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Abstract

In engineering problems, the randomness and uncertainties
are inherent and the scatter of structural parameters from their
nominal ideal values is unavoidable. In Reliability Based Design
Optimization (RBDO) and Robust Design Optimization (RDO)
the uncertainties play a dominant role in the formulation of the
structural optimization problem. In an RBDO problem addi-
tional non deterministic constraint functions are considered while
an RDO formulation leads to designs with a state of robustness,
so that their performance is the least sensitive to the variabil-
ity of the uncertain variables. In the first part of this study a
metamodel assisted RBDO methodology is examined for large
scale structural systems. In the second part an RDO structural
problem is considered. The task of robust design optimization
of structures is formulated as a multi-criteria optimization prob-
lem, in which the design variables of the optimization problem,
together with other design parameters such as the modulus of
elasticity and the yield stress are considered as random variables
with a mean value equal to their nominal value.
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1 Introduction

In recent years, probabilistic based formulations of optimization prob-
lems have been developed to account for the uncertainty through stochas-
tic simulation and probabilistic analysis. Stochastic analysis methods
have been developed over the last two decades [1, 2] and have stimulated
the interest for the probabilistic optimum design of structures. There are
two distinct design formulations that account for probabilistic systems
response: Robust Design Optimization (RDO) [3-5] and Reliability-
Based Design Optimization (RBDO) [6-8]. RDO methods primarily seek
to minimize the influence of stochastic variations on the design. On the
other hand, the main goal of RBDO methods is to design for safety with
respect to extreme events and generally require a stochastic analysis of
the system response. Despite the theoretical advancements in the field of
reliability analysis, serious computational obstacles arise when treating
realistic problems. In particular, the reliability-based design optimiza-
tion of large-scale structural systems is an extremely computationally
intensive task, as shown by Tsompanakis and Papadrakakis [9]. De-
spite the improvements achieved in the efficiency of the computational
methods for treating reliability analysis problems, they still require dis-
proportionate computational effort for practical reliability problems.

In the first part of the present study the reliability-based sizing op-
timization of steel frames is investigated. The objective function is
the weight of the structure while the constraints are both determin-
istic (stress and displacement limitations) and probabilistic (the overall
probability of failure of the structure). Randomness of loads, material
properties and member geometry are taken into account in the relia-
bility analysis using the Monte Carlo simulation (MCS) method. The
probability of failure of a steel framed structure is determined via a
limit state elasto-plastic analysis. In this work three metamodel as-
sisted Evolution Strategies based methodologies are examined. In the
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first, a trained NN is applied to predict the response of the structure in
terms of deterministic and probabilistic constraints checks due to differ-
ent sets of design variables. In the second methodology, the limit state
elasto-plastic analyses required during the MCS method are replaced by
the NN predictions of the structural behaviour up to collapse. For every
MCS that is required in order to perform the probabilistic constraints
check, an NN is trained that utilizes available information generated
from selected conventional elasto-plastic analyses. The trained NN is
used to predict the critical load factor due to different sets of basic
random variables. In the third one, which is a blending of the two meta-
model methodologies proposed by Papadrakakis and Lagaros in [6], a
two level NN based procedure is proposed.

In the second part of the study the robust design sizing optimiza-
tion of large-scale space trusses is investigated. In previous studies on
RDO, the weight of the structure and its variance were the objectives
to be minimized. In this work the objective functions considered are
the weight and the variance of the response of the structure, subject to
both deterministic and probabilistic stress and displacement constraints.
Randomness of loads, material properties, and member geometry are
taken into account in the stochastic analysis using the MCS method.
The optimization problem at hand is a multicriteria optimization prob-
lem. Evolutionary Algorithms, and in particular Evolution Strategies,
are employed. Each design is checked whether it satisfies the provi-
sions of the European design codes (Eurocodes 3 and 8 [10,11]) with a
prescribed probability of violation.

2 Monte Carlo Simulation

In stochastic analysis of structures, the MCS method is particularly ap-
plicable when an analytical solution is not attainable, where all other
stochastic analysis methods cannot be applicable. This is mainly the
case in problems of complex nature with a large number of random vari-
ables. Although the MCS method has the capability of handling practi-
cally every possible case regardless of its complexity, this approach has
not received an overwhelming acceptance due to the excessive computa-
tional effort that it requires. Furthermore, soft computing methodologies
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and parallel processing have been recently implemented having a bene-
ficial effect on the efficiency of the method [12]. In the current study the
MCS method has been employed for the calculation of the probability
of failure, the probability of violation of the behavioural constraints and
the variance of the response of the structure due to the random nature
of some structural parameters.

In structural stochastic analysis problems where the probability of
violation of some behavioral constraints is to be calculated, the MCS
method can be stated as follows: Expressing the limit state function
as G(x) < 0, where x = (x1, x2, ..., xM) is the vector of the random
structural parameters, the probability of violation of the behavioral con-
straints can be written as

pviol =

∫

G(x)60

fx(x)dx (1)

where fx(x) denotes the joint probability of violation for all random
structural parameters. Since MCS is based on the theory of large num-
bers (N∞) an unbiased estimator of the probability of violation is given
by

pviol =
1

N∞

N∑
j=1

I(xj) (2)

in which I(xj) is an indicator for successful and unsuccessful simulations
defined as

I(xi) =

{
1 if G(xi) ≥ 0
0 if G(xi) < 0

(3)

In order for pviol to be estimated, an adequate number of N inde-
pendent random samples is produced using a specific probability density
function of the vector x. The value of the violation function is computed
for each random sample xj and the Monte Carlo estimation of pviol is
given in terms of sample mean by
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pviol =
NH

N
(4)

where NH is the number of successful simulations and N the total num-
ber of simulations.

