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Abstract

Objective of the presented research is the formulation of one
enough sophisticated and, for engineering practice, convenient fi-
nite element method (FEM) based numerical model for reinforced
concrete frames loaded by seismic actions. For modeling of con-
crete and steel nonlinear behavior uniaxial constitutive rules are
applied. The proposal for inclusion the frame joint deterioration,
as well as, interaction of shear and flexural forces (inclined cracks
effects), in this model, is given additionally. The results of few
numerical tests (linear/nonlinear analysis of reinforced concrete
frame loaded by three seismic actions) are given as an illustration
of presented theoretical research.

Keywords: numerical modeling, nonlinear analysis, reinforced
concrete frame, seismic action

1 Introduction

Structural modeling is the process of creation of idealized and simplified
representation of structural behavior and it is an essential step in struc-
tural analysis and design. Errors and inadequacies in modeling may
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cause serious design defects and difficulties. Numerical modeling is a
mathematical realization of selected structural modeling concept.

Particularly, the main goal of structural modeling is to adopt the
“optimal” model - compromise between complexity and quality of ap-
proximation. The optimal model should provide a sufficient reliability
in prediction of the “real” structural behavior (quality of approxima-
tion), with complexity corresponds to the actual computation capabil-
ities (method of numerical analysis, computer technology, system and
applicative software development level, etc.). Numerical model quality
can be determined by the overall structural behavior modeling ability,
not only according “local” effects modeling ability.

Due to numerical efficiency and simple software implementation,
FEM has become a fundamental method of a structural analysis and
numerical modeling of structural behavior. One classification of numer-
ical models for reinforced concrete (RC), could be formulated by three
model groups, Fig. 1:
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Figure 1: Different numerical model for the same structural element
(simple supported beam)

• 3D (3-dimensional, solid) finite element FE models enable the
highest quality of approximation, but model complexity and dif-
ficulties in its application (computation costs, in the first place)
make difficult the structural analysis of the real buildings. There-
fore, 3D FE models can be adopted as benchmark-test models, for
verification of simpler (2D or 1D) models.

• 2D (membrane, plate, shell) FE models are frequently used in
numerical analysis of RC beams, especially for the research of so-
called local effects (“aggregate interlock”, “dowel action”, etc.).



FEM model for reinforced concrete frames... 285

Basic advantage in comparison to models with beam FE lays in a
possibility of modeling the shear stresses influence in RC elements
behavior.

• 1D (beam) FE models are the simplest and make possible non-
linear analysis in everyday engineering practice, but not only in
the phase of preliminary design. Nevertheless, application of the
2D beam FE enables the results that confirm adequate quality of
approximation. Experimental research of many authors indicates
that.

2 Model with 2D beam FE

Beam FE can be classified into two basic groups:

• 1D beam FE - the shear deformations are neglected (Bernoulli-
Navier’s beam theory), and

• 2D beam FE - influence of the shear is taken into account (Timo-
shenko’s beam theory).

A criterion for a determination of model dimensionality is a number
of parameters that define displacement field of the beam FE. In the
case of 1D beam FE a rotation of the cross-section are determined as
corresponding derivations of displacement, while in the case of 2D beam
FE those two parameters are independent.

The type of discretization could also define dimensionality of a model.
In the nonlinear analysis, by application of a beam FE, discretization is
usually performed both along the length of the structural element and
the height of the cross-section. This circumstance indicates the physi-
cal/geometrical two-dimensionality of the problem. All further consid-
erations will be based upon the, in that sense, twodimensional beam
FE.
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3 Basic suppositions, geometry and coor-

dinates

In formulation of the model with 2D beam FE the suppositions are
following:

• Straight, plane, two-joint beam FE approximates a RC element
(beam, column). Two displacements and one rotation per joint
are the degrees of freedom (DOF). Beam FE cross-section is di-
vided in certain number of finite thickness concrete and steel layers
(concrete or steel, area Ai, tangent modulus Ei). Behavior of these
layers under the cyclic loading is modeled by corresponding uni-
axial constitutive rules. Beam FE geometry in a local and global
coordinate system is shown in Fig. 1.
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Figure 2: Beam FE DOF and finite layers discretization of a beam FE
cross-section

• The uniform cracks distribution (so-called “smeared cracks ap-
proach”) is accepted in zones where concrete tension strength is
reached.

