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Abstract

In the paper is considered synthesis of the controller with
tachometric feedback with feedforward compensation of distur-
bance torque, velocity and acceleration errors. It is difficult to
obtain the desired control performance when the control algo-
rithm is only based on the robot dynamic model. We use the
neural network to generate auxiliary joint control torque to com-
pensate these uncertainties. The two-layer neural network is used
as the compensator. The main task of control system here is to
track the required trajectory. Simulations are done in MATLAB
for RzRyRy robot minimal configuration.

1 Introduction

Tracking control of an industrial robot has been a difficult challenging
problem to be solved for decades. A lot of research has dealt with the
tracking control problem. As the most popular approach, computed-
torque method or inverse dynamic control method is used most for robot
dynamic control. It is difficult to obtain the desired control performance
when the control algorithm is only based on the robot dynamic model.
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Robots have to face many uncertainties in their dynamics, in particu-
lar structured uncertainty, such as payload parameter, and unstructured
one, such as friction and disturbance.

Fuzzy logic, neural network and neuro-fuzzy systems have been ap-
plied for identification of nonlinear dynamics and robot control. Neural
networks make use of nonlinearities, learning ability, parallel processing
ability, and function approximation for applications in advanced adap-
tive control.

An approach and a systematic design methodology to adaptive mo-
tion control based on neural network is presented in [1]. The neuro
controller includes a linear combination of a set of off-line trained neu-
ral networks and an updated law of the linear combination coefficients
to adjust robot dynamics and payload uncertain parameters. Simula-
tion results, showing the practical feasibility and performance of the
proposed approach to robotics, are given.

In [2] a new neural network controller for the constrained robot ma-
nipulators in task space is presented. The neural network is used for
adaptive compensation of the structured and unstructured uncertain-
ties. It is shown that the neural network adaptive compensation is
universally able to cope with totally different classes of system uncer-
tainties. Detailed simulation results are given to show the effectiveness
of the proposed controller.

In [3] a kind of recurrent fuzzy neural network is constructed by
using recurrent neural network to realize fuzzy inference. Simulation
experiments are made by applying proposed fuzzy neural network on
robotic tracking control problem to confirm its effectiveness.

A neural-network-based adaptive tracking control scheme is proposed
for a class of nonlinear systems in [4]. Using this scheme, not only strong
robustness with respect to uncertain dynamics and nonlinearities can be
obtained, but also the output tracking error between the plant output
and the desired reference output can asymptotically converge to zero.

This paper is organized as follows. In section II, several properties
of robot dynamics are introduced. In section III, the control scheme is
proposed, where neural network is utilized to compensate the uncertain-
ties of the industrial robot. The proposed control algorithm is verified
through computer simulations for. In section IV are presented results of
simulation for the three-segment robot of the RzRyRy minimal configu-
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ration. Section V gives concluding remarks.

2 Properties of robot dynamic model and

uncertainties

An industrial robot is defined as an open kinematic chain of rigid links.
The numeration of segments starts from the support (denoted by zero,
i.e.i = 0) towards the open end of the chain (i = n). Each degree of
freedom of the manipulator is powered by independent torques. Using
the Langrangian formulation, the equations of motion of an n-degree-of-
freedom robot can be written as:

H (θ) θ̈ + C
(
θ, θ̇

)
+ G (θ) + F

(
θ, θ̇, θ̈

)
= M, (1)

where: θ are the generalized coordinates; H (θ) is the symmetric, positive-

definite inertia matrix; C
(
θ, θ̇

)
is the vector of centrifugal and Coriolis

torques; G (θ) , F
(
θ, θ̇, θ̈

)
, M represent gravitational torques, uncer-

tainty and applied joint torques, respectively.

The robot dynamic equations represent a highly nonlinear coupled,
and multi-input multi-output system.

The friction in the dynamic equation (1) (part of uncertainty func-
tion) is of the form:

Fr

(
θ̇
)

= Fvθ̇ + Fd

(
θ̇
)

, (2)

with Fv as the coefficient matrix of viscous friction and Fd as a dynamic
friction term, since friction is dependent on angular velocity θ̇ only.

3 Control of robot using neural network

compensator

The aim of controller synthesis consists of selection of structure and pa-
rameters such that the system obtains characteristics that were set in
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advance, with respect to transient process and stationary state. The ac-
tuators used in the industrial robots are hydraulic, pneumatic, or electri-
cal. When actuators is electrical, then control system of industrial robot
determines the voltage at the ends of rotor’s coils of the actuator, such
that the driving moments or forces ensure as good as possible tracking
of the required trajectory of the manipulator segments’ motion in real
time.

