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Abstract

A variational approach to the shock structure problem is
proposed. The set of governing equations, consisted of n first-
order ordinary differential equations accompanied with 2n bound-
ary conditions at ±∞, is put into variational form by means of
least-squares method. The corresponding variational principle
is adjusted for application of Ritz method. This direct method
is used for construction of approximate analytical solutions to
the shock structure problem and derivation of the estimates for
the shock thickness. General procedure is applied to the study
of Burgers’ equation and equations of gas dynamics.
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1 Introduction

Shock waves are discontinuous solutions of the systems of conserva-
tions laws localized on the singular surface φ - the wave front. In the
case of one space dimension conservation laws could be expressed as:

∂tF
0(u) + ∂xF(u) = 0, (1)

where F0 and F are n−vectors of densities and fluxes of physical quan-
tities, respectively, while u(x, t) is n−vector of field variables. Shock
waves are then treated as singular surfaces φ(x, t) = x − st travel-
ing with speed s and carrying jumps of field variables determined by
Rankine-Hugoniot equations:

−s
[

F0(u)
]

+ [F(u)] = 0. (2)

Brackets [Ψ] = Ψ1−Ψ0 are used to denote the jump of the quantity Ψ

across the wave front, Ψ0 and Ψ1 being its values in front and behind
the shock, respectively. By solving equations (2) the state u1 behind
the shock is determined in terms of the state u0 in front of it and the
shock speed s.

In reality, when dissipative effects are taken into account, shocks
are smoothed out into continuous solutions asymptotically joining the
states u0 and u1, with steep gradients in the neighborhood of the front
φ = x − st. Thus, dissipation equips shock waves with the structure.
Usually, it is driven by viscosity and heat conduction, in which case
the system (1) becomes the system of balance laws:

∂tF
0(u) + ∂xF(u) = µ∂x (B(u)∂xu) , (3)

with B(u) being n× n−matrix, or by relaxation when (1) transforms
into a balance laws system with local source terms:

∂tF
0(u) + ∂xF(u) =

1

ε
P(u). (4)
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In either case systems of balance laws can be transformed using trav-
eling wave ansatz u(x, t) = v(x− st) = v(ξ), ξ = x− st, and reduced
to the system of n ordinary differential equations:

v′ = f(v); −∞ < ξ < ∞, (5)

where ( )′ = d( )/dξ, accompanied with appropriate boundary condi-
tions:

lim
ξ→−∞

v(ξ) = u1, lim
ξ→∞

v(ξ) = u0. (6)

Since u0 and u1 are treated as equilibrium states, (6) can be replaced
by an equivalent condition:

lim
ξ→±∞

v′(ξ) = 0. (7)

Boundary conditions (6) and (7) give rise to equations:

f(u0) = 0 and f(u1) = 0, (8)

which are equivalent to Rankine-Hugoniot equations (2).
Solution v(ξ) of the system (5) which satisfies boundary conditions

(6) or (7) determines the shock structure (shock profile), also called
viscous or relaxation profile emphasizing the mechanism of dissipa-
tion. It is a heteroclinic orbit in n−dimensional state space asymp-
totically connecting equilibrium states u0 and u1. This problem is
over-determined in the sense that n first-order ODE’s (5) are adjoined
with 2n boundary conditions (6). Except in few particular cases, like
Burgers’ equation, shock structure cannot be determined in closed an-
alytical form. Therefore, boundary-value problem (5)-(6) used to be
solved approximately, either by perturbation techniques, motivated by
the fact that µ in (3) and ε in (4) are small parameters, or by numerical
integration.

The goal of this study is to develop a procedure for derivation
of approximate analytical solutions of the shock structure problem
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(5)-(6), or (5)-(7). It will be based upon least-squares method used
in conjunction with the Ritz direct method of calculus of variations.
This procedure is advantageous with respect to techniques mentioned
earlier due to its simplicity, good results even with simple profiles and
possibility for analytical study of the shock thickness - a parameter of
great importance in the analysis of shock waves. In the next section a
proper variational formulation of the problem will be given. In Section
3 it will be adjusted for application of the Ritz method. Finally, the
proposed procedure will be tested in the shock structure analysis of
Burgers’ equation (Section 4) and gas dynamic equations (Section 5).