• Linear strain distribution is adopted along the height of the cross-
section, because of negligible shear influence in the total deforma-
tion field for the common beam. Additionally, in this way, the
so-called “shear locking” effect (overestimated the participation
of shear deformation in the total deformation energy) is avoid.
Namely, model with unreal high stiffness is obtained, if 2D beam
FE with rotation field independent from displacement field is ap-
plied. This effect is particularly evident in elements with high
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length/height ratio and elements characterized with lower level of
interpolation (beam with two joints, for example). In contrast
to shear in strict sense, axial and shear stresses interaction influ-
ence, as a cause of inclined cracks appearance must be included in
model, what is discussed later.

• Concrete-reinforcement interaction (bond) is modeled implicitly
by so-called “tension stiffening effect”.

• Third degree L’Hermite polynomials are adopted for the interpola-
tion of beam flexural displacements and rotations and first degree
polynomials are adopted for aproximation of beam longitudinal
displacements.

• External loading is applied in beam FE joints, regardless to real
load configuration.

4 Interpolation functions

In nonlinear analysis (large displacements, large strains and material
nonlinearity), usually is applied incremental form of equilibrium i.e. in-
crements of displacements are the basic unknowns. In formulation of
incremental relations for the beam FE it is started from the nonlin-
ear differential equation that defines a relation between the strain and
displacements function:

εx =
du(x)

dx
+

1

2

[(
du(x)

dx

)2

+

(
dv(x)

dx

)2

+

(
dw(x)

dx

)2
]

(1)

For the plane beam, the member (dw(x)/dx)2 have a zero value and
the member (du(x)/dx)2 can be neglected because of its small contribu-
tion to overall strain εx. Eq. (1) now obtains the form:

εx = εxL + εxN =
du(x)

dx
+

1

2

(
dv(x)

dx

)2

(2)
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The members du(x)/dx and (dv(x)/dx)2 represents a linear part and
a nonlinear part of the total strain εx. The linear member is the func-
tion of coordinates for each point P (xp, yp) of the FE. According to the
bending theory:

εxL(x, y) =
du(x)

dx
=

dus(x)

dx
− y

d2v(x)

dx2
. (3)

Here, functions us(x) and v(x) define the longitudinal and transversal
component of displacements. Based on the (2) and (3), the equation that
defines the total strain in an arbitrary beam’s point becomes:

εx(x, y) =
dus(x)

dx
− y

d2v(x)

dx2
+

1

2

(
dv(x)

dx

)2

(4)

Third degree polynomial as the interpolation function ensures the
fulfillment of a compatibility conditions between beam FE joints (Co

continuity of the function and C1 continuity of first derivative). Func-
tions us(x) and v(x), expressed by interpolation polynomials and the
vector of FE joint displacements u, are:

us(x) = [ N1 0 0 N4 0 0 ] · u, (5)

v(x) = [ 0 N2 N3 0 N5 N6 ] · u, (6)

where are
N1, N2 - linear interpolation functions,
N2, N3, . . . , N5, N6 - third degree L’Hermite’s polynomial interpo-
lation functions,
L - beam span and
uT = {ui, vi, ϕi, uj, vj, ϕj} - joint displacement vector.

The first and second derivatives of displacements are:

dus(x)

dx
=

[
dN1

dx
0 0

dN4

dx
0 0

]
· u ≡ GS · u, (7)

dv(x)

dx
=

[
0

dN2

dx

dN3

dx
0

dN5

dx

dN6

dx

]
· u ≡ GB · u, (8)
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d2v(x)

dx2
=

[
0

d2N2

dx2

d2N3

dx2
0

d2N5

dx2

d2N6

dx2

]
· u ≡ BB · u. (9)

Thus, the equation for a total strain is:

εx(x, y) = GS · u− yBB · u +
1

2
uT · (GT ⊗G) · u, (10)

or, in a shorter way:

εx(x, y) = B · u +
1

2
uT · (GT ⊗G) · u, (11)

where B = GS − yBB and G = GB (corresponding to large and small
displacements).

In RC structures, because of joint deterioration due to load progress,
the rotations of the beam ends cross sections and joint rotations are
not compatible in general (the connections are neither rigid nor hinge).
There are few possibilities to involve the influence of rotational joint de-
terioration in a structural analysis. One approach takes the ratio ”beam-
end-rotation/joint- rotation” (i.e. φ∗/φ) as a “rate” of rotational dete-
rioration. These quotients could be regarded as “fixing degree” (FD).
Their values vary from “0” to “1” (from pinned to rigid connection).
For the start and end member joint FD are:

p =
ϕ∗i
ϕi

and k =
ϕ∗j
ϕj

. (12)

Table 1 explains interpolation functions for beam FE with fully rigid
(N2, N3, N5, N6) and partially rigid ends (N∗

2 , N∗
3 , N∗

5 , N∗
6 ). Linear func-

tions are used for defining the longitudinal displacements N1 = 1− x/L
and N4 = x/L while fields of transversal and longitudinal displacements
are assumed independent.