3 Structural Optimization

A structural optimization problem can be classified with respect to the
type of the structural behaviour, the type of design variables and the
type of the structure to be optimized. There are mainly three classes
of structural optimization problems: Sizing, shape and topology (or
layout), depending on the type of the structure to be optimized. An
optimization problem is characterized as deterministic or probabilistic
depending on the consideration or not of the uncertainties involved in the
structural behaviour. It can also be classified as discrete or continuous,
depending on the type of the design variables. In deterministic sizing op-
timization problems the aim is to minimize the weight of the structure
under certain deterministic behavioral constraints, usually on stresses
and displacements. In probabilistic sizing optimization problems, the
randomness and the uncertainties that are inherent in engineering prob-
lems, have to be taken into consideration.

Due to engineering practice demands, the members of a frame or
truss structure are divided into groups, with the members of each group
sharing the same design variables. This linking of elements results in a
trade-off between the use of more material and the need of symmetry and
uniformity of structures due to practical considerations. Furthermore,
it has to be taken into account that in most cases, due to manufactur-
ing limitations the design variables cannot be considered as continuous
but discrete since cross-sections belong to a certain set provided by the
manufacturers.

3.1 Deterministic Based Optimization (DBO)

A discrete DBO problem can be formulated in the following form
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min F (s),
subject to gj(s) 6 0, j = 1, ..., k

si ∈ Rd, i = 1, ..., n
(5)

where F (s) is the objective function, s is the vector of geometric design
variables, which can take values only from a discrete given set Rd, and
gj(s) are the deterministic constraints. Most frequently the determinis-
tic constraints refer to member stresses and nodal displacements or the
inter-storey drifts.

3.1.1 Frame structures

For beams, capacity design against shear requires that the following
condition is satisfied:

VG.Sd + VM.Sd

VPl.Rd

6 0.5 (6)

where VG.Sd is the shear force due to non seismic actions and VM.Sd is the
shear force due to the application of resisting moments with opposite
signs at the extremities of the beam. Moreover, the applied moment
should be less that Mpl.Rd while the axial load should be less than 15%
of Npl.Rd. For columns subject to bending with the presence of axial
load the following formula should be satisfied:

Nsd

χmin ·Npl.Rd

+
κy ·Msd

Mpl.Rd

6 1 (7)

where χmin is the reduction factor for flexural buckling taken equal to 0.7
and κy is a correction factor to allow for the combined effect of axial load
and moment, taken equal to 1. Moreover the shear capacity should be
double than the applied shear force. Plastic capacities for each member
section are determined from the expression:

Mpl,Rd =
Wpl · fy

γM0

(8)

Npl,Rd =
A · fy

γM1

(9)
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Vpl,Rd =
1.04 · h · tw · fy√

3 · γM0

(10)

where γM0 and γM1 are considered equal to 1.10 [10]. The interstorey
drift constraint employed in a frame structure can be written as:

dr

ν
6 0.006× h (11)

where ν is a reduction factor for the serviceability limit state (taken
equal to 2.5 for the test example considered in this study) and dr is
the relative drift between two consecutive stories. Different drift limits
are adopted for the probabilistic and the deterministic constraints since
failure is supposed to take place for considerably higher deformations.
Furthermore, the strength ratio of column to beam is calculated and also
a check of whether the sections chosen are of class 1, as EC3 suggests,
is carried out. The later check is necessary in order to ensure that the
members have the capacity to develop their full plastic moment and
rotational ductility, while the former is necessary in order to have a
design consistent with the strong column-weak beam design philosophy.

3.1.2 Truss structures

The stress constraints considered in a truss sizing optimization problem
can be written as follows

σmax 6 σa

σa=
σy

1.10

(12)

where σmax is the maximum axial stress in each element group for all
loading cases, σa is the allowable axial stress according to Eurocode
3 [10] and σy is the yield stress. For members under compression an
additional constraint is implemented
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|Pc,max| 6 Pcc

Pcc=
Pe

1.05

Pe=
π2EI

L2
eff

(13)

where Pc,max is the maximum axial compression force for all loading
cases, Pe is the critical Euler buckling force in compression, taken as
the first buckling mode of a pin-connected member, and Leff is the
effective length. The effective length is taken equal to the actual length.
Similarly, the displacement constraints can be written as

|d| 6 da (14)

where da ais the limit value of the displacement at a certain node or the
maximum nodal displacement. A constraint of 200 mm on the maximum
deflection is imposed.

3.2 Reliability Based Design Optimization (RBDO)

In RBDO problems additional probabilistic constraints are imposed in
order to take various random parameters into account. Probabilistic
constraints define the feasible region of the design space by restricting
the probability that a deterministic constraint is violated within the
allowable probability of violation. The probabilistic constraint that is
employed in this study enforces the condition that the probability of
failure of the structure is smaller than a certain specified value.

