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Abstract

The mixed convection flow past a horizontal plate being aligned through
a small angle of attack to a uniform free stream will be considered in the
limit of large Reynolds number and small Richardson number. Even a small
angle of inclination of the wake is sufficient for the buoyancy force to ac-
celerate the flow in the wake which causes a velocity overshoot in the wake.
Moreover a hydrostatic pressure difference across the wake induces a cor-
rection to the potential flow which influences the inclination of the wake.
Thus the wake and the correction of the potential flow have to be deter-
mined simultaneously. However, it turns out that solutions exist only if the
angle of attack is sufficiently large. Solutions are computed numerically
and the influence of the buoyancy on the lift coefficient is determined.
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1 Introduction

The effect of weak buoyancy on the laminar flow past a horizontal plate which
is aligned under a small angle of attack φ to the oncoming free stream will be
investigated in the limit of large Reynolds numbers Re (see figure 1). Since
the gravity force is almost perpendicular to the main flow direction buoyancy
influences the flow field only indirectly by a (nonuniform) hydrostatic pressure
distribution.
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The influence of buoyancy on the potential flow can be characterized by the
Richardson number defined in terms of the total heat flux Q̇ per unit depth of the
plate (see Schneider 2005)

Ri =
gβQ̇

ρcpu3
∞

=
Gr

Re5/2

1

Pr

Nu

Re1/2
(1)

where Gr = gβ∆TL3/ν2, Re = u∞L/ν, Nu = Q̇/k∆T, Pr = ρcpν/k are
the Grashof, Reynolds, Nusselt and Prandtl number and β, cp, µ, k, ρ are the
isothermal expansion coefficient, the isobaric heat capacity, viscosity, thermal
conductivity and density of the fluid. The plate of length L is assumed to be
isothermal with the plate temperature Tp = T∞ + ∆T . The temperature of the
ambient fluid is T ∞ and u∞ is the velocity of the oncoming parallel flow.

Several authors (see Schlichting & Gersten 2000 for an overview) considered
this indirect buoyancy effect in the boundary layer assuming that the flow past a
finite plate will be similar to the flow past a semi-infinite plate. This is indeed
the case if symmetric flow conditions are present, i. e. one side of the plate
is heated, while the other one is cooled. However, more interesting is the case
of a plate which is on both sides cooled or heated. Very often the parameter
K = GrRe−5/2 (c.f. Schneider & Wasel 1984) has been used to characterize the
influence of buoyancy onto the boundary layer flow assuming Pr and NuRe 1/2

to be order one.
In a recent paper Schneider 2005 showed that for the flow past a finite plate

the outer (potential) flow field is markedly influenced by buoyancy. In order
to simplify the problem he neglected the viscous boundary layer and wake, by
setting the Prandtl Pr number to zero. Considering a large Peclet number Pe tem-
perature and density perturbations are limited to a thin thermal boundary layer
and wake, respectively. An essential assumption to determine the perturbation of
the outer flow field is the validity of the Kutta condition. Thus a vortex distribu-
tion on the wake and the plate has been introduced to compensate the hydrostatic
pressure differences at the trailing edge and across the wake.

The goal of the paper is to describe the global flow field. Due to the in-
clination of the wake the flow in the wake is accelerated or decelerated by the
tangential (to the wake) component of the hydrostatic pressure gradient. This
effect has been neglected by Schneider 2005 limiting his analysis to Richardson
numbers Ri � Re−1/4. For technical reasons Schneider 2005 considered the
flow problem in a channel with a width of the order O(Ri −n), n > 0.
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Figure 1: Mixed convection flow past a horizontal plate

In section 2 we introduce the governing equations and derive the boundary-
layer equations. They are formulated in local coordinates around the centerline
of the wake. The position of the centerline has to be determined by the first order
correction of the potential flow. Thus the wake and the potential flow field have
to be determined simultaneously. The potential flow correction consists of two
contributions: one due to the angle of attack φ and a second one due to buoyancy
differences across the wake.