Zero value of coefficients “p” and “k” is related to ideal hinged beam
end connection, while their “1.0” value corresponds to ideal rigid con-
nection. By varying the values of coefficients “p” and “k” (0 ≤ p ≤ 1
and 0 ≤ k ≤ 1), all the beam “types” could be modeled (pinned con-
nection, rigid connection or connection of arbitrary FD on one or both
ends).
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Table 1: Interpolation functions for for beam FE with fully rigid and
partially rigid ends
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5 Incremental equilibrium equation of the

beam FE

Equilibrium conditions in the incremental form can be obtained by the
so-called Lagrange formulation by the adoption of displacement incre-
ments as unknowns.

FE state can be analyzed in three configurations: “Start” - “S”,
“Current” - “C” and “Next” - “N”, at incrementally small distance
from the current one, Fig. 3. If the “C” configuration is adopted as
the referent one, it is “updated Lagrange formulation”. Application of
this formulation demands a permanent update of FE local coordinate
system.
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Figure 3: “Start”, “Current” and “Next” incremental configuration

The incremental variant of the Eq. (11), for the current configura-
tion, is:

∆εx(x, y) = B ·∆u +
1

2
∆uT ·GT ·G ·∆u. (13)

Well-known equilibrium condition in tangent form is:

dr =

∫

V

BT Et B · du dV +

∫

V

GT σ G · du dV (14)

or:
dr = kL · du + kNL · du ≡ kt · du, (15)
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where are:

kt = kL + kNL - tangent stiffness matrix,
kL =

∫
V

Et B
T ⊗B dV - elastic-plastic stiffness matrix,

kNL =
∫
V

σ GT ⊗G dV - geometrical stiffness matrix and

Et - tangent modulus.

The Eq. (15) represents the equilibrium condition of the finite element
in the local coordination system, in a tangent form. Effects of material
nonlinearity are modeled by elastic-plastic stiffness matrix kL. Effects
of geometrical nonlinearity (large displacements and small strains) are
modeled by geometrical stiffness matrix kNL. Errors in modeling of
large rotations are reduced indirectly, due to discretization of beams by
number of FE.

6 Tangent stiffness matrix of 2D beam FE

Coefficients of matrices are determined based on the Eq. (13). If the
relation B = GS− yBB is included in the first member of this equation,
it is obtained:

B =

[
dN1

dx
−y

d2N2

dx2
−y

d2N3

dx2

dN4

dx
−y

d2N5

dx2
−y

d2N6

dx2

]
. (16)

If the average value is adopted for the elasticity modulus along the
overall length of the element in one layer, the first member in Eq. (13)
can be written in the form:

kL =

∫

A

Et dA

∫

L

BT ⊗Bdx (17)

Integration along the FE length is performed analytically, thus ob-
taining the beam FE stiffness matrix:

kL =




kL,11 kL,12

sym kL,22


 , (18)
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where

kL,11 ≡




EF

L
0

ES

L

p

2
(3− k)

3EI

L3
(p + k + 2kp)

3EI

L2
p(1 + k)

EI

L
p(3 + k)




,

kL,12 ≡




−EF

L
0

ES

L

k

2
(p− 3)

0 −3EI

L3
(p + k + 2kp)

3EI

L2
k(1 + p)

ES

L

p

2
(k − 3) −3EI

L2
p(1 + k)

2EI

L
pk




,

kL,12 ≡




EF

L
0

ES

L

k

2
(3− p)

3EI

L3
(p + k + 2kp) −3EI

L2
k(1 + p)

EI

L
k(3 + p)




.

Value “S” is the cross-section moment of area related to the reference
axis. This term introduces the cross-section centroid change due to
change of stiffness along the cross-section height.

Geometrical stiffness matrix kNL is obtained by means of the Eq.
(8) and the second member in the Eq. (13):

kNL =

∫

A

σdA

∫

L

GT ⊗G dx ≡ P

∫

L

GT ⊗G dx (19)

Here “P” is axial force on the beam. Geometrical stiffness matrix is
given by the Eq. (20),
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kG = S




0 0 0 0 0 0
cij+cji

L2 + 1
L

cij

L
0 − cij+cji

L2 − 1
L

cji

L

aij 0 − cij

L
bij

0 0 0
cij+cji

L2 + 1
L

− cji

L

sym aji




(20)

with coefficients:

aij =
p2L(k2 − 3k + 6)

30
,

bij = bji = −kpL(21− 9k − 9p + kp)

120
,

aji =
k2L(p2 − 3p + 6)

30
,

cij = aij + bij =
p2L(3k2 + k2p− 7k + 8p− kp)

40
,

cji = aji + bji =
k2L(3p2 + p2k − 7p + 8k − kp)

40

(21)

The equations (18) and (20) define these matrices in the local coordi-
nate system. Matrices in the global coordinate system are obtained by
application of the transformation:

ktG = TT · kt ·T, (22)

where ktG - tangent stiffness matrix in a global coordinate system and
T - transformation matrix.