In [5] is used position controller with tachometric feedback with feed-
forward compensation of disturbance torque, velocity and acceleration
errors for the manipulator control. The control law of the i-th segment
is:

uCi(t) =
JefiRi

kiini

θ̈di +
BefiRi

kiini

θ̇di +
kbi

ni

θ̇di +
Rini

kii

n∑
j=1
j 6=i

Hij θ̈j+

(3)

Rini

kii

Ci

(
θ, θ̇

)
+

Rini

kii

Gi (θ) + kθi (θdi − θi) +
k1ikti

ni

θ̇di − k1ikti

ni

θ̇i

where:

Rikiini =
1

Ni

θ̇diHij = Hij (θk+1, ...θn) , k = min (i, j)

kti− is the tachometer constant,
kθi− is the conversion constant,
k1i− is the amplifier gain,
θdi− is the desired angular displacement,
θi− is the actual angular displacement,
kbi− is the coefficient of the back electro-motor force,
Befi− is the effective damping coefficient,
Jefi− is the effective moment of inertia,
Ri− is the rotor winding resistance,
kii− is the torque constant,
ni = 1

Ni
− is the gear ratio,

θ̇di− is the desired angular velocity,
Hij = Hij (θk+1, ...θn) , k = min (i, j) − are the terms of the iner-

tial coefficients matrix,
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Ci

(
θ, θ̇

)
=

n∑
j=1

n∑
k=1

Cijkθ̇j θ̇k - is the term of the vector of centrifugal

and Coriolis torques,

Cijk = 1
2

(
∂Hij

∂θk
+ ∂Hki

∂θj
− ∂Hjk

∂θi

)
− are the Christoffel’s symbols of the

first kind,

Gi− represents the action of gravitational forces.

In the appendix is presented determination of kθi and k1i.

The Hij, Cijk and Gi in (3) are functions of physical parameters
of industrial robots like links’ masses, links’ lengths, moments of in-
ertia, payload parameter. The precise values of these parameters are
difficult to acquire due to measuring errors, environment and payload
variations. The position controller with tachometric feedback with feed-
forward compensation of disturbance torque, velocity and acceleration
errors, relies on strong assumptions that exact knowledge of robotic dy-
namics is precisely known and unmodeled dynamics has to be ignored,
which is impossible in practical engineering.

We use the position controller with tachometric feedback with feed-
forward compensation of disturbance torque, velocity and acceleration
errors (controller, Fig.1). Also, we use the neural network to generate
auxiliary joint control torque to compensate uncertainties. During the
operation the coefficient of viscous and dry friction in joints and some
actuator characteristics are rather slowly varying. There is a group of
parameters of the robotic system which vary significantly and relatively
fast, and which have big influence on the robot performance. Such pa-
rameters are masses, dimensions and moments of inertia of the payload,
which is carried by the robot. The presence of the payload causes the

change Hij, Cijk and Gi and uncertain parts denoted by Fi

(
θ, θ̇, θ̈

)
. In

this paper is considered the case when the uncertainty is the consequence
of the working object parameters variation, i.e., its mass. It is assumed
that both the minimum and maximum mass of the working object are
known. The proposed control scheme is shown in Fig. 1.

Overall control law of the i-th segment reads:

ui(t) = uCi
(t) + uNi

(t), (4)

where uCi
(t) is defined like in (3), and
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Figure 1: Proposed feedback neural compensator structure

uNi (t) =
Rini

kii

Fi

(
θ, θ̇, θ̈

)
, (5)

where Fi

(
θ, θ̇, θ̈

)
is uncertainty of the i-th segment.

In this work neural network is used to define uNi (t). The two-layer
neural network with m inputs and one output is shown in Fig.2. It
is composed of an input buffer, a nonlinear hidden layer, and a lin-
ear output layer. For adapting parameters is used the backpropaga-
tion algorithm. The learning method requires set of data for training
P = {p1, p2, ...pr}. Each element of the set, pk = (xk, yzk) is defined by
the input vector xk = (x1k x2k...xmk) and the desired response yzk.