2 Variational formulation

Let us analyze the system of ODE’s (5) with boundary conditions (7).
In order to put this boundary-value problem into variational setup the
following variational problem will be formulated:

J(V) =

∫

∞

−∞

(V′ − f(V))
2
dξ → min, (9)

where V(ξ) is n−vector function from the set of admissible functions:

D =

{

V(ξ) : V(ξ) ∈ C1(R, Rn); lim
ξ→−∞

V′(ξ) = lim
ξ→∞

V′(ξ) = 0

}

.

(10)
It is obvious that minV(ξ)∈D J(V) = 0, if such a minimizer exists.
Also, every V(ξ) ∈ D satisfies boundary conditions (7).

Proposition 2.1 Functional (9) attains its minimum on the solu-
tion v(ξ) of the boundary-value problem (5),(7). Boundary conditions
(8) appear as a consequence of transversality conditions of variational
problem (9).
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Proof: First part of the proposition is trivial consequence of the fact
that functional (9) ought to minimize the square of the differential
system (5). If v(ξ) solves (5) and satisfies boundary conditions (7),
then v(ξ) ∈ D and J(v) = 0 as desired.

From the necessary condition of extremum, δJ(v,h) = 0, where
h = V − v, one obtains Euler-Lagrange equations and transversality
condition:

(v′ − f(v)) · h|∞
−∞

= 0.

By the choice of set D we have v′(ξ) → 0 and h(ξ) arbitrary at infinity.
This leads to:

lim
ξ→±∞

f(v(ξ)) = 0.

It may be concluded that boundary states u0 at ∞ and u1 at −∞ are
equilibrium states - stationary points, thus proving the second part of
the proposition.

Remark 1. If v(ξ) is C2(R, Rn) solution of (5),(7), then it identically
satisfies Euler-Lagrange equations (d/dξ)(∂L/∂v′) − ∂L/∂v = 0 of
variational problem (9) with Lagrangian function:

L(V,V′) = (V′ − f(V))
2
. (11)

This conclusion can be drawn directly from the following form of Euler-
Lagrange equations:

d

dξ
(v′ − f(v)) + (v′ − f(v))

∂f(v)

∂v
= 0. (12)

Moreover, an explicit form of (12) reads:

v′′ =
∂f(v)

∂v
f(v), (13)

representing the derivative of the system (5) along its solution curve.
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Remark 2. Proposition 2.1 and conclusions of previous remark re-
main unchanged even if the system (5) is non-autonomous, f = f(v, ξ).
Only the structure of (13) is a bit different:

v′′ =
∂f(v, ξ)

∂ξ
+

∂f(v, ξ)

∂v
f(v, ξ).

Remark 3. Right-hand side of the system (5) also depends on the
shock speed s as a parameter, i.e. f = f(v, s). This has to be taken into
account because equilibrium states could depend on s. In particular,
one can obtain u1 = u1(u0, s) either as solution of Rankine-Hugoniot
equations (2) or boundary conditions (8). Furthermore, shock waves
and corresponding profiles exist only for certain ranges of the value
of shock speed. This issue is very important and there exist several
selection rules for physically admissible shocks (Lax condition, entropy
criterion, Liu condition). A detailed account on this problem could be
found in [5] and [11].

3 The direct method

Variational principle (9) formulated on the set (10) gives an appro-
priate setup for the shock structure problem (5),(7). Nevertheless,
infinite domain of independent variable ξ could cause difficulties ei-
ther in basic or in variational formulation. In numerical approach to
(5),(7) this problem could be overcome by elimination of independent
variable and reduction of order of the system by one. This appeared
to be a fruitful idea since (5) is an autonomous system and the re-
gion of the state space where heteroclinic orbit appears is bounded.
Another possibility calls for enlargement of the finite domain of inte-
gration ξ ∈ [ξ0, ξ1] until desired accuracy is reached. It is assumed that
v′(ξ) → 0 as ξ tends to the endpoints. Here, a variant of the latter
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approach will be adopted in order to facilitate easier application of the
direct method.

Instead of using set D of admissible functions, we shall search for
the solution of variational problem (9) in the subset D̃ ⊂ D defined
as follows:

D̃ =

{

V(ξ) : V(ξ) ∈ C1(R, Rn); lim
ξ→ξ+

0

V′(ξ) =

lim
ξ→ξ−

1

V′(ξ) = 0;V′(ξ) ≡ 0, ξ ∈ R \ (ξ0, ξ1)

}

.