For the plane beam, the transformation matrix T is:

T =




cos αc sin αc 0 0 0 0
− sin αc cos αc 0 0 0 0

0 0 1 0 0 0
0 0 0 cos αc sin αc 0
0 0 0 − sin αc cos αc 0
0 0 0 0 0 1




(23)
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where αc - angle between local x-axis and global X-axis for “C” config-
uration.

The tangent stiffness matrix of the system Kt is assembled by su-
perposition of corresponding matrices of FE, according to the criterion
of system joint linking, by means of the relation:

Kt =
n∑

i=1

ZT
i ·TT

i · kti ·Ti · Zi , (24)

where Zi are matrices whose rows contain either zeroes or are equal to
one at places where parameters of joint displacement of FE correspond
to the joint displacement of the FE system.

7 FE Cross-section and joint forces

Incremental stresses in a beam FE can be obtained from the Eq. (12),
that is:

∆σx(x, y) = Et∆εx(x, y) = Et

(
B ·∆u +

1

2
∆uT · (GT ⊗G) ·∆u

)

(25)
Forces in joints for each FE of the system are obtained from the relations:

q =

∫

V

BT σt dV , (26)

qi =

∫

V

Bi σ dV =L

1∫

0

Bids

∫

A

σ dA. (27)

Normal stress is given as the function σ(s, y) and, in general case, it
has a different value for each layer of the cross-section and for each beam
segment. Forces qi are obtained by numerical integration, according to
the following equation:

qi =
m∑

g=1

Bi(sg)

(
n∑

l=1

−yl σ(l, g) Al

)
wg, (28)
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where
m - number of numerical integration points,
n - number of layers in cross-section,
sg - abscissa of the integration point and
wg - coefficient of numerical integration.

Computation of FE sections forces is carried out, before all, due to
the residual load computation, what is the consequence of the non-
fulfillment of equilibrium conditions in an incremental procedure.

8 Constitutive rules

For modeling of concrete and steel behavior under load, it is necessary to
define constitutive rules for both materials. The following combination
of models has been chosen for the constitutive model for concrete under
cyclic loading (loading, unloading, and reloading):

• Hongestad’s model for concrete in compression with branches of
unloading/reloading, modified in the manner to involve the influ-
ence of the transversal reinforcement (stirrups),

• CEB-FIP model for tensile concrete supplemented with unload-
ing/reloading branches, by whose shape implicitly is comprised
the bond phenomenon and

• bilinear model for steel with hardening branch.

In Fig. 4 given is a diagram that defines the constitutive model for
concrete and steel for cyclic loading.

The assumptions are the following:

• plastic creep (yield) of concrete in zone of compression when strain
reaches the value εo what corresponds to the stress σo = 0.85 • fc,

• failure state in compression zone occurs when the strain reaches a
value of limit strain εu,

• appearance of cracks in concrete occurs when the strain in tensile
zone reaches the value εto what corresponds to the tensile strength
σto and
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Figure 4: Adopted constitutive rule for concrete and steel for cyclic
loading

• after the appearance of cracks the concrete in that zone can not
receive tensile stresses, but it can receive compression stresses,
after closing the cracks during the unloading.

Parameters that determine the model are:

• initial elasticity modulus of concrete for compression and tension,

• compression strength an corresponding strain,

• tensile strength and corresponding strain,

• limit strain for cracked concrete,

• “transition” and limit strain for tensile concrete and

• distance and area of transversal reinforcement.

In the diagram of proposed constitutive model the following phases
are seen:

• state of compression (segment of the curve O-A-B),

• state of plastic creep (segment of the curve B-C-D),

• state of concrete crushing (behind the point D),

• state of unloading/reloading if strains have not reached the value
εo (line A-H-I),
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• state of unloading/reloading if strains have reached the value εco 6
εo (segment C-M-N),

• tensile state if strains have not reached the value εto (straight line
O-E),

• tensile state if strains are εto 6 εt 6 εtm (straight line E-F),

• tensile state if strains are εtm 6 εt 6 εtu (straight line F-G) and

• opening/closing of cracks (horizontal line from the point G).