In the present study the reliability-based sizing optimization of steel
frames is investigated. Thus the overall probability of failure of the
structure, as a result of a limit state elasto-plastic analysis, is taken as
the global reliability constraint. The probabilistic design variables are
chosen to be the cross-sectional dimensions of the structural members
and the material properties, modulus of elasticity E and yield stress σy.

A discrete RBDO problem can be formulated in the following form
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min F(s)

subject to gj(s) 6 0, j=1, ..., m

si ∈ Rd, i=1, ..., n

pf 6 pa,

(15)

F (s) is the objective function, s is the vector of geometric design vari-
ables, gj(s) are the deterministic constraints and pf is the probability
of failure of the structure - required to remain below a threshold value
(pa) that comprises the probabilistic constraint.

The proposed RBDO sizing optimization methodology proceeds with
the following steps:

1. At the outset of the optimization procedure the geometry, bound-
aries and reference loads of the structure under investigation are
defined.

2. The constraints are defined in order for the optimization problem
to be formulated, as in eq. (15).

3. The optimization phase is carried out with Evolution Strategies
where feasible designs are produced at each generation. The fea-
sibility of each design vector is checked with respect to both the
deterministic and the probabilistic constraints of the problem.

4. The satisfaction of the deterministic constraints is monitored through
a finite element analysis of the structure.

5. The satisfaction of the probabilistic constraints is realized with a
reliability analysis of the structure using the MCS technique for
the evaluation of the probability of failure.

6. If the convergence criteria for the optimization algorithm are satis-
fied, then the optimum solution has been achieved and the process
is terminated, otherwise the whole process is repeated from step 3
with a new generation of design vectors.
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In this work, the probabilistic constraint considered is related to
the ultimate load-carrying capacity of the space frame structure. This
failure criterion is considered to be the formation of a mechanism as
a result of a limit state elasto-plastic analysis of the structure without
considering member instability effects. The adopted incremental non-
holonomic first order step-by-step limit state analysis is based on the
generalized plastic node concept [13, 14]. The non-linear yield surface
is approximated by a multi-faceted surface thus avoiding iterations at
each load step. In order to prevent the occurrence of very small load
steps, a second internal and homothetic to the initial yield surface is
implemented which forms a plastic zone for the activation of the plastic
nodes [15].

3.3 Robust Design Optimization (RDO)

In the present study the robust design versus the deterministic based
sizing optimization of large-scale space trusses is investigated. The ro-
bustness of the constraints is considered using the overall probabilities
of violation of the structural constraints, as a result of the variation of
the random structural parameters. The random variables chosen are
the cross-sectional dimensions of the structural members, the material
properties modulus of elasticity E and yield stress σy and the lateral
loads.

In a robust design sizing optimization problem an additional objec-
tive function is considered which is related to the influence of the random
nature of some structural parameters on the response of the structure.
In the present study the aim is to minimize both the weight and the
variance of the response of the structure. The constraint functions are
also varied due to variations of the random structural parameters. An
optimum solution in deterministic-based design optimization might vi-
olate some of the constraints for some values of the random structural
parameters. In the formulation of the RDO problem considered in this
study the variance of the constraints has also been taken into account
and additional constraint functions of stochastic nature are considered.
The mathematical formulation of a discrete RDO problem, as imple-
mented in this study is as follows
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min Φ(s)

subject to gj(s) 6 0, j = 1, ..., k

pv,j 6 pall, j = 1, ..., k

si ∈ Rd, i = 1, ..., n

(16)

where Φ(s) is the multi-objective function, s is the vector of geometric
design variables, which can take values only from the given discrete set
Rd, gj(s) are the deterministic constraints while pv,j is the probability of
violation of the j-th deterministic constraint bound by an upper allow-
able probability equal to pall. The multi-objective function is expressed
as

Φ(s) = wF (s) + (1− w)σu (17)

where F (s) is the weight of the structure and σu is the variance of the re-
sponse of the structure. The proposed robust design sizing optimization
methodology proceeds with the following steps:

1. At the outset of the optimization procedure the geometry, the
boundaries and the reference loads of the structure under investi-
gation are defined.

2. The constraints are defined in order for the optimization problem
to be formulated as in eq. (16).

3. The optimization phase is carried out with ES where feasible de-
signs are produced at each generation. The feasibility of the de-
signs is checked for each design vector with respect to both deter-
ministic and probabilistic constraints of the problem.

4. The satisfaction of the deterministic constraints is monitored through
a finite element analysis of the structure.

5. Stochastic analysis of the structure using the MCS technique is
carried out in order to evaluate the probability of violation of the
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structural constraints and to calculate the variance of the response
of the structure.

6. If the convergence criteria for the optimization algorithm are satis-
fied, then the optimum solution has been achieved and the process
is terminated, otherwise the whole process is repeated from step 3
with a new generation of design vectors.

Probabilistic constraints define the feasible region of the design space
by restricting the probability that a deterministic constraint is violated
within the allowable probability of violation. The probabilistic con-
straints that are employed in this study enforce the condition that the
probabilities of violation of the structure are smaller than a certain value.

