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Abstract

In this paper the stability of equilibrium of nonholonomic sys-
tems, on which dissipative and nonconservative positional forces
act, is considered. We have proved the theorems on the insta-
bility of equilibrium under the assumptions that: the kinetic en-
ergy, the Rayleigh’s dissipation function and the positional forces
are infinitely differentiable functions;the projection of the posi-
tional force component which represents the first nontrivial form
of Maclaurin’s series of that positional force to the plane, which
is normal to the vectors of nonholonomic constraints in the equi-
librium position, is central and repulsive (with its centre of action
in the equilibrium position).

The suggested theorems are generalization of the results from
[V.V. Kozlov, Prikl. Math. Mekh. (PMM), T58, V5, (1994), 31-
36] and [M.M. Veskovic, Theoretical and Applied Mechanics, 24,
(1998), 139-154]. The result obtained is analogous to the result
from [D.R. Merkin, Introduction to theory of the stability of mo-
tion, Nauka, Moscow (1987)], which refers to the impossibility of
equilibrium stabilization in a holonomic conservative system by
dissipative and nonconservative positional forces in case when the
potential energy in the equilibrium position has the maximum.
The proving technique will be similar to that used in the paper
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[V.V. Kozlov, Prikl. Math. Mekh. (PMM), T58, V5, (1994),
31-36].
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1 Introduction

Let us consider a scleronomic mechanical system in an n-dimensional
configuration space. Let x = (x1, ..., xn)T be the vector of generalized
coordinates (the index T denotes transposition),

T = (1/2) ẋT A (x) ẋ (1)

is the kinetic energy (A(x) is the symmetric positively definite matrix
nxn for each x∈Rn) and

X (x, ẋ) = (X1 (x, ẋ) , ..., Xn (x, ẋ)) (2)

are the generalized forces. Let the motion of the described system be
subjected to m (m < n) ideal constraints, linear in the velocities:

BT (x)ẋ = 0, (3)

where B(x) is the n ×m matrix of rank m. The differential equations
of motion of the system described can be expressed in the form of La-
grangian equations with the multipliers of constraints:

d

dt

∂T

∂ẋ
− ∂T

∂x
= X (x, ẋ) + B (x) λ, BT (x) ẋ = 0, (4)

where λ = (λ1, ..., λm)T denotes the vector of arbitrary coefficients. If
X(0,0) = 0 then x = 0 is the equilibrium position of the described
nonholonomic system (reactions of constraints are equal to zero, and
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X(0,0) = 0). The reverse statement does not hold: x = 0 is also the
equilibrium position in the case when X(0,0) = −B(0)λ(0,0) (reactions
of constraints are different from zero, and X(0,0) 6= 0). In the first case,
the point x = 0 is said to be the equilibrium position of the II kind, and
in the second case it is of the I kind. We shall consider that (2) can be
resolved into a positional nonconservative component and a viscose one:

X (x, ẋ) = X (x)− ∂Φ

∂ẋ
, (5)

where

Φ =
1

2
ẋTD(x)ẋ,

the Rayleigh’s dissipation function (D – is the symmetrical n×n matrix).
Let us assume (hypothesis H): the X(x),A(x), B(x) and D(x) are

infinitely differentiable functions.
Let us note that the viscose force does not affect the equilibrium

conditions: if Φ=0, then x=0 is the equilibrium position if and only if
X(0)=0 or X(0)=-B(0)λ(0,0).

2 The instability of equilibrium of non-

holonomic systems

Let x=0 be the equilibrium position of the second kind: then the re-
action of the constraint is equal to zero, but X(0)=0. Let π be the
(n−m)-dimensional plane given in the following way:

π = {x ∈ Rn : BT
0 x = 0}, (6)

where B0=B(0). Expand X(x) in a Maclaurin’s series:

X (x) = Xp−1 (x) + Xp (x) + ... . (7)
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Here Xs(x) is a homogeneus form of degree s, so that p>2. Let us
denote the projection of the form Xp−1(x) on the plane π by X∗

p−1(x).
It is clear that X∗

p−1(x) is also the homogeneous form of the p-1 degree.

Theorem 1. Let the following conditions be fulfilled:

a). the hypothesis (H) holds,

b). the matrix D(x) is positive definite for each x,

c). there is a c-vector whose beginning is at the tht point
x=0, which lies in the plane π so that

X∗
p−1 (c) = κc, κ > 0. (8)

Then there is a solution of the equations (4) so that

‖x (t)⊕ ẋ (t)‖ → 0 (9)

when t → −∞. Especially, x = 0, ẋ = 0 is unstable.