Accordingly two dimensionless coupling parameters for the the angle of at-
tack φ the buoyancy parameter K and the Reynolds number are introduced: The
dimensionless parameter λ = φK

√
Re describes the effect of buoyancy in the far

wake. Similarity solutions for the velocity and temperature profile in the far wake
exist only for positive values of λ. The reduced buoyancy parameter κ = KRe1/4

is a measure for the hydro-static pressure difference across the wake. The ratio
K/φ = κ2/λ measures the influence of the hydrostatic pressure differences onto
the potential flow.

In section 3 results regarding the form of the wake, the velocities in the wake
and the resulting lift force on the plate are presented and discussed.

2 Governing equations

We consider a two dimensional incompressible flow using the Boussinesq ap-
proximation. The origin of the coordinate system is assumed to be at the trailing
edge of a horizontal plate. The oncoming parallel flow has an inclination φ to the
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horizontal x-axis. All lengths are made dimensionless with the plate length L,
velocities are nondimensionalized by the velocity u∞ of the unperturbed flow.

Temperature differences are scaled by the difference ∆T of the plate tem-
perature and the temperature of the ambient fluid. Thus the governing equations
read

uux + vuy = −px + Re−1(uxx + uyy), (2)

uvx + vvy = −py +
Gr

Re2
θ + Re−1(vxx + vyy), (3)

uθx + vθy =
1

Pr Re
(θxx + θyy), (4)

ux + vy = 0, (5)

subjected to the boundary conditions

u(x, 0) = v(x, 0) = 0, θ(x, 0) = 1, −1 < x < 0, (6)

u(x, y) → 1, v(x, y) → φ, θ(x, y) → 0, x2 + y2 → ∞. (7)

2.1 The boundary layer and wake

Since the solution of the potential equation cannot satisfy the no slip boundary
conditions a boundary layer of thickness O(Re−1/2) forms along the plate. In the
wake after the plate the boundary layer approximation is valid too. Thus we can
discuss the boundary layer and wake together. However, the position of the wake
is not known a priori. Thus we define the vertical boundary layer coordinate ȳ as
the scaled distance from center line y = yw(x) = φȳw(x) of the wake:

ȳ = (y − φȳw(x))
√

Re. (8)

Along the plate 0 < x < 1 the centerline of the boundary layer lies of course in
the plate, thus we set ȳw(x) = 0 for −1 < x < 0.

The vertical velocity component v̄w in the wake is referred to the vertical
velocity at the center line:

v̄w(x, ȳ) = (v − u(x, φȳw)Kȳ′w)
√

Re. (9)

The horizontal velocity component ūw and the pressure p̄w in the wake and
boundary layer are defined by

u(x, y) = ūw(x, ȳ), p(x, y) = Kp̄w(x, ȳ). (10)
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Inserting into the governing equation we obtain for the leading order terms

ūwūw,x + v̄wūw,ȳ = +φK
√

Reȳ′wθ̄w + ūw,ȳȳ, (11)

p̄w,ȳ = θ̄w, (12)

ūwθ̄w,x + v̄wθ̄w,ȳ =
1

Pr
θ̄w,ȳȳ, (13)

with the matching conditions ūw = 1, θ̄ = 0 for ȳ → ±∞ and the boundary
conditions

ūw(x, 0) = v̄w(x, 0) = 0, θ̄(x, 0) = 1, −1 < x < 0,
ūw,ȳ(x, 0) = v̄w(x, 0) = θ̄w,ȳ(x, 0) = 0, x > 0.