4 Evolution Strategies (ES)

The first version of the Evolution Strategies (ES) method was based
on a population consisting of one individual only. The two membered
ES scheme is the minimal concept for an imitation of organic evolution.
The two principles of mutation and selection, which Darwin in 1859
recognised to be the most important, are taken as rules for variation of
the parameters and for recursion of the iteration sequence respectively.
The multi-membered Evolution Strategies employed in this study differ
from the previous two-membered strategies in the size of the population.

4.1 ES in structural optimization problems

In structural optimization problems, where both the objective and the
constraints can be highly non-linear functions of the design variables, the
computational effort spent in gradient calculations needed for mathe-
matical programming algorithms is usually high. In a study by Pa-
padrakakis et al. [16] it was found that probabilistic search methods
in structural optimization are computationally efficient compared to
gradient-based optimization methods, even if large number of optimiza-
tion steps are needed in order to reach the optimum. These optimization
steps are computationally less expensive than those of mathematical pro-
gramming algorithms as they do not require gradient information. This
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property of probabilistic search methods is of great importance in the
case of RBDO and RDO problems, since the calculation of the deriva-
tives of the probabilistic constraints can be extremely time-consuming.
Furthermore, probabilistic methodologies are more capable of finding
the global optimum due to their random search, whereas mathematical
programming algorithms may be trapped in local optima.

The ES optimization procedure starts with an initial set of parent
vectors. If a vector of the parent set corresponds to an infeasible design
then it is modified until it becomes feasible. Subsequently, the offspring
design vectors are generated and checked whether they are in the fea-
sible region. According to the (µ + λ) selection scheme the values of
the objective function of the parent and the offspring vectors in every
generation are compared; the worst vectors are rejected, while the best
ones are considered as the parent vectors of the new generation. This
procedure is repeated until the chosen termination criterion is satisfied.
The ES algorithm for structural optimization applications can be stated
as follows:

1. Selection step: Selection of si (i = 1, 2, ..., µ) parent design vectors.

2. Analysis step: Solve K(si)xi = b (i = 1, 2, ..., µ).

3. Constraints check: If satisfied continue, else change sj and go to
step 1.

4. Offspring generation: Generate sj, (j = 1, 2, ..., λ) offspring design
vectors.

5. Analysis step: Solve K(sj)xj = b (j = 1, 2, ..., λ).

6. Constraints check: If satisfied continue, else change sj and go to
step 4.

7. Selection step: Selection of the next generation parent design vec-
tors.

8. Convergence check: If satisfied stop, else go to step 4.

An important characteristic of the ES method, that distinguishes it
from most conventional optimization algorithms, is that instead of using
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a single design point it works simultaneously with a population of design
points. This allows the natural implementation of the ES optimization
procedure in parallel computing environments where the finite element
analyses of the members of each population are performed independently
and concurrently.

4.2 Reliability-based structural optimization using
metamodel assisted ES

In the reliability analysis of elasto-plastic structures using MCS the com-
puted critical load factors are compared to the corresponding external
loading leading to the computation of the probability of structural fail-
ure. The probabilistic constraints enforce the condition that the proba-
bility of a local failure of the system or the global system failure is smaller
than a certain value (i.e. 10−5 − 10−3). In this work the overall proba-
bility of failure of the structure, as a result of limit state elasto-plastic
analyses, is taken as the global reliability constraint. The probabilis-
tic design variables are the cross-sectional dimensions of the structural
members and the material properties (E, σy).

4.2.1 NN used for deterministic and probabilistic constraints
check

In this methodology, a trained NN that utilizes information generated
from a number of properly selected design vectors is used to perform both
the deterministic and probabilistic constraints checks that are needed
during the optimization process. After the selection of a suitable NN
architecture, the training procedure is performed using a number (M) of
data sets in order to obtain the I/O pairs needed for the NN training.
The trained NN is then applied to predict the response of the structure
in terms of deterministic and probabilistic constraints checks due to
different sets of design variables.

The combined ES-NN optimization procedure is performed in two
phases. The first phase includes the training set selection, the corre-
sponding structural analysis and MCS for each training set required to
obtain the necessary I/O data for the NN training, and finally the train-
ing and testing of a suitable NN configuration. The second phase is
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the ES optimization stage where the trained NN is used to predict the
response of the structure in terms of the deterministic and probabilistic
constraints checks due to different sets of design variables.

This ES-NN methodology can be described with the following algo-
rithm 1:

• NN training phase:

1. Training set selection step: Select M input patterns.

2. Deterministic constraints check: Perform the check for each
input pattern vector.

3. Monte Carlo Simulation step: Perform MCS for each input
pattern vector.

4. Probabilistic constraints check: Perform the check for each
input pattern vector.

5. Training step: Training of the NN.

6. Testing step: Test the trained NN.

• ES-NN optimization phase:

1. Parents Initialization.

2. NN (Deterministic-Probabilistic) constraints check: All par-
ents become feasible.

3. Offspring generation.

4. NN (Deterministic-Probabilistic) constraints check: If satis-
fied continue, else go to step 3.

5. Parents’ selection step.

6. Convergence check.

4.2.2 NN prediction of the maximum load capacity

In this methodology the limit state elasto-plastic analyses required dur-
ing the MCS are replaced by the NN prediction of the structural behavior
up to collapse. For every MCS an NN is trained utilizing available in-
formation generated from selected conventional elasto-plastic analyses.
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The limit state analysis data is processed to obtain input and output
pairs, that are used for the NN training. The trained NN is then used
to predict the critical load factor due to different sets of basic random
variables.