(14)

Functions V(ξ) ∈ D̃ reach equilibrium states at the endpoints of the
interval [ξ0, ξ1] and remain constant outside. The question of existence
of the minimizer ṽ(ξ) ∈ D̃, J(ṽ) = min

V(ξ)∈D̃ J(V) will not be tackled
here. The set (14) will serve only as a source of trial functions for the
Ritz method.

In direct methods infinite dimensional problems are replaced by
finite dimensional ones when approximate solutions are supposed in
the form:

V = V(ξ, a1, . . . , an) ∈ D̃. (15)

Constants ai, i = 1, . . . , n, are determined in the course of minimiza-
tion of the functional (9) which now reads:

J(ai) =

∫

∞

−∞

R2(ξ, ai)dξ, (16)

where:

R(ξ, ai) = V′(ξ, ai) − f(V(ξ, ai)),

represents the residual evaluated on approximate solution (15). Mini-
mization with respect to ai leads to the following necessary conditions
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for the extremum:

∂J

∂ai

=

∫

∞

−∞

2R(ξ, ai) ·
∂R(ξ, ai)

∂ai

dξ = 0. (17)

Given in this form, lest-squares method appears to be the special case
of the method of weighted residuals, see [6].

Direct methods were successfully applied to irreversible and non-
linear physical processes like heat transfer and boundary-layer flow in
fluid mechanics. One may see a lot of examples in books of Biot [3],
Finlayson [6], Vujanovic and Jones [12] and references cited therein.
Their common characteristic is disobedience of some rules of the clas-
sical calculus of variations since governing equations cannot be derived
from variational principle in a usual way. On the other hand, appli-
cation of the least-squares method was criticized due to complicated
equations it produces [6] and basically mathematical rather then phys-
ical origin [3].

Variational principle (9) applied to the shock structure problem
(5),(7) provides a proper variational formulation and seems to be a
good basis for the application of direct methods. Moreover, using
approximate analytical solutions obtained in such a way one may cal-
culate an estimate for one the most important quantities in the shock
structure problem - shock thickness δS. Usually, it is defined as:

δS =

∣

∣

∣

∣

vk1 − vk0

max(dvk/dξ)

∣

∣

∣

∣

, (18)

where vk is a particular component of the vector v of field variables,
vk0 and vk1 being its equilibrium values. This will also be one of the
outcomes of the present study.
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4 Burgers’ equation

As a first application of the procedure developed in previous sections
we shall analyze approximate solution of the shock structure problem
for Burgers’ equation:

∂tu + ∂x

(

1

2
u2

)

= ν∂2
xxu. (19)

It is the simplest example of the model which possesses both nonlinear
propagation effects, leading to shock waves, and diffusion-like dissipa-
tive effects. By means of the Hopf-Cole transformation (19) can be
reduced to linear heat equation and thus solved in closed form. This
and many other remarkable features of Burgers’ equation reader could
find in the book of Whitham [14].

4.1 Shock structure problem and exact solution

Rankine-Hugoniot equation for (19), which reads −s[u] + [u2/2] = 0,
[u] = u1 − u0, has two solutions, one of them being:

s =
1

2
(u1 + u0) ⇔ u1 = 2s − u0, (20)

while the other one is trivial, u1 = u0. Shock waves, determined by
non-trivial solution (20), are admissible for u0 < s < u1. Differential
equation for the viscous profile, obtained by the use of traveling wave
ansatz u(x, t) = v(x − st) = v(ξ) becomes:

v′ = −1

ν
(v − u0)

(

s − 1

2
(v + u0)

)

, (21)

or equivalently:

v′ = − 1

2ν
(v − u0)(u1 − v). (22)
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It is obvious that boundary conditions (7) at infinity, i.e.:

lim
ξ→±∞

v′(ξ) = 0, (23)

imply v = u0 and v = u1 are equilibrium states - stationary points of
(22). Exact solution of boundary-value problem (22)-(23) is:

v(ξ) = u0 +
u1 − u0

1 + exp
{

(u1 − u0)
ξ

2ν

} . (24)