(14)

Note that the hydrostatic pressure gradient has a component in the main flow
direction φK

√
Reȳ′wθ̄w which is proportional to the inclination φȳ ′w of the wake

and to the density perturbation in the wake Kθ̄w and inversely proportional to the
thickness of the wake

√
Re. Considering the limit K → 0, φ → 0, Re → ∞

a coupling between these three parameters is necessary. Thus we introduce the
reduced buoyancy parameter and reduced inclination parameter by

κ = KRe1/4, λ = φK
√

Re. (15)

At the plate the inclination of the center line vanishes and equations (11),
(13) reduce to boundary layer equations for forced convection flow along a plate.
Their solution is given by the well known Blasius similarity solution (c.f. Schlicht-
ing & Gersten 2000):

ū(x, ȳ) = F ′

B(ζ), θ̄ = DB(ζ), ζ =
ȳ√
x + 1

, (16)

where FB , the Blasius function, and DB are the solutions of the similarity equa-
tions

2F ′′′

B + FBF
′′

B = 0, FB(0) = F ′

B(0), F ′

B(∞) = 1, (17)

2

Pr
D′′

B + FBD
′

B = 0, DB(0) = 1, DB(∞) = 0. (18)

Considering the wake x > 0 we transform the wake equations (11)-(13) to
the following variables which are appropriate to discuss the limiting behavior for
x→ ∞.
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ψ = (x + 1)3/5F (x, η), θ̄w = (x+ 1)−3/5D(x, η),

with η = ȳ(x+ 1)−2/5,
(19)

where ψ is a stream function. Note that the horizontal velocity ūw = (x+1)1/5F ′

will grow unbounded for x → ∞ if F ′ tends to a non-vanishing limit. Thus we
expect (due to the scaling) a velocity overshoot in the wake.

We obtain the transformed wake equations:

F ′′′ +
3

5
F ′′F − 1

5
(F ′)2 + λȳ′wD = (x+ 1)(F ′F ′

x − F ′′Fx), (20)

1

Pr
D′′ +

3

5
(FD)′ = (x + 1)(F ′Dx −D′Fx), (21)

subject to the boundary conditions

F (x, 0) = F ′′(x, 0) = D′(0), F ′(x,∞) =
1

(x + 1)1/5
, D(0,∞) = 0, (22)

and at the “initial conditions” at the trailing edge x = 0,

F (0, η) = FB(η), D(0, η) = DB(η). (23)

Here and in the following we denote derivatives with respect to η with a
prime. Integrating the energy boundary-layer equation (13) with respect to ȳ we
obtain that the enthalpy flux in the wake is constant

Ḣ =

∫

∞

−∞

ūwθ̄w dȳ =

∫

∞

−∞

F ′D dη = 2

∫

∞

0

F ′

BΘB dζ =
Nu

Pr
√

Re
. (24)

Integrating the degenerated momentum equation (12) with respect to the ver-
tical direction, we conclude that across the wake there is a pressure difference
∆pw given by:

∆p̄w(x) = p̄w(x,∞) − p̄w(x,−∞) =

∫

∞

−∞

θ̄w dy =: γw(x). (25)

Discussing the potential flow we will interpret γ w(x) as a vortex distribution
along the center line of the wake. Given the center line of the wake ȳw(x) we
can integrate the wake equations with a usual marching technique. However,
the center line is not known a priori. The derivative ȳ ′w(x) is equal to the v-
component of the first correction of the outer (potential) flow field evaluated at
the x-axis. Thus the potential flow correction and the wake equations have to be
solved simultaneously.
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2.2 The limiting behavior of the wake

The transformed wake equations (20)-(22) are in a form such that the limiting
behavior can be deduced just by setting derivatives with respect to x equal to
zero and take the limit x → ∞. Assuming that the far (potential) flow field is
given by the asymptotic boundary condition (7) the scaled inclination of the wake
ȳ′w tends to 1. Then for λ > 0 we obtain similarity equations for the asymptotic
flow and temperature profile. Using the transform

F (x, η) ∼ aF̂ (η̂), D ∼ cD̂(η̂), η̂ = bη,

a = b =
(

λḢ
2

)1/5

, c = Ḣ4/5

24/5λ1/5
,

(26)

the similarity equations can be normalized to:

F̂ ′′′ +
3

5
F̂ ′′F̂ − 1

5
F̂ ′F̂ ′ + D̂ = 0,

1

Pr
D̂′ + F̂ D̂ = 0, (27)

F̂ (0) = F̂ ′′(0) = f̂ ′(∞) = 0,

∫

∞

0

F̂ ′D̂ dη̂ = 1. (28)

A numerical solution of the similarity equations is shown in figure 2. It is a jet
like profile. Due to the scaling (19) we expect the following asymptotic behavior
for the velocity and temperature profile in the wake, respectively.

ūw ∼ (x+ 1)1/5abF̂ ′(bη) + .., (29)

θ̄w ∼ 1

(1 + x)3/5
cD̂(bη) + ... . (30)

Thus in the wake the maximum velocity is proportional to λ2/5x1/5. The width of
the far wake is proportional to x1/5/λ1/5. Although the temperature perturbation
decreases like λ−1/5x−3/5 it is wide enough such that the resulting buoyancy
force accelerates the flow in the wake. As a consequence the hydrostatic pressure
difference across the wake decays to zero for x → ∞.

γw =

∫

∞

−∞

θ̄w dy ∼ c

(x+ 1)1/5

∫

∞

−∞

D̂(η̂) dη̂. (31)
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Figure 2: Similarity solution, temperature and velocity profile in the far wake for
Pr=1

2.3 The potential flow

We expand the potential flow field in terms of the buoyancy parameter K using
the notation of complex functions of a complex variable z = x+iy, c.f. Schneider
1978.

u− iv ∼ 1 − iφ

√

z

z + 1
+K(u1 − iv1) (32)

The first correction gives the perturbation of the flow field due to the angle of
attack φ. Here and in the following we will assume φ small and of comparable
size than the buoyancy parameter K = O(Re−1/4). The second term in the
expansion takes buoyancy effects into account and is therefore of order K.

Boundary conditions for the potential flow correction u 1 − iv1 are given at
the plate

v1(x, 0) = −0, −1 < x < 0 (33)

and along the wake where the pressure has jump a discontinuity given by (25).
Using the linearized Bernoulli equation we have,

−u1(x, 0+) + u1(x, 0−) = γw(x). (34)

Following Schneider (2005) we represent the potential flow correction in
terms of a vortex-distribution along the x-axis. Note the the deviation of the
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center line of the wake is small (of order K) on the scales of the original coordi-
nates x, y which justifies to place the vortex distribution along the x-axis instead
on the center line of the wake. Thus we have

u1 − iv1 = − 1

2π

∫

∞

−1

γ(ξ)
y + i(x− ξ)

(x− ξ)2 + y2
dξ, (35)

with

γ(x) =

{

γp(x) −1 < x < 0
γw(x) x > 0

. (36)

Thus the jump condition for the horizontal velocity along the x−axis (34) is
satisfied. It remains to determine the vortex distribution γP (x) along the plate.
From equation (33) we obtain the integral equation

∫ 0

−1

γp(ξ) dξ

x− ξ
= −

∫

∞

0

γw(ξ) dξ

x− ξ
(37)

with the solution, cf. Schneider (1978)

γp(x) = − 1

π

√

− x

x + 1

∫

∞

0

γw(ξ)

x− ξ

√

ξ + 1

ξ
dξ, −1 < x < 0. (38)

Thus we obtain v1

v1(x) =
1

2π

√

x

x+ 1

∫

∞

0

γw(ξ)

x− ξ

√

ξ + 1

ξ
dξ, x > 0, (39)

and finally the scaled inclination of the wake is given by

ȳ′w(x) =

√

x

x + 1
+
κ2

λ
v1(x). (40)

