
Elastic - plastic analysis of crack on
bimaterial interface

Ruzica R. Nikolic ∗ Jelena M. Veljkovic †

Theoret. Appl. Mech., Vol.32, No.3, pp. 193–207, Belgrade 2005

Abstract

In this paper are presented solutions for the stress and dis-
placement fields for a crack that lies along the interface of an
elastic and elastic - plastic material and for a crack between two
different elastic - plastic materials. These solutions are obtained
using the J2-deformation theory with the power - law strain hard-
ening. In this paper results are described for a small scale yielding
at the crack tip. The near tip fields do not have a separable sin-
gular form, of the HRR type fields, as in homogeneous media,
they do, however bare interesting similarities to certain mixed -
mode HRR fields. Under the small scale yielding the elastic fields
are specified by a complex stress intensity factor and phase angle
loading, while plastic field is characterized by a new phase an-
gle. The size of plastic zone in plane strain and plane stress and
displacement fields at the crack tip for the new phase angle are
obtained. The crack tip opens smoothly and the crack opening
displacement is scaled by the J - integral. The whole analysis is
performed by application of the Mathematica symbolic program-
ming routine.
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1 Introduction

There are not many papers, which studied the elastic - plastic analysis
of an interface crack. This problem was analyzed by Shih and Asaro
(1988, 1989) and Shih, Asaro and O′Dowd (1991). The purpose of this
paper is to obtain solutions for problem of an interfacial crack between
the two elastic - plastic materials within the framework defined by the
non-linear fracture mechanics, Hutchinson (1991).

In this paper are described structures of the stress and displacement
fields at the tip of a crack lying on the interface between the elastic -
plastic materials under the small scale yielding. In that sense, in Figure
1 is shown the centered crack in plane strain between two elastic - plastic
materials.
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Figure 1: Interface crack between the two elastic - plastic materials

We refer to Figure 1, which shows a crack lying along an interface
separating two elastic - plastic materials whose behavior is described
by the J2 - deformation theory. This problem is the starting point for
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solving several problems interesting for practice, such as micro cracking
and microscopic fracture.

The fields at the crack tip will be analyzed for the bonding of two
elastic materials, elastic and an elastic - plastic material and the bonding
of the two elastic - plastic materials, under the small scale yielding condi-
tions. Interfacial crack tip behavior is more complex than one found for
cracks in homogeneous media for which the proportional remote loading
induces proportional stressing near the crack tip.

2 Structure of fields under small scale yield-

ing

For the purpose of developing the structure of the fields under small
scale yielding, it is helpful to write the complex stress intensity factor
as a magnitude and a phase, i.e.:

K = K1 + iK2 = |K| eiψ (1)

Traction on the bonding surface near the tip can be written as:

σ22 + iσ12 =
K√
2πr

( r

L

)iε

=
|K|√
2πr

ei(ψ+ε ln( r
L)) (2)

In this expression the length of the crack, denoted by L, may be associ-
ated with the length 2a indicated in Figure 1. The variation of the near
- tip stresses along any radial line has the form given by equation (2). In
the small scale yielding problem, the actual crack problem is replaced by
a semi - infinite crack in an infinite medium with asymptotic boundary
condition that at large r the field approaches the form given by (2). If
one or both of the bonded solids deform plastically, the plastic zone size
and shape will depend on the elastic and plastic properties of the two
solids and stress intensity factors. The deformable medium is taken to
be described by the J2 - deformation theory.