To achieve as much generality as possible boundary-value problem
(22)-(23) will be put into dimensionless form using following dimen-
sionless quantities:

v̂ =
v − u0

u1 − u0

; ξ̂ =
u1 − u0

ν
ξ. (25)

In such a way we arrive to:

dv̂

dξ̂
= −1

2
v̂(1 − v̂); lim

ξ̂→±∞

dv̂

dξ̂
(ξ̂) = 0, (26)

whose exact solution - dimensionless counterpart of (24) - has the
following form:

v̂(ξ̂) =
1

1 + exp
(

ξ̂

2

) , (27)

Equilibrium states and shock speed thus become û0 = 0, û1 = 1 and
ŝ = 1/2.

4.2 Variational approximation

Variational principle (9) applied to boundary-value problem (26) reads:

J(V̂ ) =

∫

∞

−∞

(

2
dV̂

dξ̂
+ V̂ (1 − V̂ )

)2

dξ̂ → min . (28)
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Approximate solution will be searched for in the following subset of
admissible functions:

D̃ =

{

V̂ (ξ̂) : V̂ (ξ̂) ∈ C1(R); lim
ξ̂→−â+

dV̂

dξ̂
(ξ̂) =

lim
ξ̂→â−

dV̂

dξ̂
(ξ̂) = 0;

dV̂

dξ̂
(ξ̂) ≡ 0, ξ̂ ∈ R \ (−â, â)

}

.

(29)

Symmetric interval (−â, â) in D̃ is motivated by the symmetry prop-
erties of exact solution (27). Corresponding endpoints of the original
interval (−a, a) are determined by relation a = νâ/(u1 − u0).

As a first approximation of (27) let us suppose the solution in the
form:

v̂(1)(ξ̂) =











1, ξ̂ ∈ (−∞,−â],

a0 + a1ξ̂ + a2ξ̂
2 + a3ξ̂

3, ξ̂ ∈ (−â, â),

0, ξ̂ ∈ [â,∞)

In order to insure v̂(1)(ξ̂) ∈ D̃ it has to satisfy boundary conditions:

v̂(−â) = 1; v̂(â) = 0;
dv̂

dξ̂
(±â) = 0, (30)

In such a way first approximation is obtained in the form:

v̂(1)(ξ̂) =
1

2
− 3

4

ξ̂

â
+

1

4

(

ξ̂

â

)3

, (31)

for ξ̂ ∈ (−â, â). Observe that the only adjustable parameter in (31)
is â which will stretch the profile to obtain the best approximation
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with respect to (28). By putting v̂(1)(ξ̂) into (28) a function of single
independent variable â is obtained:

J(v̂(1)) = J(â) = −2

3
+

12

5â
+

243

5005
â. (32)

In the spirit of the Ritz method we shall search for the stationary point
of J(â), i.e. dJ/dâ = 0, and obtain the result:

â = (2/9)
√

1001 ≈ 7.031 J (1) = 0.016. (33)

It can be seen that even such a poor profile like (31) gives a good
approximation of exact solution (27).

We may improve the results just obtained by expanding the power-
law approximation. The calculations could be simplified if we take into
account symmetry properties of exact solution and drop all the terms
of even degree. Therefore, non-constant part of second approximation
could be assumed in the form v̂(2)(ξ̂) = a0 + a1ξ̂ + a3ξ̂

3 + a5ξ̂
5. Profile

which matches the boundary conditions (30) then reads:

v̂(2)(ξ̂) =
1

2
+

(−3

4 â
+ â4a5

)

ξ̂ +

(

1

4 â3
− 2 â2a5

)

ξ̂3 + a5ξ̂
5. (34)

Substitution of v̂(2)(ξ̂) into (28) leads to the function:

J(v̂(2)) = J(â, a5) = −2

3
+

12

5 â
+

243 â

5005
− 64 â4a5

35
+

2176 â6a5

45045

+
1024 â9a2

5

315
+

512 â11a2
5

58905
− 8192 â16a3

5

373065
+

65536 â21a4
5

14549535
.

(35)

Necessary conditions of extremum ∂J/∂â = 0, ∂J/∂a5 = 0 yield the
following result:

â = 8.456; a5 = −4.33 × 10−6; J (2) = 0.009. (36)
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Figure 1: Exact and approximate solutions of Burgers’ equation: v̂(ξ̂)
- boxes, v̂(1)(ξ̂) - dotted, v̂(2)(ξ̂) - dashed, v̂(3)(ξ̂) - solid

Value of the functional J (2) < J (1) shows that this approximation is
better than (31).