Thus the boundary-layer (wake) equation (20) has the form

F ′′′ + 3
5
F ′′F − 1

5
(F ′)2 +

(

λ
√

x
x+1

+ κ2v1(x)
)

D =

(x + 1)(F ′F ′

x − F ′′F ′

x).
(41)

Finally we have obtained the wake-equations (41), (22), (23) which have to
be solved simultaneously with the inclination of the wake (39) where the vortex
distribution γw(x) is given by (25).
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3 Results

3.1 Numerical solution

For a given set of parameters (Pr, λ, κ) we pursue the following solution strategy.
First we assume a vertical velocity distribution v(0)

1 and solve the wake equations
starting at the trailing edge (x = 0) by a marching technique. Since we expect
the velocity and temperature profiles to converge only like x−1/5 to their limiting
similarity profiles we have to integrate over large distances. Thus we increase the
step size in x-direction after each step by a constant factor, say f = 1.011. On
the other hand we want to resolve the profiles near the trailing edge accurately.
Thus we start there with a step size of ∆x = 10−7 Taking Nx = 4000 steps
in x−direction the last grid point is of the order 1013. The wake equation are
discretized in x-direction by a simple first order difference scheme. Thus we get
at each grid point a system of ordinary differential equations which is solved by
a well proven ODE solver, COLPAR (Ascher et al. 1981).

Thus we obtain a first guess for the velocity and temperature profiles and
the vortex distribution in the wake. Then we have to evaluate the integral (39)
for an improved guess for v1. In order to evaluate the integral (39) we replace
γw(ξ)

√
ξ + 1 by piecewise linear functions such that the integral can be inte-

grated exactly. With a new guess for v1(x) we integrate the wake equations again
and repeat the process until convergence is obtained. Usually it takes only 3 to 5
iterations.

Note that in the case λ = 1, κ = 0 the iteration is not necessary. The in-
clination of the wake is solely determined by the angle of attack φ. In that case
the hydrostatic pressure differences across the wake are too small to influence
the potential field significantly. However, buoyancy is limitted to the flow be-
havior in the wake. The flow is acelerated and a velocity overshoot develops for
x→ ∞.

The case when λ and κ are of the same order is of much more interest. Thus
in the following examples we fix the values for λ = 1 and the Prandtl number
Pr = 0.71 (air) and vary κ starting from κ = 0. However, convergence could not
be obtained for κ > 0.914.

3.2 The vortex distribution in the wake

In figure 3 the vortex distribution γw(x) is shown for different values of κ. At
the trailing edge γw has the prescribed value γw = 2

∫

∞

0
DB dη Then it decays
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Figure 3: Vortex distribution along the wake, Pr = 0.71, λ = 1, κ =0, 0.5, 0.6,
0.7, 0.8, 0.85, 0.9, 0.91, 0.914

monotonically like x−1/5 to zero for κ = 0. For small values of κ there are
only small deviations in the range from 1 to 100. About κ = 0.7 this deviation
becomes markedly pronounced, (cf. κ = 0.85). For κ = 0.91 the vortex distribu-
tion γw has a plateau at x = 10 and at κ = 0.914 is has even a local maximum. It
turns out that the solution is here very sensible to even very small perturbations
in κ. The described solution method fails for κ > 0.914.

3.3 Local behavior near trailing edge

Although the boundary layer equations are valid along the plate and in the wake
their solution has a singularity at the the trailing edge due to the change of the
boundary conditions. At the plate the no slip boundary condition for the velocity
and a Dirichlet condition for the temperature hold. In the wake all quantities, like
velocity, shear rate ∂ūw/∂ȳ, temperature and heat flux ∂ θ̄w/∂ȳ have to be con-
tinuous. It has been shown that for the velocities and temperature the following
asymptotic representation holds (c.f. Sychev et al. 1998, pp. 103)

ū(x, ȳ) = f ′

B(ȳ) + x1/3
(

f̂ ′(ζ) − k1 (f ′′

B(0)ζ − f ′′

B(y))
)