Let σ01 and σ02 be the yield strengths of the materials 1 and 2, re-
spectively. It is convenient to denote the yield strength of the weaker
material by σ0 = min(σ01, σ02). The strain - hardening exponents are n1
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and n2, Young’s modulus and Poisson’s ratios are E1, ν1 and E2, ν2, re-
spectively. Under small scale yielding, the stresses depend on the stress
intensity factor K; and material properties on the dimensionless ra-
tios σ01/σ02, E1/E2, ν1/ν2 and n1/n2. From dimensional considerations,
equilibrium condition and equation (1), Shih and Asaro (1988, 1989),
one obtains:

σij = σ0fij

(
rσ2

0

KK̄
, θ, phase

{
K

( r

L

)iε
}

, dimensionless parameters

)
,

(3)

where fij is a dimensionless function of dimensionless material proper-
ties. The dependence of σij on K and distance from the crack tip, Shih
and Asaro (1988, 1989) is:

σij = σ0fij

(
rσ2

0

KK̄
, θ, ψ + ε ln

( r

L

))
, (4)

where ψ + ε ln(r/L) phase K(r/L)iε.
Let ξ denote the new phase parameter, defined by Shih and Asaro

(1988, 1989):

ξ = ψ + ε ln

(
KK̄

Lσ2
0

)
, (5)

Using equation (5) equation (4) can be written as:

σij = σ0fij

(
rσ2

0

KK̄
, θ, phase

{(
rσ2

0

KK̄

)iΣ
}

, ξ

)
. (6)

Since ξ is the phase angle of a complex quantity, fij has periodicity of
2π with respect to the argument ξ, i.e.:

fij(..., ξ) = fij(..., ξ + mπ), m = 2, 4, 6, ... (7)

Due to the linearity of the equilibrium and strain - displacement equa-
tions, it also holds:
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fij(..., ξ) = fij(..., ξ + mπ), m = 1, 3, 5, ... (8)

Thus, ξ serves as the phase parameter of the fields in the small scale
yielding formulation just as ψ is the phase angle of the linear elastic
singular fields.

The mathematical structure of the fields, expressed by equations (6)
and (7), was derived regardless to contact between the crack faces. In
fact, displacement jumps across the crack faces must have the form:

∆ui = ε0
KK̄

σ2
0

gi

(
rσ2

0

KK̄
, phase

{(
rσ2

0

KK̄

)iΣ
}

, ξ

)
, (9)

where ε0 is the yield strain and the dimensionless function gi has the
periodic structure, expressed by (7) and (8). In this work our interest is
restricted to the range of ξ where the crack faces are not in contact.

The effective stress σe has the form:

σe = σijfeg

(
rσ2

0

KK̄
, θ, phase

{(
rσ2

0

KK̄

)iΣ
}

, ξ

)
. (10)

The elastic - plastic boundary in the weaker material is the locus of
points where σe equals σ0. Substituting these values in (10) and rear-
ranging leads immediately to the following results for the plastic zone,
Shih and Asaro (1989):

rp(θ) =
KK̄

σ2
0

R(θ, ξ). (11)

Here R(θ, ξ) is a dimensionless angular function, which depends on ξ
and on dimensionless material properties. Since σe is quadratic in the
stress components which have periodicity expressed by (7) and (8), the
angular function R has a periodicity of π with respect to ξ:

R(θ, ξ) = R(θ, ξ + mπ) m = 1, 2, 3, ... (12)
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Rice (1988), obtained same relation for size of the plastic zone, by
dimensional consideration:

rp(θ) =
KK̄

σ2
0

R̃

[
φ− ε ln

(
L

rp

)]
. (13)

3 Mixed - mode crack tip fields at the tip

of interface crack

Application of the J- integral to the mixed - mode small scale yielding
problem reveals that the asymptotic behavior of the stresses, strains and
displacements near the crack tip has the form:

σij = σ0K
pr−

1
n+1 σ̃ij(θ, Mp, n)

εij = ασ0

E
(Kp)nr−

n
n+1 ε̃ij(θ, Mp, n)

ui = ασ0

E
(Kp)nr

1
n+1 ũi(θ, Mp, n)

σe = σ0K
pr−

1
n+1 σ̃e(θ, Mp, n)

(14)