Theorem 1 generalizes the result from [10], which refers to the in-
stability of equlibrium of nonholonomic dissipative systems. Theorem 1
holds in the case when the constraints (3) are integrable. Especially, if
the constraints (3) are absent, if the positional forces are conservative
and if the first form in Maclaurin’s series for the potential energy in
equilibrium position does not have the minimum, Theorem 1 coincides
with the result from paper [1], referring to the instability of equilibrium
of a holonomic dissipative system.

For p=2, the problem of existence of the asymptotic solution (9) is
solved by means of the first Liapunov’s method. The solution is looked
for in the form of the series

x(t) = λceκt +
∞∑
i=2

hi(t)e
iκt, κ = const > 0, λ = const (10)

where hi(t) – the polynomial vector functions. In the analytical case,
the series (10) are convergent. If the conditions of the hypothesis (H)
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hold, the series (10) are, as a rule divergent. However, on the basis
of Kuznetsov’s theorem [7], each series (10) which formally fulfils the
equations (4) has its corresponding real solution of the form (9).

Let us assume that p>3. Before proving Theorem 1, let us consider
in this case certain results on the instability under the conditions more
general than those in Theorem 1. Note the equation

ẋ = fp−1(x), p > 3, (11)

where fp−1(x) is a n-vector the coordinates of which are of the homoge-
nous form of degree p-1>2 and fp−1(0)=0.

Let us assume the solution of the equations (11) is in the form

x(t) = λc(−t)−µ, (12)

where c - is a n-vector different from zero; µ - is a scalar. If such a
solution exists, it is necessary that vector c - is a nontrivial solution of
the algebraic equation

µc = fp−1(c), (13)

whereby µ=1/(p-2). Note the equation

ẋ = fp−1(x) + O( ‖ ẍ‖ ) + O( ‖ ẋ ‖2) + O( ‖x ‖p). (14)

when x, ẋ, ẍ → 0. Let us assume that O( ‖ • ‖ ) are infinitely differen-
tiable functions.

Theorem 2. If there exists the point c upon the unit sphere
‖x‖ = ‖c‖, ‖u‖ = (uTIu)1/2 (I-unit n× n matrix), so that

fp−1(c) = κc, κ = const. > 0

then, the equations (11 have the solution which asymptoti-
cally approaches, so that



416 Miroslav Veskovic, Vukman Covic

‖x(t)⊕ ẋ(t) ‖ → 0

when t → −∞.

Corollary. Let the equations (14) describe the dynamics
of a mechanical system.Under the conditions of Theorem 2,
x = 0, ẋ = 0 is an unstable equilibrium.
The proof of Theorem 2 is contained in a hidden form in [1].

Proof of Theorem 1
We shall firstly show that the differential equations of motion (4)

can be expressed in the form (14). For that purpose, let us express (4)
in the following way:

Aẍ + Γ(x, ẋ) = X(x)−D(x)ẋ + B(x)λ, BT (x)ẋ = 0 (15)

Γ(x, ẋ) denotes the square n-vector function, with respect to ẋ. Let us
eliminate vector λ ∈Rm in the following way: let us find ẋ from (15)
(it is possible, since detD 6= 0) and then substitute the equations thus
obtained in the remaining m equations. In that way, we obtain a system
of n equations of the form

ẋ = D−1(I −G(x))X(x)−D−1Γ(x, ẋ) + O( ‖ ẍ ‖ ), (16)

where G(x)=B(x)(BT(x)D−1(x)B(x))−1BT(x)D−1(x). Without reduc-
ing the generality, we can assume that the generalized coordinates are
chosen so that

D(x) = I + D̄(x), D̄(0) = 0. (17)

Taking also into account (16) as well as the fact that X(x), D(x),
B(x), A(x) are infinitely differentiable functions, the equations of motion
(16) can be expresed in the form of the equations (14), i.e.

ẋ = (I −G0)Xp−1(x) + O( ‖ ẍ ‖ ) + O( ‖ ẋ ‖2) + O( ‖x ‖p), (18)
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where G0 = G(0). The right hand side of the equations (18) is infinitely
differentiable. Since

D−1(0) = I (19)

then
G0 = B0(B

T
0 B0)

−1BT
0 , (20)

where B0 = B(0). Let us note that G0 is the matrix of the symmetrical
operator.