Modification of Hognestad’s model for compressed concrete, in order
to include the influence of transversal reinforcement (Kent and Park, see
[6]), has the form:

σc = σ0α(2− α

k
) for ε0 > εc > 0, (29)

σc = kσ0 [1− z(εc − ε0)] for εu > εc > ε0, (30)

with
k = 1 + rt

σy

σ0

, (31)

z =
0.5

T1 + T2 − 0.002k
, (32)

T1 =
3 + 0.2844fc

14.22fc − 1000
, (33)

T2 = 0.75rt

√
bc

st

, (34)

where
σy - stress in reinforcement at yield limit,
rt - ratio between volume of transversal reinforcement (one stirrup)
and concrete core comprised by transversal reinforcement (between
two neighboring stirrups),
bc - width of concrete core comprised by stirrups and
st - stirrups distance.

Limit strain of concrete with stirrups is εuc = 0.8/z + εok. It is taken
that z = 75 for concrete without stirrups. This modification, opposite to
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many simply qualitative recommendations, enables modeling the behav-
ior of reinforced concrete elements in cases when limit-bearing capacity
(dynamic and seismic loading) is reached.

It is taken that residual strain εtr in tension zone is function of strain
which is reached before start of unloading:

εtr = α(εt − εto) 0 6 α 6 1 (35)

By adoption that α = 0 it is accepted that in tensile zone there are
no residual strains, what is not a real assumption. On the other hand,
it is found that by selecting the value α > 0.5, that relatively large
residual strain occurs, and therefore it is proposed that the value of this
coefficient is α = 0.2 ∼ 0.3. By varying the coefficient α, the effects
of earlier appearance of strain compression can be modeled in the zone
which before unloading was exposed to tension. This is the consequence
of a displacement of parts of the aggregate and cement mortar in zones
of cracks and a possibility to transfer compression stress before the crack
is completely closed.

In the formulation of a steel constitutive rule, the following assump-
tions are taken:

• steel yielding occurs when strain reaches value εy that corresponds
to stress at yield limit εy,

• state of failure in reinforcement occurs when strain reaches value
of limit εu,

• the envelope, within which the hysteresis process happens, has the
“height” equal to double value of strains at yield limit (i.e. 2σy)
and

• characteristics of steel reinforcement are equal for tension and com-
pression.

Parameters that determine model are:

• initial elasticity modulus of reinforcement Es0,

• stress at yield limit,

• strain at failure limit (strength of the steel) and
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• hardening modulus Eh.

In the following diagram presenting the proposed constitutive model
the following phases exist:

• state of compression or tension up to yield limit (segment of the
curve O-A),

σs = Esoεs for εs 6 εy; (36)

• yielding state (segments A-B-C or G-E-F),

σs = Ehεs ± (σy − Ehεy) for εy 6 εs 6 εu; (37)

• unloading/reloading state (segment B-D-E),

σs = Eso(εs − εp); (38)

• failure state (after the point C) σs=0 for εs > εu.

A proposal of constitutive rule accounting for the FD change, which is
compatible with tensioned concrete constitutive rule, is given in Fig. 5.
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Figure 5: Joint FD change rule diagram

The following assumptions are accepted:

• FD change phenomenon is realized only for angle-jointed element
(beam-column connection, for example).
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• Rotational joint deterioration criterion is associated with constitu-
tive rule for concrete in tension and depends on cracks appearance.
Maximal FD value (totally fixed joint) and minimal FD value (par-
tially fixed joint) corresponds to minimal and maximal opening of
crack in tensioned beam’s joint zone.

• FD change constitutive rule is the linear function and remains the
same for loading, unloading and reloading state.

• Residual joint rotation does not exist (ideal unloading).

Parameters of the proposed model are:

• initial joint stiffness (i.e. starting fixing degree value, FDmax =
1.0, zone “A” of diagram),

• linear change from initial to minimal FD value (zone “B” of dia-
gram),

• minimal FD value (FDmin = 0.2 ∼ 0.3, zone “C” of diagram)
which corresponds to some experimental data.

9 Proposal for inclined cracks modeling

In a presented smeared cracks layered model, the inclined cracks are
modeling by appearance of appropriate “shifted” vertical cracks in lay-
ers. For large enough number of thin layers, effect of inclined cracks is
attained (Fig. 6). Criterion of appearance of these “shifted” vertical
cracks is a reaching of the limit tension stress in concrete, caused by
simultaneous action of normal (axial) and shear stresses.