At each ES cycle (generation) a number of MCS is carried out. In
order to replace the time consuming limit state elasto-plastic analyses
by predicted results obtained with a trained NN, a training procedure
is performed based on the data collected from a number of conventional
limit state elasto-plastic analyses. After the training phase is concluded
the trained NN predictions replace the conventional limit state elasto-
plastic analyses, for the current design. For the selection of the suitable
training pairs, the sample space for each random variable is divided into
equally spaced distances. The central points within the intervals are
used as inputs for the limit state analyses.

This ES-NN methodology can be described with the following algo-
rithm 2:

1. Parents Initialization.

2. Deterministic constraints check: All parents become feasible.

3. Monte Carlo Simulation step:

3a. Selection of the NN training set.

3b. NN training for the limit load.

3c. NN testing.

3d. Perform MCS using NN.

4. Probabilistic constraints check: All parents become feasible.

5. Offspring generation.

6. Deterministic constraints check: If satisfied continue, else go to
step 5.

7. Monte Carlo Simulation step:

7a. Selection of the NN training set.
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7b. NN training for the limit load.

7c. NN testing.

7d. Perform MCS using NN.

8. Probabilistic constraints check: If satisfied continue, else go to step
5.

9. Parents’ selection step.

10. Convergence check.

NN
MCS

IS

NN-IS

pdf

R

G>0 G<0safe unsafe

Figure 1: Sensitivity of pf prediction to different sample space of resis-
tances

In reliability analysis of elastoplastic structures using MCS the com-
puted critical load factors are compared to the corresponding external
loading leading to the computation of the probability of structural fail-
ure according to Eq. (3). By approximating the “exact” solution with
an NN prediction of the critical load factor, the accuracy of the predicted
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pf depends not only on the accuracy of the NN prediction of the critical
load factor but also on the sensitivity of pf with regard to a slightly mod-
ified, due to the NN approximation, sample space of resistances. This
sensitivity is represented in Figure 1 by the ratio of the shaded area over
the total area defined by the probability density distributions and the
failure function on the unsafe side. It occurs that the error due to this
sensitivity is always present but is more pronounced in low probabil-
ity estimations where the shadowed area becomes significant compared
to the total area that defines the low probability of failure. Thus the
use of Importance Sampling (IS) techniques is expected to be beneficial
since the sampling is performed in an area of high probabilities. In this
case, as the ratio of the shaded area over the total area is decreased, the
introduced error can be substantially reduced.

4.2.3 A two level NN for RBDO

In this methodology proposed in this work, a trained NNa, similarly to
the first metamodel methodology, utilizes information generated from a
number of properly selected design vectors in order to perform both the
deterministic and probabilistic constraints checks that are needed dur-
ing the optimization process. The difference in comparison to the first
methodology is that a second NNb is used, similarly to the way that
the second methodology employs the NN, in order to assist the train-
ing of the NNa. The combined ES-NNa/NNb optimization procedure is
performed in two phases. The first phase includes the training set selec-
tion, the corresponding structural analysis and MCS for each training
set required to obtain the necessary I/O data for the NNa training, and
finally the training and testing of a suitable NNa configuration. The
second phase is the ES optimization stage where the trained NN is used
to predict the response of the structure in terms of the deterministic and
probabilistic constraints checks due to different sets of design variables.

This ES-NNa/NNb methodology can be described with the following
algorithm 3:

• NNa training phase:

1. Training set selection step: Select M input patterns.
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2. Deterministic constraints check: Perform the check for each
input pattern vector.

3. Monte Carlo Simulation step:

3a. Selection of the NNb training set.

3b. NNb training for the limit load.

3c. NNb testing.

3d. Perform MCS using NNb.

4. Probabilistic constraints check: Perform the check for each
input pattern vector.

5. Training step: Training of the NNa.

6. Testing step: Test the trained NNa.

• ES-NNa/NNb optimization phase:

1. Parents Initialization.

2. NNa (Deterministic-Probabilistic) constraints check: All par-
ents become feasible.

3. Offspring generation.

4. NNa (Deterministic-Probabilistic) constraints check: If satis-
fied continue, else go to step 3.

5. Parents’ selection step.

6. Convergence check.

5 Multi-Objective Optimization

In formulating an optimization problem the choice of the design vari-
ables, criteria and constraints represents undoubtedly the most impor-
tant decision to be made by the engineer. In general, the mathematical
formulation of a multi-objective problem that includes a set of n de-
sign variables, a set of m objective functions and a set of k constraint
functions can be defined as follows
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mins∈F [f1(s), f2(s), . . . , fm(s)]T ,

subject to gj(s) 6 0, j = 1, ..., k

si ∈ Rd, i = 1, ..., n

(18)

where the vector s = [s1s2...sn]T represents a design variable vector and
F is the feasible set in the design space Rn which is defined as the set of
design variables that satisfy the constraint functions g(s) in the form:

F={s ∈ Rn|gj(s) 6 0, j = 1, ..., k} (19)

In most cases there is no unique point that would give an optimum
for all m criteria simultaneously. Thus the common optimality condition
used in single-objective optimization must be replaced by a new concept,
the so called Pareto optimum: A design vector s∗ ∈ F is Pareto optimal
for the problem of eq. (14) if and only if there is no other design vector
s ∈ F such that:

fi(s) 6 fi(s
∗) for i = 1, ..., m (20)

with fi(s) < fi(s
∗) for at least one objective i.