As a final test for our procedure a seventh-degree approximation
will be assumed. Its non-constant part compatible with boundary
conditions (30) has the form:

v̂(3)(ξ̂) =
1

2
+

(−3

4 â
+ â4a5 + 2 â6a7

)

ξ̂

+

(

1

4 â3
− 2 â2a5 − 3 â4a7

)

ξ̂3 + a5ξ̂
5 + a7ξ̂

7.

(37)

Using this trial function (28) becomes J(v̂(3)) = J(â, a5, a7), whose
form will be skipped for the sake of brevity. Necessary conditions of
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extremum ∂J/∂â = 0, ∂J/∂a5 = 0 and ∂J/∂a7 = 0 yield the result:

â = 8.457; a5 = −2.62 × 10−5; a7 = 1.35 × 10−7; J (3) = 0.002.
(38)

Inspection of the values of the least-squares functional (28) shows that
power-law approximations converge to exact solution (27).

Graphs of exact solution v̂(ξ̂) and approximate ones v̂(k)(ξ̂), k =
1, 2, 3, shown in Figure 1., give an impression of the accuracy of solu-
tions obtained via Ritz method. It can be seen that they converge to
exact solution so that v̂(3)(ξ̂) is almost indistinguishable from it.

Besides the value of (28), shock thickness could also be used for
comparison of exact and approximate solutions. In dimensionless form
it can be expressed as:

δ̂ =
û1 − û0

max |dû/dξ̂|
=

1

max |dû/dξ̂|
.

Since dû/dξ̂ reaches its maximum at ξ̂ = 0 for both exact and ap-
proximate solutions, it is easy to compare their values, δ̂(E) being the
thickness of exact solution (27):

δ̂(1) = 9.374; δ̂(2) = 9.021; δ̂(3) = 8.100; δ̂(E) = 8.0. (39)

Once again one can observe convergence of approximate solutions to
exact one. Moreover, dimensional shock thickness can be expressed
as:

δ =
ν

u1 − u0

δ̂,

and it is easy to see that it will increase with the increase of ν, which
plays the role of viscosity, whereas the increase of shock strength u1−u0

decreases the thickness.
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5 Shock waves in gas dynamics

Another application will be concerned with the structure of shock
waves in gas dynamics. Since this problem could be treated both from
theoretical and experimental point of view, there is a lot of results
providing either experimental data, or analysis of different models
with a tentative of providing the range of their validity. Two basic
theoretical approaches are continuum one, i.e. Navier-Stokes-Fourier
model which comprises both viscosity and heat conduction effects,
and kinetic theory, i.e. analytical or numerical solution of Boltzmann
equation. Recently, there appeared yet another approach based upon
extended thermodynamic theory, interesting because of the hyperbolic
structure of governing equations and finite speeds of pulse propaga-
tion. Here, we shall seek for the approximate solutions of the shock
structure equations obtained from Navier-Stokes-Fourier model.

Attempts to determine the validity of continuum approach to shock
waves in fluids could be traced back to the paper of Becker [2] who
obtained analytical solution of the shock structure equations although
under physically unrealistic assumptions. Later on Gilbarg and Paolucci
[7] gave the first qualitatively acceptable results based upon numerical
solution of shock structure equations. Extended thermodynamic the-
ory [8] gave another possibility of testing continuum approach to this
problem. In the papers of Ruggeri [9], [10] and Weiss [13] one can find
information about successes of this theory and obstacles that should
have been avoided, major one being the breakdown of continuous so-
lution when shock speed exceeds the highest characteristic speed of
the governing system of equations. Finally, let us mention that valu-
able information about experimental results could be found in a paper
of Alsmeyer [1]. He also reports that actually the best matching of
theory and experiment have been obtained by Bird [4] through the
application of Monte Carlo methods to the kinetic-theory model.

This review of previous work may be concluded with remark that
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there is a lack of analytical solutions, either exact or approximate, to
the shock structure problem in gas dynamics. Therefore, it is worth
trying to find such a solution which could provide simple but useful
relations between important physical parameters.