Therefore, it is very important to compute properly the cross-sectional
and a whole beam FE stiffness parameters.

Relation between principal stress and, at the other hand, axial and
shear stress is well known:

σαi =
σxi

2
±

√
σ2

xi

4
+ τi, α ∈ {1, 2}. (39)

where in ith layer:
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σαi - are the principal stresses,
σxi - axial (normal) stress and
τi - shear stress.

K L

i j k

K L

i j k

Figure 6: “Smeared cracks approach” in inclined cracks modeling

Computation of the axial stress σxi is based on “σ− ε” concrete consti-
tutive rule, and shear stress is computed according to expression:

τi =
TSi

Ibi

(40)

where
T - shear force,
Si - moment of area of layers above of the ith layer,
I - cross-section moment of inertia and
bi - width of ith layer.

In contrast to procedures based on design code (Fig. 7 a-b), computa-
tion of “I” and “Si” in the proposed model is performed for the whole
cross-section (Fig. 7c) regardless of the stress-strain state due to mani-
festation of “secondary” way of force transfer (“aggregate interlock shear
transfer”, “dowel action shear transfer”, etc.).
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Figure 7: Various approaches in shear area computation

10 Beam FE and cross-section stiffness

Layered approach makes possible a monitoring of the stress-strain state
and the determination of stiffness and bearing capacity both for cross-
section and for the beam FE in the whole. As significant, the questions
of discretization method are pointed out here, i.e.:

• adoption of optimum number of beam FE for division of beams of
a structural system,

• adoption of optimum number of integration points within one
beam FE and

• adoption of optimum number of layers within the cross-section of
the beam FE.

The function of error distribution indicates that the optimum number
of FE along the beam structural element has to be between four and
eight. The establishment of rougher division (less than 4 FE per beam)
contributes to a certain increase of efficiency analysis, but also to a
considerable increase of approximation error. Increase of a number of
FE along the beam of the system (10 and more) does not contribute to
the essential increase of accuracy, but considerably degrades numerical
efficiency of analysis.

The stiffness matrix coefficient of beam FE can be obtained by ap-
plication of any numerical integration methods. Usually the Gauss nu-
merical integration scheme is adopted.
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If a sufficient number of beam FE is adopted, a sufficient accuracy
can be achieved even in the case of integration scheme with a small
number of integration points. In order to satisfy conditions of numerical
efficiency and to provide a sufficient accuracy, the integration scheme
with three Gauss’ points has been chosen here. In Fig. 8 positions of
Gauss points are displayed with coefficients of integration for a beam
FE divided into layers along the height.

s
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sG2=0.500000

sG3=0.887298

1.000
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1
2
3

i

n
M
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M

M

wG1=0.277778

wG2=0.444444

wG3=0.277778

d

Figure 8: Three point Gauss integration scheme

As already emphasized, the constant value of tangent modulus in
one layer along the FE length has been adopted. Namely, it can be
accepted that stiffness and bearing capacity of the element, in the sec-
tion corresponding to a middle Gauss’ point, is valid for whole length
of the finite element. This should not significantly jeopardize the solu-
tion accuracy, taking into consideration the nature of iterative method
applied for residual loading balancing (standard and modified Newton-
Raphson’s method).

The equation that defines coefficients of elastic-plastic stiffness ma-
trix now has the following form:

kL =

∫

A

EtdA

∫

L

BT ⊗B dx =
n∑

i=1

EtdA

∫

L

BT ⊗B dx. (41)
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The first integral depends on characteristics of the cross-section,
while the second one is a function of the beam’s axis. Differently from
standard approach, where a constant value of the modulus in one layer is
assumed, here a change of tangent modulus is adopted that corresponds
to a selected constitutive rule for concrete (Fig. 9).

à) b)

Figure 9: Stress and tangent modulus distribution in cross-section

Adoption of continuously variable stiffness along the layer height
(Fig. 9a) contributes to an increase of the computational accuracy of
the cross-section overall stiffness in relation to the standard method
(Fig. 9b) A force that corresponds to one layer is defined by taking
the parabolic distribution of stresses. The parabola within one layer
is obtained as a segment of the parabola for two neighboring layers.
Such type of numerical integration corresponds to a well-known finite
difference method.

Application of the method formulated in such a way will not have any
considerable increase of complexity and computation time for the conse-
quence. According to the numerical tests presented in [3], a cross-section
stiffness calculation, FE stiffness calculation and assembling of FE sys-
tem stiffness matrix do not participate highly in the total computation
time (approx. 5% for medium-scale systems and 2% for large-scale FE
systems).