In equation (14) the dimensionless angular functions σ̃ij, ε̃ij ũi, σ̃e

depend parametrically on the plastic mixity parameter Mp, and the
hardening exponent, n. Angular functions σ̃ij are defined in Appendix
by equation (A1). The plastic mixity is determined as, Shih (1974):

Mp =
2

π
arctg

∣∣∣∣ lim
r→0

σθθ(r, θ = 0)

σrθ(r, θ = 0)

∣∣∣∣ , (15)

such that Mp = 1 for pure mode I and Mp = 0 for pure mode II.
The amplitude of the HRR singularity field, Kp (plastic stress intensity
factor) is defined by Shih (1974), such that the angular distribution,
attains a maximum value of unity with this definition, Kp is related to
the value of J by:

J =
ασ2

0

E
In(Kp)n+1. (16)

The factor In depends on the degree of mixity, Mp and n. For a
wide range of these parameters the factor In has been determined by
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Shih (1974). For purposes of this analysis, it is convenient to rescale Kp

by setting In
∼= 1.

For linear elasticity, the mixity parameter can be reinterpreted as:

Mp → M e ≡ 2

π
arctg

∣∣∣∣
KI

KII

∣∣∣∣ . (17)

For small scale yielding, where the stresses beyond the plastic zone
are those of the elastic field, M e is also defined by:

M e ≡ 2

π
arctg

∣∣∣∣
σθθ(r∗, θ = 0)

σrθ(r∗, θ = 0)

∣∣∣∣ , (18)

where r∗ is within the zone of dominance of the elastic field. In this case
J is given by:

J =
(1− ν2)

E
(K2

I + K2
II), (19)

for homogeneous case, and

J =
1

ch2(πε)
· |K|

2

E∗ , (20)

for bimaterial case, where 2/E∗ = 1/E ′
1 + 1/E ′

2 and E ′ = E/(1 − ν2)
for plane strain and E ′ = E for plane stress.

4 Results and discussion

Figures 2, 3 and 4 show the angular stress distribution ahead of the
crack tip along the interface between the two elastic - plastic materials
for different hardening exponents.

There, problem considered is the plane strain interfacial crack. Ma-
terials 1 and 2 are elastic - plastic with elastic properties E1 and E2

where E2/E1 = 2.5 and Poisson’s ratios are ν1 = ν2 = 0.3. For this
bimaterial combination oscillatory index is ε = 0.028. Plastic properties
of the material 1 are characterized by yield stress σ0, strain - hardening
exponent n which equals n= 1, 3, 10 and material constant α = 0.1.
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Material 2 has yield stress σ02, which is four times higher than the yield
stress of material 1. The strain hardening exponent of material 2, n2 is
10 and α2 is 0.1. Loading conditions are defined by plastic phase angle
in small scale yielding ξ.

The stress distribution σij versus angle θ, according to equation (14),
is shown for the radial distance, which is chosen to amount about 5 %
of the maximum plastic zone extension. From Figures 2, 3, and 4, one
can see that the maximum stress σθθ is for ξ = 0.524 in material 1, while
for ξ = 0 it is on the interface. This completely agrees with the linearly
elastic solution for the same bi-material combination.

One very significant characteristics of the fields, defined by (14) is
that the normal stresses ahead of the crack tip are smaller for the case
of the mixed Mode than that for the pure Mode I load. Another char-
acteristics of this solution is the large shear stress ahead of the crack
tip.

By comparing figures 2, 3 and 4 one can notice that the stress field
in the crack tip is determined by the material with the lower strain-
hardening coefficient.

The whole analysis was done by the Mathematica symbolic program-
ming routine.

The comparative presentation of results of numerical procedure, de-
fined in papers by Shih and Asaro (1988, 1989),and results obtained by
application of equation (14) with use of the angular stress functions (A1)
is given in Figure 5.

From Figure 5 can be noticed that results of numerical procedure
(Shih and Asaro (1988, 1989) - black dotted lines) differ from analytical
results (colored lines), based on application of equation (14), less than 5
%. This leads to a conclusion that the angular stress functions, defined
by equations (A1) describe satisfactorily the problem of a crack tip on
the interface between the two elastic-plastic materials.