+ ...,

ζ = ȳ
x1/3

,
(42)
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θ̄(x, ȳ) = DB(ȳ) + x1/3
(

D̂′(ζ) − k1 (D′

B(0)ζ −D′

B(y))
)

+ ..., (43)

where k1 is a given constant given in (3.1.16) in Sychev et al. 1998. As a conse-
quence we obtain for the vortex distribution in the wake:

γw(x) =

∫

∞

−∞

θ(x, ȳ) dȳ ∼ γw,0 + γw,1x
1/3 (44)

with

γw,0 = 2

∫

∞

0

DB(ȳ) dȳ, γw,1 = −2k1DB(0) = −2k1. (45)

Considering that v1 vanishes at the plate we conclude that the velocity field is
given locally by

u1 − iv1 ∼= −γ0

2
− γ1|z|1/3ei(ϕ−π)/3, (46)

with ϕ = arctan y/x, |z| =
√

x2 + y2. Thus we obtain

u1(x, 0) =

{

−γw

2
∼ −γw,0

2
− γw,1

2
|x|1/3 x > 0

−γP

2
∼ −γw,0

2
− γw,1|x|1/3 x < 0

, (47)

v1 ∼ −
√

3

2
γw,1x

1/3, x > 0. (48)

In figure 4 the local behavior of the vortex distribution near the trailing edge
(x = 0) is shown for λ = 1, κ = 0 is shown. The vortex is continuous there sat-
isfying the Kutta condition, but the derivative is obviously singular as expected.

3.4 The wake

In the wake after plate there is a deficitİ in the momentum flux due to the no slip
boundary condition at the plate. Integrating the boundray-layer (wake) equations
we obtain the balance equation for the momentum flux deficit

d

dx
İ :=

d

dx

∫

∞

0

ūw(ūw − 1) dȳ =
λȳ′wγw

2
, x > 0. (49)

In a non-bouyant wake (λ = 0) the momemtum deficit would be constant
along the wake. The width of the wake would increase and the velocity profile
would tend to the unperturbed velocity profile with increasing distance from the
plate.
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Figure 4: Local behavior of vortex distribution near trailing edge, Pr = 0.71,
λ = 1, κ = 0.0

Here the situation is different. The buoyancy force due to a slight inclination
of the wake gives a contribution to the momentum flux balance. This can lead,
as in the present case, to a velocity overshoot in the wake. In figure 5 we have
shown the horizonal velocity component in the center of the wake. In the near
wake x � 1 the velocity is not much influenced by buoyancy. It first recovers
from the velocity deficit. About x = 1, for κ = 0 it has the value of the outside
potential flow. Further downstream buoyancy accelerates the flow and a velocity
overshoot forms. For κ > 0 the induced potential flow deforms the wake such
that the center velocity is reduced compared to the case κ = 0. For κ = 0.914 a
plateau forms.

The influence of the vortex distribution γ w onto the form of the wake can
be seen in figures 6 and 7. The first one shows the induced vertical velocity
component v1 at the wake. Starting at zero from the trailing edge it attains a
positive maximum and then decreases rapidly to a negative minimum and finally
increases slowly to its limiting value zero at infinity.

In figure 7 the (scaled) inclination ȳ′w of the wake is shown. For κ = 0 it is
the inclination of the wake after a plate with the small angle of attack φ. It is not
affected by buoyancy. Shortly after the plate buoyancy tends to bend the wake
upwards, but after x ∼ 0.1 buoyancy tends to bend the wake downwards. For
κ = 0.91 the wake has around x = 1 a section with negative inclination! Near
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Figure 5: Velocity at the center of the wake, Pr = 0.71, λ = 1, κ =0, 0.5, 0.6,
0.7, 0.8, 0.85, 0.9, 0.914
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this limiting value of κ one sees that the inclination is very sensitive to κ. This
seems to be an indication that around κ = 0.914 a bifurcation or a singularity
occurs.