The solutions of optimization problems with multiple objectives con-
stitute the set of the Pareto optimum solutions. The problem of eq. (14)
can be considered as solved after the set of Pareto optimal solutions has
been determined. In practical applications however, the designer seeks
for a unique final solution. Thus a compromise should be made among
the available Pareto optimal solutions.

5.1 Linear Weighting Method

The Linear Weighting Method combines all the objectives into a single
scalar parameterized objective function by using weighting coefficients.
If wi, i = 1 , 2 , ...,m are the weighting coefficients, the problem of eq.
(14) can be written as follows:
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min
s∈F

m∑
i=1

wi fi(s) (21)

with no loss of generality the following normalization of the weighting
coefficients can be employed:

m∑
i=1

wi = 1 (22)

By varying the weights it is possible to generate the set of Pareto op-
timum solutions for the problem of eq. (18). The values of the weighting
coefficients are adjusted according to the importance of each criterion.
Every combination of those weighting coefficients correspond to a single
Pareto optimal solution, thus, by performing a set of optimization pro-
cesses using different weighting coefficients it is possible to generate the
full set of the Pareto optimal solutions.

5.2 Evolution Strategies for structural multi – ob-
jective optimization problems

The application of evolutionary algorithms in multi-objective optimiza-
tion problems has attracted the interest of a number of researchers in
the last ten years due to the difficulty of conventional optimization tech-
niques, such as gradient based methods, to be extended in order to
handle multi-objective optimization problems. ES, however, have been
recognized to be more suitable for multi-objective optimization problems
since the beginning of their development [17, 18]. Multiple individuals
can search for multiple solutions simultaneously, taking advantage of any
similarities available in the family of possible solutions to the problem.

In the present implementation, where the weighting method is used
in order to generate a set of Pareto optimal solutions, the optimization
procedure initiates with a set of parent design vectors needed by the ES
optimizer and a set of weighting coefficients for the combination of all
objectives into a single scalar parameterized objective function. These
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weighting coefficients are not set by the designer but are being system-
atically varied by the optimizer after a Pareto optimal solution has been
achieved. There is an outer loop which systematically varies the pa-
rameters of the parameterized objective function, that is called decision
making loop. The inner loop is the classical ES procedure, starting with
an initial set of parent vectors. If any of these parent vectors gives an
infeasible design then it is modified until it becomes feasible. Subse-
quently, the offsprings are generated and checked whether they are in
the feasible region. According to the (µ + λ) selection scheme, in every
generation the values of the objective function of the parent and the
offspring vectors are compared and the worst vectors are rejected, while
the remaining ones are considered to be the parent vectors of the new
generation. On the other hand, according to the (µ,λ) selection scheme
only the offspring vectors of each generation are used to produce the
new generation. This procedure is repeated until the chosen termina-
tion criterion is satisfied. The number of parents and offsprings involved
affects the computational efficiency of the multi-membered ES scheme
discussed in this work. It has been observed that when the values of µ
and λ are equal to the number of the design variables, better results are
produced.

The ES algorithm combined with the standard methods can be stated
as follows:
Outer loop - Decision making loop

Set the parameters wi of the parameterized objective function
Inner loop - ES loop

1. Selection step: Selection of si(i = 1, 2, ..., µ) parent vectors of the
design variables

2. Analysis step

3. Evaluation of parameterized objective function

4. Constraints check: All parent vectors become feasible

5. Offspring generation: Generate sj, (j = 1, 2, ..., λ) offspring vectors
of the design variables

6. Analysis step
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7. Evaluation of the parameterized objective function

8. Constraints check: If satisfied continue, else change sj and go to
step 5

9. Selection step: Selection of the next generation parents according
to (µ + λ) or (µ,λ) selection schemes

10. Convergence check: If satisfied stop, else go to step 5

End of Inner loop
End of Outer loop

6 Test Examples

6.1 Six-storey frame – RBDO test example

The six-storey plane frame depicted in Figure 2, has been considered
in order to illustrate the efficiency of the proposed metamodel assisted
methodologies for reliability-based sizing optimization problems. The
permanent load is taken as G = 5kN/m2 and the live load is taken as
Q = 2kN/m2. The vertical loads are contributed from an effective area
of 5m. The base shear is obtained from the EC8 response spectrum.
Moreover, the importance factor γI has been taken equal to 1 and the
characteristic periods TA and TB of the spectrum were considered equal
to 0.15 and 0.60 sec, respectively. The damping correction factor is equal
to 1.32, since a damping ratio of 2% has been considered. The dimen-
sions and properties of the frame as well as the plastic nodes at collapse,
using the mean values of the basic random variables are depicted in
Figure 2.