The inputs x = (x1 x2...xm) are multiplied by weights ω
(1)
ij and

summed at each hidden node. Then the summed signal at a node acti-
vates a nonlinear function (sigmoid function). Thus, the output y at a
linear output node can be calculated from its inputs as follows:

y =

nH∑
j=1

ω
(2)
j1

1

1 + e
−

(
m∑

i=1
xiω

(1)
ij +b

(1)
j

) + b
(2)
1 , (6)
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Figure 2: Multilayer feedforward neural network structure

where m is the number of inputs, nH is the number of hidden neurons, xi

is the i-th element of input, ω
(1)
ij is the first layer weight between the i-th

input and the j-th hidden neuron, ω
(2)
j1 is the second layer weight between

the j-th hidden neuron and output neuron, b
(1)
j is a biased weight for the

j-th hidden neuron and b
(2)
1 is a biased weight for the output neuron.

The weight updating law minimizes the function:

ε =
1

2
(y − yz)

2 . (7)

The backpropagation update rule for the weights with a momentum
term is:

∆ω (t) = −η
∂ε

∂ω
+ α∆ω (t− 1) , (8)

where η is the update rate and α is the momentum coefficient. Specifi-
cally,

∂ε

∂ω
(1)
ij

= (y − yz) ω
(2)
j1 xi

e
−

(
m∑

i=1
xiω

(1)
ij +b

(1)
j

)

[
1 + e

−
(

m∑
i=1

xiω
(1)
ij +b

(1)
j

)]2 (9)
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∂ε

∂b
(1)
j

= (y − yz) ω
(2)
j1

e
−

(
m∑

i=1
xiω

(1)
ij +b

(1)
j

)

[
1 + e

−
(

m∑
i=1

xiω
(1)
ij +b

(1)
j

)]2 (10)

∂ε

∂ω
(2)
j1

= (y − yz)
1[

1 + e
−

(
m∑

i=1
xiω

(1)
ij +b

(1)
j

)]2 (11)

∂ε

∂b
(2)
1

= y − yz. (12)

4 Simulation results

Simulations were done for the robot shown in Fig.3 (RzRyRy minimal
configuration).

Figure 3: The three segment industrial robot of the RzRyRy configura-
tion

Characteristic values of the shown robot are:
lengths of segments - l1 = 0.75, m; l2 = 0.5, m; l3 = 0.5, m
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positions of centres of masses -

a1 = 0.4, m; a2 = 0.2, m; a3 = 0.2, m;

masses of segments -

m1 = 2.27, kg; m2 = 15.91, kg; m3 = 6.82, kg;

moments of inertia -

Jξ1 = 0.0194, kgm2; Jη1 = 0.0388, kgm2; Jζ1 = 0.0267, kgm2;

Jξ2 = 0.01, kgm2; Jη2 = 3.7691, kgm2; Jζ2 = 3.6959, kgm2;

Jξ3 = 0.0904, kgm2; Jη3 = 0.2245, kgm2; Jζ3 = 0.2842, kgm2;

coefficient of the viscous friction in segments bearings -
Bi = 0.2, Nms

rad
;

gear ratio -
n1 = n2 = n3 = 0.01.

The structural resonant frequency: ωr1 = 30, rad
s

; ωr2 = 30, rad
s

; ωr3 =
35, rad

s
.

Mass load: mt min = 0, kg; mt max = 2.5, kg.
For the robot shown in Fig. 3:

3∑

j = 1
j 6= 1

H1j θ̈j = 0,

C1

(
θ, θ̇

)
= [(m2a

2
2 + m3l

2
2 + Jξ2 − Jζ2) sin 2θ2+

(m3a
2
3 + Jξ3 − Jζ3) sin 2 (θ2 + θ3) + 2l2m3a3 sin (2θ2 + θ3)] θ̇1θ̇2+

[(m3a
2
3 + Jξ3 − Jζ3) sin 2 (θ2 + θ3) +

2l2m3a3 sin θ2 cos (θ2 + θ3)] θ̇1θ̇3,

G1 (θ) = 0,
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3∑

j = 1
j 6= 2

H2j θ̈j =
[
Jη3 + m3a

2
3 + mtl

2
3 + (m3a3 + mtl3) l2 cos θ3

]
θ̈3.

C2

(
θ, θ̇

)
= −1

2
[(m2a

2
2 + m3l

2
2 + Jξ2 − Jζ2) sin 2θ2+

(m3a
2
3 + Jξ3 − Jζ3) sin 2 (θ2 + θ3) + 2l2m3a3 sin (2θ2 + θ3)] θ̇

2
1−

2l2m3a3 sin θ3θ̇2θ̇3 −m3a3l2 sin θ3θ̇
2
3,

G2 (θ) = − (m2a2 + m3l2) g sin θ2 − m3a3g sin (θ2 + θ3)

3∑

j = 1
j 6= 3

H3j θ̈j =
[
Jη3 + m3a

2
3 + m3a3l2 cos θ3

]
θ̈2.