It is important to note that I-G0 is the projector on the hyper plane
π. Hence, we obtain

(I −G0)Xp−1 (x) = X∗
p−1 (x) , (21)

and therefrom, for the vector c∈ π from the conditions (b) of Theorem
2,

(I −G0)Xp−1 (c) = X∗
p−1 (c) = κ · c. (22)

As differential equations of motion are autonomous, from the exis-
tence of asymptotic solution with the described behaviour it follows that
the mentioned equilibrium state is unstable. Theorem 2 holds. At p>3
(see [1]), the following asymptotic series corresponds to the mentioned
solution x(t) with asymptotic behaviour

x(t) =

(
1

κ(p− 2)

) 1
p−2

(−t)−
1

p−2 · c +
∞∑
i=2

ai · (−t)−
1

p−2
i (23)

when t→ −∞, where a i- the polynomial vector functions of ln(-t). Then

x0(t) =

(
1

κ(p− 2)

) 1
p−2

(−t)−
1

p−2 · c (24)

is the solution to the ”simplified” equation,

ẋ = (I −G0)Xp−1(x). (25)

Note 1. In the case when in (4) we put that Φ=0, we obtain a
mechanical system, as we have shown in the introduction, with the same
equilibrium positions, and Theorem 3 coincides with the result from the
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paper [3], referring to the nonholonomic system. The paper [1] has
shown that the asymptotic series (23) when D(x)→0 is not reduced to
the asymptotic series which corresponds to the asymptotic solution of
the system at D(x)=0.

Let us consider the conditions under which the equation

X∗
p−1(c) = κc, κ > 0 (26)

has nontrivial solutions, i.e. solutions c 6=0. The following proposition
holds (see[2] or [3]):

Lemma 1. Let x=0 be isolated zero of the vector field
X∗

p−1(x), and let the dimension n of the configuration space
be odd. Then the equation X∗

p−1(c) = κc, κ 6= 0 always has
a non-trivial solution.

This statement is based on the fact known from topology that every
vector field on the sphere of even dimension has at least one singular
point. It is true that the κ does not always have to be positive.

It is clear that the Lemma 1 holds even when the constraints (3)
are integrable. Especially, if the constraints (3) are absent, m=0, and
X∗

p−1(x)= Xp−1(x). In this case, the results of Lemma 1 refer to holo-
nomic systems with n-degrees of freedom.

3 Examples

Let us consider the cases when conservative and circulatory forces, as
well as forces of viscose friction, act on the system simultaneously. Let

X (x) = −Π′(x) + C (x) , (27)

where Π(x) - the potential energy and C(x) denotes the circulatory
force, i.e.

xTC (x) ≡ 0 . (28)
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Let x=0 be the equilibrium position of the II kind, i.e. let the following
conditions be fulfilled −Π′(0) + C(0) = 0.

In addition to this, we shall consider that the equilibrium position
x=0 is a stationary point of the potential energy Π(x) and Π(0) = 0.
In accordance with this, the following holds

Π′(0) = 0,C(0) = 0. (29)

If the conditions of the hypothesis (H) are fulfilled, then Π(x) and
C(x) are also infinitely differentiable functions. Let

Π (x) = Πp (x) + Πp+1 (x) + ... p > 3 (30)

and
C(x) = CP−1(x) + Cp(x) + ... p > 3 (31)

are the Maclaurin series for the function Π(x), that is C(x), where Πs(x),
Cs(x) - denote homogeneous forms of the s degree. The series (30) and
(31), taking into account the hypothesis (H), are not convergent, as a
rule. From (28) it follows that:

xTCp−1 (0) ≡ 0. (32)

The differential equations of motion (18) now obtain the following form:

ẋ = (I−G0)Π
′
p(x)+(I−G0)Cp−1(x)+O( ‖ ẍ ‖ )+O( ‖ ẋ ‖2)+O( ‖x ‖p)

(33)

Let us first consider the case when

Cp−1(x) � 0. (34)

Let us use Π̂(x) to denote restriction of the function Π(x) on the hy-
perplane π. It is clear that Π̂p(x) is also a homogeneous form of the p
homogeneity degree. The following holds:
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Theorem 3. Let the following conditions be fulfilled:

a) the matrix D is positively definite for each x;

b) the point x=0 is the maximum of the function Π(x) (it
does not have to be strict);

c) x=0 is the isolated solution of the equation −(I−G0)(Π
′
p(x)−

Cp−1(x)) = 0;

d) Π̂p(x)T0;

e) the dimension n of the configuration space is odd.

Then x = 0, ẋ = 0 is the unstable equilibrium state of the
mechanical system whose motion is described with differen-
tial equations (18).

Note 2. The conclusions of Note 1 hold for Φ=0. If Φ = 0 and
C=0, the system is conservative and, taking into account (29), the point
x=0 is the equilibrium position, and the corresponding equilibrium state
x = 0, ẋ = 0 is unstable. It has been established in [4] and [11]. In
accordance with this, Theorem 3 can also be formulated in the following
way: circulatory forces and forces of viscose friction cannot stabilise the
equilibrium x = 0, ẋ = 0 of the conservative system obtained from the
system (18) at D(x)=0 and C(x)=0, if the conditions of Theorem 3 are
fulfilled. Theorem 3 is analogous to the result from the reference [9],
which refers to the impossibility of equilibrium stabilisation in a holo-
nomic conservative system by dissipative and positional nonconservative
forces, and in case when the potential energy in the equilibrium posi-
tion has the maximum (see[9], p.204). Theorem 3 holds even when the
constraints (3) are integrable. Especially, if m=0 then Π̂p(x) = Πp(x)
and G(x) ≡ 0.