By application of equations (A1) the problem of the crack along the
interface between the two elastic-plastic materials can be solved in the
same way as the problem of the crack along the interface of the two
elastic materials, equations (1.3), Veljkovic (1998).
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Figure 2: Angular variation of stress for a bimaterial combination for
different loading conditions and strain hardening exponent n=1.
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Figure 3: Angular variation of stress for a bimaterial combination for
different loading conditions and strain hardening exponent n=3.
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Figure 4: Angular variation of stress for a bimaterial combination for
different loading conditions and strain hardening exponent n=10.
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Appendix 1

Angular functions σ̃I, II
αβ (θ, n) for material 1, have the form:

σ̃I
rr(θ) = − shε(π−θ)

chεπ
cos (n+2)θ

(n+1)
+ e−ε(π−θ)

chεπ
cos nθ

(n+1)
(1 + sin2 nθ

(n+1)
+ ε sin nθ)

σ̃I
θθ(θ) = shε(π−θ)

chεπ
cos (n+2)θ

(n+1)
+ e−ε(π−θ)

chεπ
cos nθ

(n+1)
(cos2 nθ

(n+1)
− ε sin nθ)

σ̃I
rθ(θ) = shε(π−θ)

chεπ
sin (n+2)θ

(n+1)
+ e−ε(π−θ)

chεπ
sin nθ

(n+1)
(cos2 nθ

(n+1)
− ε sin nθ)

σ̃II
rr (θ) = chε(π−θ)

chεπ
sin (n+2)θ

(n+1)
− e−ε(π−θ)

chεπ
sin nθ

(n+1)
(1 + cos2 nθ

(n+1)
− ε sin nθ)

σ̃II
θθ (θ) = − chε(π−θ)

chεπ
sin (n+2)θ

(n+1)
− e−ε(π−θ)

chεπ
sin nθ

(n+1)
(sin2 nθ

(n+1)
+ ε sin nθ)

σ̃II
rθ (θ) = chε(π−θ)

chεπ
cos (n+2)θ

(n+1)
+ e−ε(π−θ)

chεπ
cos nθ

(n+1)
(sin2 nθ

(n+1)
+ ε sin nθ)

(A.1)

Angular functions σ̃I, II
αβ (θ, n) for material 2 have the same form as

equation (A.1), one only needs to substitute −π with π, and vice versa.

Submitted on June 2005.

Elastoplastična analiza prsline na bimaterijalnom
interfejsu

UDK 539.42, 539.421

U ovom radu su predstavljena rešenja za polje napona i deformacije
za prslinu koja leži na interfejsu elastičnog i elastično-plastičnog ma-
terijala i za prslinu izmedju dva različita elastično-plastična materijala.

1This appendix is given for easier understanding of the performed analysis, and
is not included in the core text due to the limited length.
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Ova rešenja su dobijena korǐsćenjem J2 - deformacijske teorije sa ste-
penim zakonom ojačanja. U radu su opisani rezultati za slučaj malog
tečenja oko vrha prsline. Polja oko vrha prsline nemaju poseban sin-
gularan oblik tipa HRR polja, kao kod homogenih sredina, mada imaju
interesantne sličnosti sa nekim HRR poljima za kombinovani mod. U
uslovima malog tečenja elastična polja se karakterǐsu kompleksnim fak-
torom intenziteta napona i faznim uglom opterećenja, dok se plastična
polja karakterǐsu novim faznim uglom. Dobijeni su veličina plastične
zone pri ravanskom stanju deformacije i napona i polja pomeranja u
vrhu prsline za nove fazne uglove. Vrh prsline se otvara ravnomerno i
pomeranje otvora prsline je normalizovano J - integralom. Kompletna
analiza je uradjena korǐsćenjem Mathematica paketa za simboličko pro-
gramiranje.