C3

(
θ, θ̇

)
= −1

2

[(
m3a

2
3 + Jξ3 − Jζ3

)
sin 2 (θ2 + θ3) +

2l2m3a3 sin θ2 cos (θ2 + θ3)] θ̇
2
1 + m3a3l2 sin θ3θ̇

2
2,

G3 (θ) = −m3a3g sin (θ2 + θ3) .

Functions in equation (5) for the considered robot are:

F1

(
θ, θ̇, θ̈

)
= [mtl

2
2 sin 2θ2 + mtl

2
3 sin 2 (θ2 + θ3) +

2l2mtl3 sin (2θ2 + θ3)] θ̇1θ̇2 + [mtl
2
3 sin 2 (θ2 + θ3) +

2l2mtl3 sin θ2 cos (θ2 + θ3)] θ̇1θ̇3,

F2

(
θ, θ̇, θ̈

)
= (mtl

2
3 + mtl3l2 cos θ3) θ̈3 − 1

2
[mtl

2
2 sin 2θ2+

mtl
2
3 sin 2 (θ2 + θ3) + 2l2mtl3 sin (2θ2 + θ3)] θ̇

2
1

− 2l2mtl3 sin θ3θ̇2θ̇3 −mtl3l2 sin θ3θ̇
2
3 − mtl2g sin θ2−

mtl3g sin (θ2 + θ3) ,

(13)
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F3

(
θ, θ̇, θ̈

)
= (mtl

2
3 + mtl3l2 cos θ3) θ̈2−

1
2

[mtl
2
3 sin 2 (θ2 + θ3) + 2l2mtl3 sin θ2 cos (θ2 + θ3)] θ̇

2
1+

mtl3l2 sin θ3θ̇
2
2 −mtl3g sin (θ2 + θ3) .

For the driving of the first and the third segment the DC motor U9M4T
was chosen, and for the second segment, which is the most exposed to
influence of moment due to gravitational forces, the DC motor U12M4T
was chosen. The characteristic values for the used motors are given in
Table 1.

Model U9M4T U12M4T
Moment of inertia of the rotor Ja, kgm2 56.484·10−6 233 · 10−6

Coefficient of the viscous friction
Bm, Nms/rad

80.913·10−6 303.39 ·10−6

Coefficient of torque ki, Nm/A 0.043 0.10167
Back electro-motor force constant
kb, V s/rad

0.04297 0.10123

Resistance of the rotor coil R, Ω 1.025 0.91
Maximum driving torque Mm max, Nm 1.4 2.8
Tachometer constant kt, V s/rad 0.02149 0.05062

Table 1: The characteristic values of the used motors

The controller gains are selected as:
kθ1 = 384.55, kθ2 = 257.81, kθ3 = 123.16, k11 = 21.75,
k12 = 4.73, k13 = 4.44. (See Appendix)
The input and output variables of the neural networks are shown in

Fig. 4.
One of the most interesting properties of neural networks is that

they are universal approximators ([6]). A multlayer neural network can
approximate the function defined in (5) with its bounded inputs: θ1 =
θ2 = θ3 =

[−π
2
, π

2

]
, θ̇1 = θ̇2 = θ̇3 =

[−1.5 rad
s

, 1.5 rad
s

]
, θ̈1 = θ̈2 = θ̈3 =[−5 rad

s2 , 5 rad
s2

]
. Values for nH , η and α are 6, 0.01 and 0.9, respectively.
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Figure 4: Illustration of the input and the output variables of neural
network compensator

The training set predicated that mt min = 0 and mt max = 2.5, kg. The
data set for neural network training is formed based on equation (5) and
functionsFi, which are given in (13).

The simplest and most common way of specifying a joint trajectory
θi (t) is to specify the initial and final values of θi (t) and θ̇i (t). These are
normally stated as: θi (0) = θiA, θi (tmax) = θiB, θ̇i (0) = 0, θ̇i (tmax) = 0,
where tmax is the final time and the robotic hand is required to be at
rest initially at time t = 0 and to come to rest at time t = tmax. These
constraints can be satisfied by third-degree polynomials in time ([7], [8]).