The cross section of each member of the frame is assumed to be
of I-shape and one design variable is allocated for each member, while
the objective function is the weight of the structure. The deterministic
constraints are imposed on the inter-storey drifts and for each group
of structural members. The probabilistic constraint is imposed on the
probability of structural collapse due to successive formation of plas-
tic hinges and is set to pa = 0.001. The probability of failure caused
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Figure 2: Description of the steel frame

by uncertainties related to material properties, geometry and loads of
the structures is estimated using MCS with the Importance Sampling
technique. External loads, yield stresses, elastic moduli and the dimen-
sions of the cross-sections of the structural members are considered as
random variables. The loads follow a log-normal probability density
function, while random variables associated with material properties
and cross-section dimensions follow a normal probability density func-
tion. The required importance sampling function gx(x) for the loads is
assumed to follow a normal distribution. In Table 2 showing the results
of the test examples, DBO stands for the conventional Deterministic
Optimization approach, RBDO stands for the conventional Reliability-
Based Design Optimization approach, while RBDO-NNi corresponds
to the proposed Reliability-Based Optimization with NN incorporating
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Table 1: Characteristics of the random variables for the steel frame

Random variable Probability den-
sity function

Mean
value

Standard
deviation

E N 200 0.10E
σ y N 24.0 0.10σy

Design variables N si 0.1si
Loads (G + 0.30Q) Log-N 5.6 0.25

algorithm i (i=1,2).

The members of the structure are divided into two groups, each one
having one design variable. The type of probability density functions,
mean values, and variances of the random parameters are presented in
Table 1. The mean value for each geometric variable (i.e. the cross-
sectional dimensions) is taken as the value of the current design step of
the corresponding variable si. The load-displacement curve of a node in
the top-floor of the frame is depicted in Figure 3, corresponding to the
design vector (IPE300-HEB400). For this test example the (µ + λ)-ES
approach is used with µ = λ=5, a sample size of 500 simulations have
been examined for the MCS with the importance sampling technique
[6, 15]. As can be observed from Table 2 the computed probability
of failure for the deterministic optimum design is unacceptable since it
exceeds substantially the accepted value 10−3.

On the other hand, the optimum weight achieved by the RBDO
with 500 simulations is heavier by 21% compared to the deterministic
one. For the application of the RBDO-NN1 methodology the number of
NN input units is equal to the number of design variables, whereas one
output unit is needed, according to both deterministic and probabilistic
constraints. The output unit takes the values 1 or 0, corresponding
to a feasible or infeasible design vector, respectively. Consequently the
NN configuration implemented in this case has one hidden layer with 10
nodes resulting in a 2-8-1 NN architecture used for all runs. The training
set consists of 100 training patterns chosen with the requirement that
the full range of the design space should be represented in the training
procedure.

For the application of the RBDO-NN2 methodology the number of
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Figure 3: Load-displacement curve for the steel frame

NN input units is equal to the number of the random variables, whereas
one output unit is needed corresponding to the critical load factor. Con-
sequently the NN configuration results in a 3-7-1 NN architecture which
is used for all runs. The number of conventional step-by-step limit anal-
ysis calculations performed for the training of NN is taken 60 corre-
sponding to different groups of random variables properly selected from
the random field. As can be seen in Table 2 the proposed RBDO-NN2
optimization scheme, with 100,000 simulations, leads to a heavier de-
sign by 30% and 6.9% compared to the DBO and the RBDO with 500
simulations, respectively. As it can be seen, the number of MCS in the
case of NN2 scheme can be extremely large without affecting its compu-
tational efficiency due to the trivial computing time required by the NN
to perform one Monte Carlo simulation. In the case of the RBDO-NN3
methodology the advantages of the NN1 and NN2 methodologies are
combined leading to the optimum achieved by the RBDO-NN2 method-
ology in less computing time.
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Table 2: Performance of the methods for the steel frame

Optimization
procedure

Optimum Design
(beam-column)

pf** Optimum
weight
(kN)

Time
(h)

DBO (IPE330-HEB280) 0.88 10−1 107 -

RBDO(500 siml.) (IPE330-HEB360) 0.113 10−2 130 4.7
RBDO-NN1(500
siml.)

(IPE330-HEB360) 0.113 10−2 130 4.3

RBDO-NN2* (IPE300-HEB400) 0.905 10−3 139 1.1
RBDO-NN3* (IPE300-HEB400) 0.905 10−3 139 0.8

*For 100,000 simulations
**For 100,000 simulations using the NN2 scheme

6.2 13-bar truss – RDO test example

A two dimensional 13-bar truss shown in Figure 4 is considered for
presenting the efficiency of the proposed RDO methodology. The truss
structure corresponds to the FE model of the Gateway Bridge over the
Fork River, Idaho in the USA, which was built in 1948.