Equations, which define cross-section stiffness, remain formally the
same:

EA =

∫

A

EtdA =
nc∑
i=1

EtiAi +
ns∑

j=1

EtjAj (42)



306 D.Kovačević

ES =

∫

A

yEtdA =
nc∑
i=1

yiEtiAi +
ns∑

j=1

yjEtjAj (43)

EI =

∫

A

y2EtdA =
nc∑
i=1

y2
i EtiAi +

ns∑
j=1

y2
j EtjAj (44)

where are:
yi - distance of the center of gravity of the trapezoidal area from
the referent axis and
yj - distance of the center of the reinforcement layer from the ref-
erent axis of the section.

The total number of layers of concrete and reinforcement is “nc” and
“ns” respectively.

Only three forces are independent (axial force and two moments at
the beam’s ends), while the other three forces are determined from the
equilibrium conditions. Equations for the independent forces are:

N =

∫

A

σdA =
nc∑
i=1

σciAi +
ns∑

j=1

σsjAj, (45)

M =

∫

A

σydA =
nc∑
i=1

σciyiAi +
ns∑

j=1

σsjyjAj. (46)

Based on preliminary research it can be concluded that the optimum
layer’s height is between 5% and 10% of the cross-section height. If the
layers have the same thickness (what is justifiable in majority of cases),
the optimum number of layers is between 10 and 20. By application of
the standard method, with a few layers (4− 6), the satisfactory results
can be obtained, just in the case of loading of around 50% of the limit
one. In addition, small number of layers may be applied in the case of a
state of stresses close to the homogenous one (relatively great axial force
of compression or tension combined with relatively small moment).

In case of monotonic loading without unloading (what is, in fact, very
rare case) with application of one “non-incremental” method (computing
of total stresses on the basis of total strain in a layer), the minimum error
would be obtained even without division of the cross-section into layers.
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Existence of at least one cycle of unloading/reloading or cyclic load-
ing requires the application of incremental method (computing of total
stresses based on stresses from the previous configuration and increments
of stresses from the current configuration of the system). During that,
division into a greater number of layers solves the problem of a more
accurate including of the previous history of loading influence (residual
deformations and stresses, first of all).

Additional increase of number of layers (over 20) does not contribute
to essential improvement of the accuracy, consequently the “limit” of 20
layers can be observed as the upper optimum.

11 Numerical tests

As an illustration of previous propositions, the results of the numerical
tests - one linear and three nonlinear analysis of one simple reinforced
concrete frame loaded by three seismic actions are presented. Seismic
loading is selected for numerical tests because in the case of simple
static monotonic loading advantages of proposed model are not enough
expressed (as is shown in [4]).

Beam FE mass matrix is composed as diagonal (lumped mass model),
where the influence of rotational inertia is neglected. Damping matrix
of structure is composed to be proportional to initial stiffness matrix.
Such an approach is used because the hysteresis dissipation effects (con-
sequences of material nonlinearity - appearance of cracks, crushing of
concrete in compressed zone and yield of reinforcement) in nonlinear
systems, are dominant opposite to viscous damping effects, which are
expressed in linear systems.

For numerical integration of dynamic equilibrium, Eq. (47) , the
Newmark integration procedure (with increment ∆t = 5ms) is applied
as well as a modified Newton-Raphson iterative procedure for balancing
the residual loads:

M · ü + C · u̇ + Kt · u = −M · üg, (47)

where
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M - mass matrix of the system,
C - the system damping matrix,
Kt - the system tangent stiffness matrix and
{ü} , {u̇} , {u} , {üg} −vectors of acceleration, velocity, displace-
ment and ground acceleration.

The adoption of Newmark numerical integration procedure is reasonable
due to its own stability and convergence, Fig. 10.
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Figure 10: Willson vs. Newmark comparsion of amplitude/periode rel-
ative error

Modified Newton-Raphson (MNR) iterative procedure is adopted be-
cause the numerical efficiency and accuracy in regard to its standard
form (NR), secant and Broyden-Fletcher-Goldfarb-Shano (BFGS) meth-
ods, Fig. 11.

Fig. 12 illustrates beam FE system (48 joints, 48 beams), mass
distribution (mi = 400kg), geometrical and mechanical characteristics
(moduli Ec = 31.5 GPa, Es = 210 GPa and viscous damping µ = 0.05)
of RC frame.

Following seismic excitations (accelerograms in the Fig. 13–15) are
used in numerical tests:

• San Fernando (20 s record Ventura, 1971),
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Figure 11: Comparison of MNR with other iterative methods
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Figure 12: Beam FE model of analyzed RC frame

• Parkfield (20 s record Temblor, 1966) and

• Imperial Valley (20 s record El Centro, 1940).