5.1 Shock structure equations

Let us analyze one-dimensional balance laws of mass, momentum and
energy for a monatomic gas:

∂tρ + ∂x(ρv) = 0;

∂t(ρv) + ∂x

(

ρv2 + p − σ
)

= 0; (40)

∂t

(

ρe +
1

2
ρv2

)

+ ∂x

{(

ρe +
1

2
ρv2

)

v + pv − σv + q

}

= 0,

with usual notation: ρ - density, v - velocity, p - pressure, σ - 〈11〉-
component of stress deviator, e - internal energy and q - heat flux.
These equations are adjoined with thermal and caloric equation of
state:

p = ρ
k

m
T ; e =

3

2

k

m
T, (41)

and Navier-Stokes and Fourier constitutive equations for stress and
heat flux:

σ =
4

3
µ ∂xv; q = −κ ∂xT. (42)

Here we have: k - Boltzmann constant, m - atomic mass of a gas, µ -
viscosity (combination of shear and compression one) and κ - thermal
conductivity. Following Gilbarg and Paolucci [7] we shall assume that
viscosity and thermal conductivity are temperature dependent:

µ =
1

α

k

m
T r; κ =

15

4

k

m
µ. (43)
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where exponent r depends on the type of gas and factor α depends on
the strength of intermolecular forces.

By assuming the solution of (40) in a traveling wave form, u(x, t) =
v(x − st) = v(ξ), u = (ρ, v, T )T , one obtains the following set of
equations:

d

dξ
(ρu) = 0;

d

dξ

(

ρu2 + p − σ
)

= 0; (44)

d

dξ

(

ρu3 + 5pu − 2σu + 2q
)

= 0,

where u = v − s is relative fluid velocity with respect to the shock
front. These equations can be integrated immediately to obtain:

ρu = C1;

ρu2 + p − σ = C2; (45)

ρu3 + 5pu − 2σu + 2q = C3,

and integration constants can be obtained from boundary conditions at
infinity, limξ→∞ v(ξ) = (ρ0, u0, T0)

T and limξ→−∞ v(ξ) = (ρ1, u1, T1)
T :

C1 = ρ0u0 = ρ1u1; C2 = ρ0u
2
0 + p0 = ρ1u

2
1 + p1;

C3 = ρ0u
3
0 + 5p0u0 = ρ1u

3
1 + 5p1u1.

Observe that σ and q vanish at infinity since equilibrium states are
reached there. Introducing the following set of dimensionless variables:

ρ̂ =
ρ

ρ0

; û =
u

c0

; T̂ =
T

T0

; σ̂ =
σ

ρ0
k
m

T0

; q̂ =
q

ρ0
k
m

T0c0

;

ξ̂ =
ρ0α

c0T
r−1
0

ξ; M0 =
u0

c0

; c0 =

√

5

3

k

m
T0,

(46)
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where M0 is Mach number and c0 local speed of sound, equations (45)
can be put into dimensionless form:

ρ̂û = M0;

5

3
ρ̂û2 + ρ̂T̂ − σ̂ =

5

3
M2

0 + 1; (47)

5

3
ρ̂û3 + 5ρ̂T̂ û − 2σ̂û + 2q̂ =

5

3
M3

0 + 5M0

whereas constitutive functions (42) combined with (43) become:

σ̂ =
4

3
T̂ r dû

dξ̂
; q̂ = −9

4
T̂ r dT̂

dξ̂
. (48)

By putting σ̂ = 0, q̂ = 0 into (47) one can obtain the values of dimen-
sionless variables behind the shock wave in terms of Mach number:

ρ̂1 =
ρ1

ρ0

=
4M2

0

M2
0 + 3

=
u0

u1

=
1

û1

; T̂1 =
T1

T0

=
5M4

0 + 14M2
0 − 3

16M2
0

. (49)

Actually, solutions (49) are solutions of Rankine-Hugoniot equations
for the system (40). Finally, combining (47) with (48) a system of two
ordinary differential equations is obtained:

dû

dξ̂
= Fu(û, T̂ ) =

3

4 T̂ r

{

M0

(

5

3
(û − M0) +

T̂

û

)

− 1

}

;

dT̂

dξ̂
= FT (û, T̂ ) = − 4

9 T̂ r

{

M0

2

(

5

3
(û − M0)