Figure 4: The 13-bar truss bridge

Two objective functions are used, the weight and the variance of the
response of the structure, under constraints on stresses and displace-
ments imposed by the design codes [10,11]. Due to engineering practice
demands, the members are divided into groups having the same design
variables. This linking of elements results in a trade-off between the
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Table 3: Characteristics of the random variables

Proba-
bility
Density
Func-
tion

Mean
value
µ

Standard
Devi-
ation
σ

σ/µ 95% of
values
within

E
(kN/m2)

Young’s
Modulus

Normal 2.10E+08 1.50E+07 7.14% (1.81E+08,
2.39E+08)

σy

(kN/m2)
Allowable
stress

Normal 355000 35500 10.00% (2.85E+05,
4.25E+05)

V
(kN)

Vertical
loading

Normal Vµ 10Vµ 10.00% (2.85Vµ,
4.25Vµ)

L Legs
length

Normal L∗i 0.02Li 2% (0.961Li,
1.039Li)

t Legs
width

Normal t∗i 0.02ti 2% (0.961ti,
1.039ti)

d EAS sec-
tion Dis-
tance

Normal d∗i 0.02di 2% (0.961di,
1.039di)

* Taken from the double Equal Angle Section (double EAS) table
of the Eurocode for every design
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use of more material and the need of symmetry and uniformity of struc-
tures due to practical considerations. Furthermore, it has to be taken
into account that due to manufacturing limitations the design variables
are not continuous but discrete since cross-sections belong to a certain
pre-defined set provided by the manufacturers. Thus the design vari-
ables considered are the dimensions of the members of the structure,
four groups in total, taken from the double Equal Angle Section (double
EAS) table of the Eurocode. For each design variable, three stochastic
variables are assigned: the length L, the width t of the legs and the
distance d between the two identical equal angle sections. A vertical
load of 300 kN is applied to the middle node and 100 kN to the rest of
the nodes of the deck, both considered as a probabilistic action. The
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Figure 5: The Pareto front curve

types of probability density functions, the mean values, and the vari-
ances of the random parameters are presented in Table 3. For this test
case the (µ + λ)-ES approach is used with µ = λ=5, while a sample size
of 1,000 simulations is taken for the MCS. The resultant Pareto front
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curve is depicted in Figure 5, with the weight of the structure on the
horizontal and the standard deviation of the horizontal displacement on
the vertical axis.

From the Pareto front curve the difference between DBO and RDO
optimum designs is demonstrated in terms of the structural weight, the
variance of the response and the probability of violation of the con-
straints. The two ends of the Pareto front curve represent two extreme
designs. Point A corresponds to the deterministic-based optimum where
the weight of the structure is the dominant criterion. Point C is the op-
timum when the standard deviation of the response is considered as the
dominant criterion. The intermediate Pareto optimal solutions (such
as B) are compromise solutions between these two extreme optimum
designs under conflicting criteria.

7 Conclusions

In most cases optimum design of structures is based on deterministic
parameters and is focused on the satisfaction of the associated deter-
ministic constraints. So far many articles have been devoted to this
research field and efficient methods have been presented. When many
random factors affect the design, the manufacturing and the life of a
structure, the deterministic optimum cannot be considered as a realistic
optimum design, as a number of uncertain parameters have an important
influence on the structural behavior. In order to find a more realistic
optimum the designer has to take all necessary random parameters into
account.

The aim of the proposed RBDO procedure was threefold; to reach
an optimized design with controlled safety margins with regard to vari-
ous model uncertainties, while at the same time minimize the weight of
the structure and also reduce substantially the required computational
effort. The solution of realistic RBDO problems in structural mechan-
ics is an extremely computationally intensive task. In the test examples
considered, the conventional RBDO procedure was found over five times
more expensive than the corresponding deterministic optimization pro-
cedure. The goal of decreasing the computational cost by at least one
order of magnitude was achieved using: (i) NN predictions to perform
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both deterministic and probabilistic constraints check, or (ii) NN pre-
dictions to perform the structural analyses involved in MCS.

Evolution Strategies can be considered as an efficient tool for multi-
objective design optimization of structural problems and in particular
for the robust design sizing optimization problem. The proposed two
stages evolution strategies method for treating multi-objective optimiza-
tion problems proved to be a robust and reliable optimization tool. The
deterministic based formulation of this structural optimization problem
would converge to an optimum solution with the minimum weight, yet
the resultant structural response would vary widely, and consequently
the quality of the final design would be put in doubt. In order to ac-
count for the randomness of parameters that affect the response of the
structure, an RDO formulation of the optimization problem has to be
used as shown in this work.
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Strukturna optimizacija sa slučajnim odgovorom
sistema

UDK 517.962

U tehničkim problemima, slučajnost i neodredjenosti su uvek prisutni
te je neizbežno rasturanje strukturnih parametara od njihovih ideal-
nih vrednosti. U konstruisanju zasnovanom na pouzdanosti (RBDO) i
optimizaciji sa robustnim konstruisanjem (RDO) neodredjenosti igraju
prevashodnu ulogu u formulisanju problema strukturne optimizacije.
U nekom RBDO problemu se posmatraju dopunske nedeterminističke
funkcije veza, dok RDO formulacija vodi ka konstruisanju sa stanjem
robustnosti, tako da je njihovo ponašanje osetljivo bar na promenljivosti
nedeterminističkih promenljivih.

U prvom delu prikazanog proučavanja se ispituje jedna RBDO meto-
dologija pomognuta meta-modelom za velike strukturne sisteme.

U drugom delu se razmatra jedan RDO strukturni problem. Za-
datak optimizacije struktura sa robustnim konstruisanjem se formulǐse
kao vǐsekriterijumski problem optimizacije. Pri tome se promenljive kon-
struisanja, kao i druge promenljive (modul elastičnosti i napon tečenja),
smatraju slučajnim promenljivim sa srednjim vrednostima jednakim nji-
hovim nominalnim vrednostima.


