η
→ 1 , h̄ → h̄e = 1− κ for η →∞ .

(19)

It can be seen that the outer velocity of the boundary layer ue(s)
appears explicitly neither in the obtained equation system (18), i.e. (18’)
nor in the boundary conditions (19). Therefore, this equation system is
generalized and it represents a general mathematical model of the ionized
gas flow along a porous wall of the body within the fluid for both of the
assumed electroconductivity variation laws.

In the equation system (18) i.e. (18’), we can notice that there are
terms that depend on the porosity parameter and that there is a sum
of terms that are multiplied with the function χk. In the case of a
nonporous wall of the body within the fluid, all the porosity parameters
equal zero. Therefore, all the mentioned terms equal zero. In that case,
the generalized system with the boundary conditions comes down to the
corresponding equation system [14] that refers to the case of a flow along
a nonporous wall of the body within the fluid.

4 Numerical solution

In order for the system (18), i.e. (18’), with the boundary conditions
(19), to be solved numerically, a finite number of parameters is adopted.
Then, the solution is obtained in an n - parametric approximation. Due
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to numerous difficulties encountered in the course of solution of this sys-
tem, only a relatively small number of parameters can be included, even
with modern computers. If we assume that all the similarity parameters,
from the second one onwards, equal zero, i.e. if:

κ = f0 6= 0 , f1 = f 6= 0 , g1 = g 6= 0 , Λ1 = Λ 6= 0 ;
(20)

f2 = f3 = ... = 0 , g2 = g3 = ... = 0 , Λ2 = Λ3 = ... = 0 ,

the obtained equation system is significantly simplified. The so-called
localization is also performed because of these difficulties. If the deriva-
tives per the compressibility, magnetic and porosity parameters are ne-
glected (∂/∂κ = 0, ∂/∂g1 = 0, ∂/∂Λ1 = 0), the system (18) is con-
siderably simplified, and in the four-parametric three times localized
approximation, it is:

∂

∂η

(
Q

∂2Φ

∂η2

)
+

aB2 + (2− b) f

2 B2
Φ

∂2Φ

∂η2
+

f

B2

[
ρe

ρ
−

(
∂Φ

∂η

)2
]

+
g

B2

ρe

ρ

(
1− ∂Φ

∂η

)
+

+
Λ

B

∂2Φ

∂η2
=

Fmpf

B2

(
∂Φ

∂η

∂2Φ

∂η ∂f
− ∂Φ

∂f

∂2Φ

∂η2

)
,

∂

∂η

(
Q

Pr

∂h̄

∂η

)
+

aB2 + (2− b) f

2 B2
Φ

∂h̄

∂η
−

2κf

B2

ρe

ρ

∂Φ

∂η
+ 2κQ

(
∂2Φ

∂η2

)2

−

− 2κg

B2

ρe

ρ

(
1− ∂Φ

∂η

)
∂Φ

∂η
+

Λ

B

∂h̄

∂η
=

Fmpf

B2

(
∂Φ

∂η

∂h̄

∂f
− ∂Φ

∂f

∂h̄

∂η

)
; (21)

b) − g

B2

ρe

ρ

(
1− ∂Φ

∂η

)
∂Φ

∂η
,
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+
2κg

B2

ρe

ρ

(
1− ∂Φ

∂η

) (
∂Φ

∂η

)2

. (21’)

Here, the boundary conditions (19) remain unchanged.

In the equations of the system (21), i.e. (21’), the index 1 is left out
in the first parameters. Each of the equations contains a different term
that characterizes a porous wall of the body within the fluid.

For numerical integration of the obtained system of differential par-
tial equations of the third order, it is necessary to decrease the order of
the differential equation. Applying the usual transformation [15]

u

ue

=
∂Φ

∂η
= ϕ = ϕ (η , κ , f, g, Λ) , (22)

the order of the differential equation of this system has been decreased,
and now the system, together with the boundary conditions, has the
following form:

∂

∂η

(
Q

∂ϕ

∂η

)
+

aB2 + (2− b)f

2B2
Φ

∂ϕ

∂η
+

f

B2

[
ρe

ρ
− ϕ2

]
+

g

B2

ρe

ρ
(1− ϕ) +

Λ

B

∂ϕ

∂η
=

Fmpf

B2

(
ϕ

∂ϕ

∂f
− ∂Φ

∂f

∂ϕ

∂η

)
,

∂

∂η

(
Q

Pr

∂h

∂η

)
+

aB2 + (2− b)f

2B2
Φ

∂h

∂η
− (23)

2 κ f

B2

ρe

ρ
ϕ + 2κQ

(
∂ϕ

∂η

)2

−2κg

B2

ρe

ρ
(1− ϕ) ϕ+

Λ

B

∂h

∂η
=

Fmpf

B2

(
ϕ

∂h

∂f
− ∂Φ

∂f

∂h

∂η

)
;
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Φ = ϕ = 0, h̄ = h̄w = const. for η = 0,

ϕ → 1 , h̄ → h̄e = 1− κ for η →∞ .