2 − 3T̂ + 5

)

− û

}

,

(50)

which represent the system of shock structure equations supposed to
be solved together with boundary conditions:

lim
ξ̂→±∞

dv̂

dξ̂
(ξ̂) = 0; v̂(ξ̂) = (û(ξ̂), T̂ (ξ̂))T . (51)



A variational approach to the shock structure problem 57

Shock waves are physically admissible for M0 > 1 and our goal will
be to determine the heteroclinic orbit connecting stationary points
(û0, T̂0) = (M0, 1) for ξ̂ → ∞ and (û1, T̂1) for ξ̂ → −∞. In [7] it
was done numerically because there is no analytical solution under as-
sumption (43). Here approximate analytical solutions will be analyzed
by means of general procedure outlined in Section 3.

5.2 Variational approximation

Variational principle (9) applied to the shock structure problem (50)-
(51) reads:

J(V̂) =

∫

∞

−∞







(

dÛ

dξ̂
− Fu(Û , θ̂)

)2

+

(

dθ̂

dξ̂
− FT (Û , θ̂)

)2






dξ̂ → min .

(52)
Approximate solution will be searched for in the following subset of
admissible functions:

D̃ =

{

V̂(ξ̂) : V̂(ξ̂) ∈ C1(R, R2); lim
ξ̂→−â+

dV̂

dξ̂
(ξ̂) =

lim
ξ̂→â−

dV̂

dξ̂
(ξ̂) = 0;

dV̂

dξ̂
(ξ̂) ≡ 0, ξ̂ ∈ R \ (−â, â)

}

.

(53)

Trial functions will be supposed in the form:

v̂(n)(ξ̂) =











v̂1 = (û1, T̂1), ξ̂ ∈ (−∞,−â],

(û(n)(ξ̂), T̂ (n)(ξ̂)), ξ̂ ∈ (−â, â),

v̂0 = (û0, T̂0), ξ̂ ∈ [â,∞),

(54)

where û(n)(ξ̂) and T̂ (n)(ξ̂) stand for nth-degree polynomial approxima-
tion of the viscous profile.
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In contrast to the solution (27) of Burgers’ equation, solution of gas
dynamics equations (50) do not possess symmetry properties. Conse-
quently, a full polynomial approximation has to be used in the search
for approximate solution. Another important remark is concerned
with the fact that solution of (50)-(51) strongly depends on the value
of Mach number M0. Therefore, exact form of each particular approx-
imation (54), i.e. coefficients of the polynomial, will also depend on
M0. In the sequel all the calculations will be performed for M0 = 2.5
and r = 0.64 - experimentally determined value of r for monatomic
gases like Ar. Corresponding stationary points are (û0, T̂0) = (2.5, 1.0),
(û1, T̂1) = (0.925, 2.798).

As a first approximation a third degree polynomial will be used.
In order to obtain v̂(3)(ξ̂) ∈ D̃ one must use the following profiles:

û(3)(ξ̂) =
û0 + û1

2
+

3(û0 − û1)

4 â
ξ̂ − û0 − û1

4 â3
ξ̂3;

T̂ (3)(ξ̂) =
T̂0 + T̂1

2
+

3(T̂0 − T̂1)

4 â
ξ̂ − T̂0 − T̂1

4 â3
ξ̂3.

(55)

Obviously, profiles have the same general form - only û’s are replaced
by T̂ ’s. In such a way functional (52) becomes J(v̂(3)) = J(â) and
from dJ/dâ = 0 one obtains:

â = 2.410; J (3) = 5.423. (56)

Although a fairly good approximation is obtained, the results could
be improved by the use of higher order approximations. For example,
using:

û(4)(ξ̂) =
û0 + û1 + 2 â4a4

2
+

3(û0 − û1)

4 â
ξ̂

− 2 â2a4ξ̂
2 − û0 − û1

4 â3
ξ̂3 + a4ξ̂

4,

(57)
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and T̂ (4)(ξ̂) obtained from û(4)(ξ̂) by replacing û’s with T̂ ’s and a4

with b4, one obtains J(v̂(4)) = J(â, a4, b4). Necessary conditions of
extremum ∂J/∂â = 0, ∂J/∂a4 = 0 and ∂J/∂b4 = 0 yield:

â = 2.925;

a4 = 5.014 × 10−3; b4 = −4.245 × 10−3; (58)

J (4) = 5.349.