All three seismic actions have different magnitude value and fre-
quency configuration as well as different form of “main stroke” zone.
Therefore for each of them the diverse energy amount enters into the
structure, which is evident from the structural behavior. Simply “large
magnitude value” or only “malign frequency range” are not the sufficient
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reasons for large structural excitation. Appropriate time combination of
seismic magnitude and seismic frequency characteristic make the main
and real difference between various seismic actions.
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Figure 13: San Fernando earthquake accelerogram (Ventura Blvd.
record)

For each seismic action the following analysis are performed:

• linear “L” analysis,

• geometric nonlinear “G” analysis,

• simultaneous (geometric & material) nonlinear “MG” analysis,

• simultaneous nonlinear analysis “MGS” with modeling of inclined
cracks and

• simultaneous nonlinear analysis “MGC” with modeling of joint
deterioration.

In the Figures 16–18 the diagrams of a time history of a RC frame
displacement are presented.
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Figure 14: Parkfield earthquake accelerogram (Temblor record)
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Not only the proportion between displacement response values, but
in some cases, completely different behavior of RC frame model is sub-
stantial, especially for a strong seismic excitation.
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Differences between results for “L” analysis and anyone of performed
nonlinear analysis indicate the justification of nonlinear model usage, ex-
cept of “G” analysis. Namely, because of a comparatively small horizon-
tal displacement and small vertical loads, for this testing of RC frame,
the geometric nonlinear effects are not significant. Therefore, the results
of “G” analysis are not given in comparison with others.

On the other hand, the “MGS” analysis results are skipped as negli-
gible additional nonlinear effects to effects of simultaneous nonlinearity
(“MG” analysis).

12 Conclusions

Proposed numerical concept for simulation of structural behavior of RC
frames loaded by seismic forces is formulated as a compromise solution.
Compromise is made between the accuracy, as an essential parameter,
and, on the other hand, simplicity, as everyday design practice task.
The objective of presented research was to find an optimal way using
nonlinear analysis of mentioned structures.

Opposite to the complex 2D and 3D FE models, mostly used in
theoretical consideration, the reasonably simple model is proposed. The
suggested model is based on 2D beam FE with abilities characteristic
for more sophisticated models. Opposite to standard beam FE models,
that include only the concrete and reinforcement behavior modeling,
suggested 2D beam FE model considers frame joint deterioration as
well as interaction of shear and flexural forces.

The final verification and implementation of this modeling concept
is proved by means of the parametric test analysis i.e. in comparison
with the experimental data and results obtained by application of some
complex model. It is direction of future research on this modeling con-
cept.
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1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

L
a
n
a
ly

s
is

M
G

a
n
a
ly

s
is

M
G

C
a
n
a

ly
s
is

H
o
ri

z
o
n
ta

l
d
is

p
la

c
e
m

e
n
t

R
C

fr
a
m

e
jo

in
t
1

?
=

5
%

,
?

t=
0
.0

0
5
s

Horizontal displacement[cm]

-4
.5

-3
.5

-2
.5

-1
.5

-0
.5

0
.5

1
.5

2
.5

3
.5

4
.5

-4
.0

-3
.0

-2
.0

-1
.0

0
.0

1
.0

2
.0

3
.0

4
.0

T
im

e
[s

]

-2
.8

9
8

+
3
.1

5
8

+
2
.9

5
6

-2
.7

1
1

-2
.6

0
1

+
2
.4

9
6

Figure 16: Displacement time history of RC frame (San Fernando earth-
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Figure 17: Displacement time history of RC frame (Parkfield earth-
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Figure 18: Displacement time history of RC frame (Imperial Valley
earthquake)
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MKE model za armiranobetonske okvire
opterećene seizmičkim silama

UDK 536.7

Cilj prikazanih istraživanja je formulisanje dovoljno sofisticiranog i
za inzenjersku praksu, pogodnog MKE numeričkog modela za armira-
nobetonske okvire opterećene seizmičkim dejstvima. Za modeliranje be-
tona i čelika primenjeni su radni dijagrami za jednoosno stanje napona.
Pored toga dat je predlog modela za obuhvatanje uticaja popustljivosti
čvorova, kao i uticaja interakcije smičucih i normalnih napona (efekat
kosih prslina). Rezultati nekoliko numeričkih testova (linerana/nelinearna
analiza armiranobetonskog okvira za tri seizmička dejstva) dati su kao
ilustracija prikazanih teorijskih istraživanja.