In case when the electroconductivity is varied according to the law
(3 b), the underlined terms are:

b) − g

B2

ρe

ρ
(1− ϕ) ϕ ; +

2κg

B2

ρe

ρ
(1− ϕ) ϕ2. (23’)

For the nondimensional function Q [14] and the density ratio ρe/ρ
[4] that appear in the equations (23), approximation formulae are used:

Q = Q (h̄) =

(
h̄w

h̄

)1/3

,
ρe

ρ
≈ h̄

1− κ
. (24)

A concrete numerical solution of the obtained system of nonlinear
and conjugated differential partial equations (23) is done by finite dif-
ferences method, i.e., ”passage method” or TDA method. Based on the
planar integration grid, the derivatives of the functions ϕ , Φ and h̄ are
substituted with finite differences ratios, and the equation system (23)
is brought down to the following system of algebraic equations:

(I) ai
M,K+1ϕ

i
M−1,K+1 − 2bi

M,K+1ϕ
i
M,K+1 + ci

M,K+1ϕ
i
M+1,K+1 = gi

M,K+1,

(II) aj
M,K+1h

j

M−1,K+1 − 2bj
M,K+1h

j

M,K+1 + cj
M,K+1h

j

M+1,K+1 = gj
M,K+1;

M = 2, 3, ..., N − 1; K = 0, 1, 2, ...; i, j = 0, 1, 2, ...

Φi
1,K+1 = ϕi

1,K+1 = 0, h
j

1,K+1 = hw = const. for M = 1 ,

ϕi
N,K+1 = 1, h

j

N,K+1 = 1− κ for M = N,
(25)

that apply for both forms of the electroconductivity variation law. The
algebraic equation system (25) consists of two subsystems – dynamic
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(I) and thermodynamic (II). When the electroconductivity is varied ac-
cording to the law (3 a), the coefficients ai

M,K+1 , bi
M,K+1 ,ci

M,K+1 and
gi

M,K+1 of the dynamic subsystem are determined by the expressions:

ai
M,K+1 = Qj−1

M,K+1 −
1

4
(Qj−1

M+1,K+1 −Qj−1
M−1,K+1)−

∆η

2(Bi−1
K+1)

2

{
[
a(Bi−1

K+1)
2+(2− b)fK+1

] Φi−1
M,K+1

2
+

F i−1
mp,K+1fK+1

Φi−1
M,K+1 − ΦM,K

∆f

}
− ∆η

2

Λ

Bi−1
K+1

,

bi
M,K+1 = Qj−1

M,K+1+
(∆η)2

2(Bi−1
K+1)

2

[
fK+1ϕ

i−1
M,K+1

(
1 +

F i−1
mp,K+1

∆f

)
+ g

h̄j−1
M,K+1

1− κ

]
,

(26)

ci
M,K+1 = Qj−1

M,K+1 +
1

4
(Qj−1

M+1,K+1 −Qj−1
M−1,K+1) +

∆η

2(Bi−1
K+1)

2

{
[
a(Bi−1

K+1)
2+(2− b)fK+1

] Φi−1
M,K+1

2
+

F i−1
mp,K+1fK+1

Φi−1
M,K+1 − ΦM,K

∆f

}
+

∆η

2

Λ

Bi−1
K+1

,

gi
M,K+1 = − (∆η)2

(Bi−1
K+1)

2

[
(fK+1 + g)

h̄j−1
M,K+1

1− κ
+ F i−1

mp,K+1fK+1ϕ
i−1
M,K+1

ϕM,K

∆f

]
.

Applying the law (3b), the coefficients ai
M,K+1 and ci

M,K+1 are the
same as in the expressions (26), while bi

M,K+1 and gi
M,K+1 differ and

they are:
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bi
M,K+1 = Qj−1

M,K+1 +
(∆η)2

2(Bi−1
K+1)

2

[
fK+1ϕ

i−1
M,K+1

(
1 +

F i−1
mp,K+1

∆f

)
+

g
h̄j−1

M,K+1

1− κ
(1− ϕi−1

M,K+1)

]
,
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M,K+1 = − (∆η)2

(Bi−1
K+1)

2
fK+1

[
h̄j−1

M,K+1

1− κ
+ F i−1

mp,K+1ϕ
i−1
M,K+1

ϕM,K

∆f

]
. (26’)