Proof of Theorem 3.

We shall use Theorem 1 for the purpose of proving. On the basis of
the Lemma 1, it follows that the nontrivial solution of the equation

−(I −G0)(Π
′
p(c)−Cp−1(c)) = κ · c, κ 6= 0 (35)
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exists. Let us prove that c∈ π and κ > 0. In order to prove that, let us
first multiply the equation (15) by BT

0 . After multiplication, we obtain

−BT
0 (I −G0)(Π

′
p(c)−Cp−1(c)) = κBT

0 c, (36)

that is, taking into account (20),

BT
0 c = 0. (37)

So, c ∈ π. After we multiply the equation (15) by cT and solve it by κ,
we obtain:

κ = −(cTc)−1cT (I −G0)(Π
′
p(c)−Cp−1(c)). (38)

On the basis of the fact that c ∈ π, the following holds

cT G0 = 0. (39)

By using (32) and (39), we obtain κ = −(cTc)−1cTΠ′
p(c) and there-

from, as Π′
p is a homogeneous function,

κ = −(cTc)−1pΠp(c).

The following holds from the conditions (b) and (d):

Πp(c) < 0,

there from
κ = −(cTc)−1pΠ̂p(c) > 0

Theorem 3. is proved.
Let now Cp−1(x)≡0. The differential equations of motion (15) have

the form:

Aẍ + Γ(x, ẋ) = −Π′
p(x) + V(x)−D(x)ẋ + B(x)λ, BT (x)ẋ = 0,

where
V (x) = O( ‖x ‖p) when x → 0 .

We shall consider that the equilibrium position x = 0 is of the II
kind and that Π′(0) = 0 (if Π′(0) = 0 then C(0) = 0).
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Theorem 4. Let the following conditions be fulfilled:

a) the functions T,D, Π and C are infinitely differentiable
for each x and ẋ;

b) the matrix D is positively definite for each x;

c) at the point x = 0 ∈ π, Π̂p(x) does not have the minimum.

Then x = 0, ẋ = 0 is the unstable equilibrium state.

Theorem 5. Let the conditions a) and c) of Theorem 4
be fulfilled and let the equilibrium position x=0 is the iso-
lated maximum (not necessarily strict) of the potential energy
Π(x), and Π̂p(x) T 0. Then x = 0, ẋ = 0 is the unstable
equilibrium state.

Theorem 5 is a corollary of Theorem 4. Theorem 4 holds under
the condition that C(x)=0. It is the result from [10]. Under the condi-
tion that C(x)=0, Theorem 4 extends to nonholonomic systems result
from reference [8], and it refers to the impossibility of stabilisation of
equilibrium by means of forces of viscose friction in holonomic systems.
Theorem 5 is generalization of the result referring to the impossibility
of stabilization of the equilibrium by means of circulatory forces and
forces of viscose friction in the case when the potential energy has the
maximum (see [9], p.204).

4 Conclusion

Theorems of equilibrium instability have been proved by using the I Li-
apunov‘s method under assumption that a force can be resolved into
conservative, circulatory and dissipative components. Theorem 1 gen-
eralizes Kozlov‘s result [1] and the result from Ref.[10]. The results
obtained is analogous to the results referring to the impossibility of sta-
bilization of the equilibrium by means of circulatory forces and forces of
viscose friction in the case when the potential energy has the maximum
( see [9], [8]). The proving technique will be similar to that used in the
paper [1].Those results develop and spread the ideas of the I Liapunov‘s
method.
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O nestabilnosti ravnoteže mehaničkih sistema u
polju nekonzervativnih sila

UDK 531.01

U ovom radu razmatra se problem nestabilnosti ravnoteže skleronom-
nih neholonomnih mehaničkih sistema pri istovremenom dejstvu pozi-
cionih sila i sila viskoznog trenja. Uvedene su sledeće pretpostavke: u
okolini ravnotežnog položaja pozicione sile, koeficijenti kinetičke energije
i Relijeve funkcije disipacije su beskonačno diferencijabilne funkcije; pos-
toji pravac, koji prolazi kroz ravnotežni položaj, duž koga ortogonalna
projekcija prve netrivijalne forme pozicione sile, na ravan koja je nor-
malna na vektore neholonomnih veza u ravnotežnom položaju, ima karak-
ter centralne i odbojne sile. Predložene teoreme uopštavaju rezultate
iz radova [1], [10], [9]. Zaključak o nestabilnosti izvodi se iz egzisten-
cije rešenja diferencijalnih jednačina kretanja, koja asimptotski teže ka
ravnotežnom položaju kad t →∞.