3.5 Vortex distribution along the plate

Finally we will discuss the resulting lift force onto the plate. The total vortex
strength along the plate is given by

ΓP (x) = φγφ(x) +Kγp(x) = −φ
(

2

√

−x
x + 1

− κ2

λ
γp(x)

)

. (50)

In figure 8 we plot the buoyancy induced vortex strenght γP (x) scaled with√
x+ 1. It is positive for all values of κ and x.

The pressure due to the potential flow with circulation gives rise to a normal
force acting on the plate, a lift force. Accounting for the contributions from the
upper and lower surfaces of the plate and referring the lift force to the free stream
stagnation pressure and the plate area we obtain for the lift coefficient CL

CL = −4
∫ 0

−1
p(x, 0+) dx = −2

∫ 0

−1
Γp(x) dx =

φ
(

2π − 2κ2

λ

∫ 0

−1
γp(x) dx

)

.
(51)
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In figure 9 the lift coefficient CL is shown as a function of κ. Buoyancy reduces
the lift force. For κ = 0.6 the resulting lift force is zero and for larger values of
κ a negative lift is obtained. The result is in accordance with Schneider (2005)
(eq. 14) who also obtains a negative buoyancy induced lift.

4 Conclusions

The present study shows the interaction of the flow past a horizontal plate under
a small angle of attack and buoyancy. Two dimensionless parameters λ, κ have
been identified. The first one is a measure for the velocity overshoot in the far
wake and the second one, more precisely the ratio κ2/λ measures the influence
of the hydrostatic pressure perturbation onto the potential field around the plate.

Most surprising solutions exist only for λ > 0 and κ less a than critical value.

For κ > 0 the buoyancy effects are not limited to the boundary layer and
wake, where it leads to a velocity overshoot. A potential flow correction is in-
duced by the hydrostatic pressure difference across the wake which reduces the
lift force (or in extreme cases even reverses the direction of the lift force). We
note that according to the present analysis no solution exists if the is oncoming
flow is exactly horizontal. As we have remarked earlier Schneider (2005) has
considered this case for buoyancy values so small that the inclination of the wake
becomes negligible. Since in that case the vortex distribution will not decay for
x → ∞ inducing unbounded vertical velocities he placed the heated plate in a
channel of width b ∼ Ri−n for some positive constant n. This procedure worked
to guarantee a solution. It would be of interest if this concepts works in the
present case, where the inclination of the wake is taken into account.

Of the same interest is the question how the solution breaks down at λ = 1
κ ∼ 0.914. Is there a bifurcation point? Are there locally multiple solutions?

In a forthcoming paper we will investigate the local behavior of the flow
near the trailing edge with triple deck methods which has been presented first in
Steinr ück 2004.
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Mešovito konvekciono tečenje preko horizontalne ploče
UDK 532.526

Slučaj opstrujavanja ravne ploče (konače dužine), koja se nalazi pod malim
napadnim uglom i čija se temperatura razlikuje od temperature slobodne struje,
bi će posmatran u graničnom procesu velikih vrednosti Re (Reynolds) i malih
vrednosti Ri (Richardson) brojeva. Čak i male vrednosti nagibnog ugla traga su
dovoljne da potisak ubrza strujanje u zoni iza ploče, tako da će brzina u tragu biti
ve ća od brzine slobodne struje.

Pored toga, gradijent hidrostatičkog pritiska u tragu indukuje korekciju po-
tencijalne struje, koja dovodi do pojave i promene nagiba traga. S toga se rešenje
(trag i korekcija potencijalne struje) mora odrediti simultano. Ispostavlja se da
ono postoji samo u slučaju da je ugao nagiba ploče dovoljno veliki.

Rešavanje je izvedeno numerički, a posebno je naglašen uticaj potiska na
koeficijent uzgona.