The gripper was moving from the point A (-0.718, 0.304, 1,639) to
point B (0.242, 0.075, 1.646). It is assumed that there are no obsta-
cles in the working space. The desired joint angle trajectories (internal
coordinates) for a robot to track are:

θi (t) = θiA +
3

t2max

(θiB − θiA) t2 − 2

t3max

(θiB − θiA) t3, i = 1, 2, 3,

where: θ1A = −0.4 rad; θ2A = −1 rad; θ3A = 0.2 rad; θ1B = 0.3 rad;
θ2B = −0.1 rad; θ3B = 0.75 rad.
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The time taken for performing the motion is tmax = 2 s.
In Fig.5 is given the variation of the internal coordinates during the

task execution. In Fig.6 is given the variation of the tracking errors
of the trajectory for the case of application of the proposed controller
structure.
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Figure 5: Variation of the internal coordinate θi (t) along the trajectory

5 Conclusion

Results of simulation, presented in this paper, show that the application
of the neural network compensator to control of industrial robots gives
satisfactory results.

Robots are complicated nonlinear dynamical systems with unmod-
eled dynamics and unstructured uncertainties. These dynamical un-
certainties make the controller design for manipulators a difficult task
in the framework of classical control. One of the most important in-
dustrial robot operations is the control of the robot to track a given
trajectory. Most commercial robot systems are currently equipped with
conventional PID controllers due to their simplicity in structure and
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0 0.5 1 1.5 2
-2

-1

0

1

2

3
x 10

-3

[ ]
i

e

rad

[ ]t s

1
e

2
e3

e

Figure 6: Variation of the tracking errors

ease of design. Using PID control, however, it is difficult to achieve a
desired tracking control performance since the dynamic equations of a
mechanical manipulator are tightly coupled, highly nonlinear and un-
certain. In order to improve the tracking control performance under
uncertainty, this paper presents a new hybrid control scheme for the
industrial robot, which consists of a neural network compensator and
a conventional controller with tachometric feedback with feedforward
compensation of disturbance torque, velocity and acceleration errors.
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Appendix

Determination of kθi and k1i

The characteristic equation for the closed-loop controller ([5]) is:

s2 +

[
Befi

Jefi

+
kii (kbi + k1ikti)

RiJefi

]
s +

nikθikii

RiJefi

= 0, (14)

which is conventionally expressed as:

s2 + 2ξiωnis + ω2
ni = 0, (15)

where ξi is the damping ratio and ωni the undamped natural frequency.
From (14) and (15), one obtains:

ωni =

√
nikθikii

RiJefi

(16)

and

ξi =
RiBefi + kii (kbi + k1ikti)√

kθikiiniRiJefi

. (17)

In [5] is suggested that for a conservative design, with a safety factor of
200 percent, one sets the undamped natural frequency ωni to no more
than one-half of the structural resonant frequency ωri.

ωni ≤ 1

2
ωri. (18)

Thus by (16) and (18), one obtains:

kθi ≤
(

ωri

2

)2
RiJefi

kiini

. (19)

As the existence of the overshoot during the motion of the manipulator
segments is undesirable, since it can lead to contact of the manipulator
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with some objects in its environment, tendency is always for the response
to be either critically damped or over critically damped. Then:

ξi =
RiBefi + kii (kbi + k1ikti)√

kθikiiniRiJefi

≥ 1. (20)

From (20) follows:

k1i ≥
2
√

kθikiiniRiJefi −RiBefi

kiikti

− kbi

kti

(21)

Since the minimal value of the relative damping coefficient appears when
Jefi = Jefi max, the values of gains are calculated in such a way that the
response is critically damped with respect to Jefi max. In this way, for
the smaller values of the effective moment of inertia, it is ensured that
the value of the relative damping factor is greater than unity, namely,
the desired aperiodic response is ensured.

Submitted on June 2005.

Upravljanje industrijskim robotom korǐsćenjem
neuronske mreže kao kompenzatora

UDK 681.5

U radu je razmatrana sinteza kontrolera sa tahometarskom povrat-
nom spregom i unaprednom kompenzacijom momenta poremećaja, brzin-
ske i akceleracijske greške. Teško je dobiti željene performanse sistema
kada se algoritam upravljanja zasniva samo na matematičkom modelu
robota. Za generisanje dodatnog momenta pogona po zglobovima, ko-
jim se kompenzuju neodredjenosti, koristi se neuronska mreža. Kao
kompenzator se upotrebljava dvoslojna neuronska mreža. Glavni za-
datak sistema upravljanja je praćenje zadate trajektorije. Simulacije su
uradjene u MATLAB-u za robot RzRyRy minimalne konfiguracije.