In the thermodynamic subsystem, the corresponding coefficients for
the electroconductivity variation law (3a) are:

aj
M,K+1 =

Qj−1
M,K+1

Pr
− 1

4 Pr
(Qj−1

M+1,K+1 −Qj−1
M−1,K+1)−

∆η

2(Bi−1
K+1)

2

{
[
a(Bi−1

K+1)
2+(2− b)fK+1
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2
+
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}
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2

Λ
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,
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Pr
+

(∆η)2
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2
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2κ
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+
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+

2κg
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]
, (27)
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1

4 Pr
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M−1,K+1) +

∆η

2(Bi−1
K+1)

2

{
[
a(Bi−1
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2
+



168 S.Savić, B.Obrović

F i−1
mp,K+1fK+1

Φi−1
M,K+1 − ΦM,K

∆f

}
+

∆η

2

Λ

Bi−1
K+1

,
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M,K+1 = − (∆η)2

(Bi−1
K+1)

2
F i−1

mp,K+1fK+1ϕ
i
M,K+1

hM,K

∆f
−

κ

2
Qj−1

M+1,K+1(ϕ
i
M+1,K+1 − ϕi
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2.

If the law (3b) is applied, only the coefficient bi
M,K+1 will be different.

Here it is:

bj
M,K+1 =

Qj−1
M,K+1

Pr
+

(∆η)2

2(Bi−1
K+1)

2

[
fK+1 ϕi−1

M,K+1

(
2κ

1− κ
+

F i−1
mp,K+1

∆f

)
−

2κg

1− κ
(ϕi−1

M,K+1)
2(1− ϕi−1

M,K+1)

]
. (27’)

The system of algebraic equations (25) comes down to a more suitable
form:

ϕi
N,K+1 = 1 ,

ϕi
M,K+1 = Ki

M,K+1 + Li
M,K+1ϕ

i
M+1,K+1,

ϕi
1,K+1 = 0 ;

h̄j
N,K+1 = 1− κ,

h̄j
M,K+1 = Kj

M,K+1 + Lj
M,K+1h̄

j
M+1,K+1,

h̄j
1,K+1 = h̄w = const.,

(M = N − 1, N − 2, ..., 3, 2)

i, j = 1, 2, 3, ...

(28)
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In the recurrent relations (28) the passage coefficients for the dy-
namic subsystem are:

K i
M,K+1 =

ai
M,K+1K

i
M−1,K+1 − gi

M,K+1

2bi
M,K+1 − ai

M,K+1L
i
M−1,K+1

, K i
1,K+1 = ϕi

1,K+1 = 0 ,

Li
M,K+1 =

ci
M,K+1

2bi
M,K+1 − ai

M,K+1L
i
M−1,K+1

, Li
1,K+1 = 0 .

(29)

These coefficients for the thermodynamic subsystem have the same
form but are essentially different:

Kj
M,K+1 =

aj
M,K+1K

j
M−1,K+1 − gj

M,K+1

2bj
M,K+1 − aj

M,K+1L
j
M−1,K+1

,

Kj
1,K+1 = h̄j

1,K+1 = h̄w = const.,

Lj
M,K+1 =

cj
M,K+1

2bj
M,K+1 − aj

M,K+1L
j
M−1,K+1

, Lj
1,K+1 = 0 . (30)

(M = 2, 3, ..., N − 2, N − 1)

Based on the recurrent formulae, according to the mentioned proce-
dure, the passage coefficients are calculated in direction of increase of
the index M . Having passed through all discrete points of the calcu-
lating layer twice, solutions of the functions ϕ and h̄ are obtained for
that layer. The procedure is repeated for the next calculating layer of
the planar integration grid until the integration is done for the whole
range of possible changes of the parameter of the form f. In the course
of integration, for each calculating layer, based on [16, 17], a number of
knobs has been determined as N = 401.

In the equation system (23), Prandtl number appears explicitly.
Since by nature it depends little on the temperature, we have accepted
that the value of Prandtl number is constant and that for air it is
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Pr = 0.712. The constants a and b are analyzed in the paper [15],
and their values are found to be: a = 0.4408 ; b = 5.7140.

The numerical solution of the equation system (23), i.e. (23’), is done
in the programming language FORTRAN. Therefore, a rather compli-
cated program has been written based on the methodology used in the
paper [15].

Due to localization per the compressibility, porosity and magnetic
parameters, the first derivatives per these parameters are neglected, and
the program enables the equations to be solved for in advance given
values of these, now, simple parameters. Numerical solutions, obtained
in output, are in the form of tables.

