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Abstract

The present review focuses on the plane strain problem of
high strain rate expansion of a cylindrical cavity within an infi-
nite brittle material with random microstructure. The material
is represented by an ensemble of “continuum particles” forming
a two-dimensional geometrically and structurally disordered lat-
tice. The proposed model includes the aleatory variability and
epistemic uncertainty of the process. The dynamic particle sim-
ulations are performed at seven different cavity expansion rates.
The resulting damage evolution process is non-stationary, non-
local, and non-equilibrium. This problem, therefore, belongs to
the class of phenomena for which the traditional continuum mod-
els are not well suited, and detailed experimental data are either
difficult to get or not available at all. The present study explores
the potential role of the particle dynamics in addressing these
problems.
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1 Introduction

The importance of deformation processes evolving at high strain rates
is exceeded only by their complexity. The considered thermodynamic
processes are non-stationary, non-local, and far from equilibrium. Thus,
the conventional models of continuum mechanics based on the thermo-
dynamics with internal variables are ultimately limited, despite the fact
that they have yielded many useful findings and continue to be of great
use, especially in industry. Currently used continuum modeling is more
often than not based on the rate-type constitutive equations of tradi-
tional viscoplasticity. Computational codes for large deformation, high
strain rate, transient phenomena are in literature usually referred to
as hydrocodes (Meyers [18]). The unquestionable merit of these codes,
especially in replicating the test data, is somewhat tarnished by their
limited predictive capability. Moreover, despite of the truly enormous
progress in experimental methods in the last three decades the available
data leave a lot to be desired.

The objective of this study is to explore potential of particle dy-
namics (PD) simulations for providing a more detailed insight into the
phenomena of the high strain rate loading of brittle materials with ran-
dom microstructure. The PD method is well established as a useful
tool for extrapolation of the experimental results into the regions that
are beyond the present experimental capabilities. The ultimate goal of
using these simulations is to facilitate formulation of rational analyti-
cal models from consideration of the damage evolution processes on the
mesoscale. This analytical approach incorporates both variability and
uncertainty in a straightforward manner. Variability, also termed ran-
domness or aleatory variability, is the natural randomness in a process.
Uncertainty, also termed epistemic uncertainty, is the uncertainty in the
model; it is due to limited knowledge or data or both.

The mesoscale material texture is an example of the aleatory vari-
ability. The disorder may be topological (unequal coordination number),
geometrical (unequal length of bonds) or structural (unequal strength
and stiffness of bonds). The disorder is further enhanced by damage evo-
lution, which is governed (to an extent depending on the deformation
rate) by the local fluctuations of the energy barriers quenched within
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the material and the local fluctuations of stress.

2 Particle lattice and particle dynamics

The approximation of a material by a particle lattice is inspired by
the mesoscale morphology of a certain class of brittle materials, and
successes of molecular dynamics method (for overview of molecular dy-
namics, see, for example, Hoover [11] and Allen and Tildesley [1]). On
the other hand, the lattice used in molecular dynamics simulations is
inspired by the discrete morphology of an ensemble of atoms. Thus,
the PD can be considered an engineering offshoot of the molecular dy-
namics. Within this framework, continuum can be defined as a col-
lection of discrete elements, known as “continuum particles” (Wiener
1983) whose location and momenta are determined by solving a system
of ordinary differential equations of Hamiltonian mechanics. A number
of numerical techniques are available to accomplish this task, including
the most widely used the Verlet, Störmer, and Gear predictor-corrector
algorithms. The choice of the solution technique is largely a matter of
preference since all of these methods are stable as long as the time step
is carefully selected (Hoover [11], Allen and Tildesley [1]).

In the present study the brittle material is approximated by a two-
dimensional triangular lattice1 equivalent to a three-dimensional elastic
continuum under a plane strain condition (Monette and Anderson [19]).
A particle may represent a grain of ceramic, a concrete aggregate or a
granule of clastic rock. The average distance between two neighboring
particles (λ̄) is, therefore, the model resolution length (lc). Hence, the
effect of all defects smaller than the resolution length and the residual
stress along the grain boundary must be introduced through the strength
distribution. An important advantage of the lattice approximation of
a solid is that the statistical nature of the structural, geometrical, and
topological defects on the micro and meso scales is introduced in a nat-
ural manner.

The particles (of mass m) located in lattice nodes interact through

1A Delaunay graph dual to Voronoi polygons representing random grains (Kra-
jcinovic [12]). (For a detailed discussion of the Voronoi tessellation, including the
digitalization of micrographs, see Espinosa and Zavattieri [7].)
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the central-force links with their nearest neighbors. The properties of
these bonds are approximated by a linear force-elongation relation in
tension (Hookean potential for a perfectly brittle material), and a non-
linear force-deformation relation in compression (Figure 1).

The force-deformation relation in compression (λij < λ0ij) is:
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where λ0ij and λij are the initial and current distances separating in-
teracting particles i and j, kij corresponding link stiffness, while the
parameter B defines the slope (steepness) of the repulsive wall. The
relation (1) is inspired by the Born-Meyer potential, which was origi-
nally developed to model closed-shell repulsion in ionic crystals (Born
and Huang [5], Vitek [23]). This force-deformation relation captures
dominant mechanical features of the quasi-brittle materials such as brit-
tle behavior in tension, increase of shock wave velocity and decrease of
compressibility with increasing pressure.