For the final test a fifth degree approximation will be used:

û(5)(ξ̂) =
û0 + û1 + 2 â4a4

2
+

3(û0 − û1) + 4 â5a5

4 â
ξ̂

− 2 â2a4ξ̂
2 − û0 − û1 + 8 â5a5

4 â3
ξ̂3 + a4ξ̂

4 + a5ξ̂
5,

(59)

with T̂ (5)(ξ̂) obtained in a similar way as before and with a5 replaced
with b5. Thus, one obtains J(v̂(5)) = J(â, a4, b4, a5, b5) and necessary
conditions of extremum yield:

â = 2.973;

a4 = −7.096 × 10−4; b4 = 1.357 × 10−3; (60)

a5 = 1.964 × 10−3; b5 = −6.194 × 10−4;

J (5) = 5.298.

One may observe that the value of the functional (52) decreases with
the increase of the order of approximation.

In Figure 2. graphs of numerical and approximate solutions are
presented. They are shifted so that abscissas of the maximum slope
points coincide. It can be observed that shapes of the profiles obtained
by direct method resemble numerically obtained profile.

Furthermore, shock thickness defined as δ̂ = |(û1−û0)/ max(dû/dξ̂)|
could be used as another criterion of accuracy. Shock thicknesses eval-
uated at approximate solutions are:

δ̂(3) = 3.214; δ̂(4) = 3.095; δ̂(5) = 2.854. (61)
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Figure 2: Numerical and approximate solutions for velocity profile of
shock structure equations (50): ûnum(ξ̂) - solid, û(3)(ξ̂) - dotted, û(4)(ξ̂)
- dash-dot, û(5)(ξ̂) - dashed

At the same time shock thickness obtained by numerical integration
of (50)-(51) reads δ̂(E) = 2.894 which confirms that δ̂(5) gives the best
approximation.

6 Conclusions

In this paper a variational approach is proposed to the problem of
shock structure. Boundary-value problem (5),(7), which determines
smooth profile of the shock wave with structure, consists of n first-
order ordinary differential equations with 2n boundary conditions at
±∞. Since the order n of the system could be arbitrary, there does not
exist variational formulation in the usual sense. Here, it was shown
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that shock structure problem can be related to a proper variational
principle by means of least-squares method. Namely, variational prob-
lem (9) formulated on the set D of admissible functions (Eq. (10))
recovers governing equations (5) as necessary conditions of extremum,
as well as boundary conditions (8) as consequences of transversality
conditions. In the sequel this variational formulation is exploited in
the search for approximate analytical solutions by means of Ritz direct
method. For that purpose a subset D̃ ⊂ D (Eq. (14)) of admissible
functions is used. This procedure is then applied in the analysis of
shock structure in Burgers’ equation and gas dynamics equations with
viscosity and heat conduction. A good agreement of approximate and
exact solutions is obtained, and convergence of approximations is ob-
served. Moreover, good estimates of the shock thickness were also
obtained.

Existence of variational formulation for the shock structure prob-
lem could be a good starting point for future studies. Namely, varia-
tional principle (9) is formulated without any reference to the mech-
anism of dissipation. Since relaxation profiles of the system (4) are
governed by the ODE system of the same formal structure, this pro-
cedure can be applied to this class of problems as well. Also, it will be
interesting to analyze the shock thickness in gas dynamics for a broad
range of Mach numbers.
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Varijacioni pristup problemu strukture udarnog
talasa

UDK 534.13, 534.21, 517.95

U ovom radu je izložen varijacioni pristup problemu strukture
udarnog talasa. Za ovaj problem, koji je opisan sistemom od n običnih
diferencijalnih jednačina prvog reda sa 2n graničnih uslova u ±∞,
data je varijaciona formulacija u duhu metoda najmanjih kvadrata.
Dobijeni varijacioni princip je prilagodjen primeni Ricovog metoda.
Ovaj direktni metod je iskorǐsćen za konstrukciju približnih rešenja
problema u analitičkoj formi i dobijanje ocene širine udarnog talasa.
Predloženi postupak je primenjen u analizi Burgersove jednačine i
jednačina gasne dinamike.