5 Obtained results and conclusions

This paper gives only the most important results in the form of cor-
responding diagrams for both ionized gas electroconductivity variation
laws. Figs. 1 and 2 show diagrams of the nondimensional velocity u/ue,
Figs. 3 and 4 show diagrams of the nondimensional enthalpy h̄, while
Figs. 5 and 6 give distributions of the nondimensional friction function
ζ. Diagrams of the nondimensional friction function ζ (Figs. 7 and 8)
and the characteristic boundary layer function Fmp (Figs. 9 and 10) for
different values of the porosity parameter Λ are also given. Based on
this and other [14] diagrams that are not presented here, the following
conclusions have been drawn:

• Behaviour of the characteristics of the ionized gas boundary layer
in case of a porous contour of the body within the fluid, for both
electroconductivity variation laws is similar to the behaviour of
the corresponding characteristics of similar compressible fluid flow
problems [4].

• The nondimensional velocity u/ue in different cross-sections of the
boundary layer very quickly converges towards unity (Figs. 1 and
2).

• Based on these (Figs. 5 and 6), and other diagrams [14] that are
not presented in this paper, a significant influence of the mag-
netic parameter g on the characteristics of the boundary layer
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A, B, Fmp and ζ is noticed. The influence of this parameter on
the nondimensional friction function ζ, and hence on the bound-
ary layer separation point is pointed out. Increasing the values of
this parameter, the boundary layer separation point moves up the
stream (law 3a, Fig. 5). When the electroconductivity is varied in
accordance with the law 3b, the increase of the magnetic parameter
delays the boundary layer separation point (Fig. 6).

• The compressibility parameter of the ionized gas κ = f0 does not
have a significant influence on the nondimensional friction function
ζ .

• At low values, the porosity parameter Λ has a minor influence
on profiles of the nondimensional velocities u/ue, while at higher
values this influence is more significant.

• A change in compressibility parameter has a great influence on dis-
tribution of the nondimensional enthalpy h̄ in the boundary layer
of the ionized gas, which is also the case with other compressible
fluid flow problems [4].

• The porosity parameter Λ however, has a greater influence on the
nondimensional friction function ζ (Fig. 7), as well as on the
characteristic function Fmp. Therefore, the porosity parameter
also has a significant influence on the boundary layer separation
point. It is noticed that injection of the ionized gas moves the
boundary layer separation point down the stream. Here, variation
of the electroconductivity has a significant influence. Applying the
electroconductivity variation law (3b), separation of the boundary
layer is delayed significantly.

Finally, in order to obtain more accurate and correct results, it is
desirable to solve the corresponding equation system (18), i.e. (18’)
without localization per compressibility κ = f0, magnetic g, and espe-
cially per the porosity parameter Λ. Clearly, this will cause additional
problems in numerical solution. It would also be interesting to study
the influence of the electroconductivity σ variation on certain values
and characteristics of the boundary layer. The obtained results would
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be more correct, which would make a remarkable contribution to the
boundary layer theory.

Figure 1: Diagram of the nondimensional velocity u/ue (a)

Figure 2: Diagram of the nondimensional velocity u/ue (b)
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Figure 3: Diagram of the nondimensional enthalpy h̄ (a)

Figure 4: Diagram of the nondimensional enthalpy h̄ (b)
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Figure 5: Distribution of the nondimensional friction function ζ (a)

Figure 6: Distribution of the nondimensional friction function ζ (b)
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Figure 7: Distribution of the nondimensional friction function ζ(Λ) (a)

Figure 8: Distribution of the nondimensional friction function ζ(Λ) (b)
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Figure 9: Distribution of the characteristic function Fmp(Λ) (a)

Figure 10: Distribution of the nondimensional function Fmp(Λ) (b)
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Uticaj variranja elektroprovodnosti na strujanje
jonizovanog gasa u graničnom sloju duž poroznog

zida

UDK 532.526; 533.15

U radu se istražuje strujanje jonizovanog gasa u graničnom sloju za
slučaj da se varira njegova elektroprovodnost. Strujanje je ravansko a
kontura opstrujavanog tela je porozna. Prvo je pretpostavljeno da elek-
troprovodnost σ jonizovanog gasa zavisi samo od podužne promenljive.
Zatim je usvojeno da je ista funkcija odnosa podužne brzine i brzine na
spoljašnjoj granici graničnog sloja. Za oba navedena zakona promene
elektroprovodnosti polazne jednačine graničnog sloja su, primenom metode
uopštene sličnosti, dovedene na uopšteni oblik i numerički rešene u
četvoroparametarskom tri puta lokalizovanom približenju. Od mnoštva
dobijenih rezultata u obliku tabela prikazani su dijagrami najvažnijih
bezdimenzijskih veličina i karakterističnih funkcija graničnog sloja i to
za oba pretpostavljena zakona elektroprovodnosti. Na kraju su izvedeni
i zaključci o uticaju pojedinih fizičkih veličina na strujanje jonizovanog
gasa u graničnom sloju.