Figure 1: Nonlinear elastic–brittle relation between the link force and
deformation. Interaction between particles that (a) are or were initially
the nearest neighbors, (b) were not initially the nearest neighbors
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The interaction of particles is limited to the nearest neighbors. The
nearest-neighbors approximation is based on the primacy of the short-
range order (Zallen [25]), and motivated by straightforward crack def-
inition and tremendous computational savings (of solving O(N) rather
than O(Np) problem, where N is the number of particles in the system,
and p > 2 the interaction range parameter).

The size of grains and strength of grain boundaries in a polycrys-
talline ceramics are stochastic parameters. The lattice morphology is
defined by the coordination number z and link length λ. The strength
of a grain boundary is affected by randomly distributed residual stresses
(Curtin and Scher [6]), twist and tilt angles, dislocations, second phase
particles, and other imperfections.

In the pristine state all lattices used in this study are topologically
ordered by selecting z = 6 for all bulk-particles. The lattice is geo-
metrically disordered since the equilibrium distances between particles
(initial link lengths ≡ λ0) are sampled from the normal distribution
within the range

[

αλ̄ 6 λ0 6 (2 − α) λ̄
]

, (Figure 2a). Model parameter
αl, (0 < αl 6 1), defines bandwidth of the geometrical disorder of mate-
rial (i.e., the distribution of grain sizes). The lattice is also structurally
disordered due to the random distribution of link strengths and stiff-
nesses. The link stiffnesses are uniformly distributed within the range
[

βk̄ 6 k 6 (2 − β) k̄
]

, (Figure 2b), where βl, (0 6 βl 6 1), is stiffness

distribution parameter, and k̄ = 8 E0

/

5
√

3 mean link stiffness related
to the modulus of elasticity of the pristine material, E0 (Monette and
Anderson [19]).

The link-rupture criterion is defined in terms of the critical link elon-
gation. That is, the link between particles iand j ruptures (as its force-
carrying capacity in tension is permanently lost) when the link elonga-
tion reaches the critical value εij = ∆λij / λ0ij = εcr = const. The
critical link elongation, εcr, is the model parameter related to the uni-
axial tensile strength of the material.

The selected model recognizes two different types of interaction be-
tween particles: chemical and mechanical. The chemical interaction is
both tensile and compressive, and is limited to the nearest neighbors.
The mechanical interaction is strictly compressive, but the number of
involved particles is not limited. It can be established between parti-
cles that were either initially not connected or re-established between
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particles that were previously separated by the link rupture. In the
former case the mechanical link is established when the initial distance
between particles shrinks below the average link length λ̄ (Figure 1b).
In the latter case the repulsive interaction is re-established when the
distance between particles reduces to λij6 λ0ij (Figure 1a).2 The for-
mation of the mechanical (repulsive) force between the particles that
were not connected by cohesive forces is essential to model the flow of
the comminuted phase.

Figure 2: Probability distribution of (a) link lengths and (b) link stiff-
nesses

The computer simulations of the cylindrical cavity expanding in the
lattice are conceptually very simple. The cavity is nucleated by removing
a single particle in the middle of the lattice. After the cavity formation
all particles that are located along the cavity perimeter are pushed away
in radial direction at a controlled expansion rate vc

r = ȧ (where a is the
cavity radius, dot denotes differentiation with respect to time, while
subscript r and superscript c indicate the radial direction and the cavity
perimeter, respectively). In this study the cavity expansion rate, vc

r,
was held constant during the simulation. The simulation is terminated
when the longitudinal elastic wave (P wave) reaches the plate boundary
to eliminate the boundary effects (i.e., to simulate the cavity expansion
within an infinite medium). The lattice is divided into five annular re-
gions of equal width over which a particular field parameter or property
is averaged. As the cavity expands the absolute widths of the annular
regions necessarily shrink, but the relative widths are kept unchanged.

2Preventing the transmission of tensile force by mechanical contact (Figure 1b)
is tantamount to assuming that a ruptured bond cannot heal.
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The parameters recorded through the entire process within each an-
nular zone are: the position and velocity of each particle, number of
ruptured links, and force in each link. Calculation of the deformation
and kinetic energy in each annular region, knowing the position and
velocity of each particle, is straightforward. The density of isotropic
damage is defined by the fraction of broken bonds D = n/N , where n
and N are the number of broken bonds and the total number of bonds,
respectively. The statistical mechanics expressions for the components
of the stress and effective stiffness tensors are adopted from the conven-
tional molecular dynamics (Weiner 1983, Vitek 1996).

3 Results

The simulations are performed for seven different cavity-expansion veloc-
ities vc

r = θ ·CL, where θ = 0.135, 0.08, 0.04, 0.022, 0.0135, 0.007, 0.00135,
while CL is the velocity of longitudinal elastic wave propagation. The
lattice is formed by approximately 12000 particles of the following ge-
ometric and structural parameters: the average (mean) link stiffness
k̄ = 50, average equilibrium distance between particles λ̄ = 1, geo-
metrical disorder parameter αl = 0.001, stiffness distribution parameter
βl = 0.6, repulsive wall parameter B = 5, and critical strain of the link
εcr = 0.1% .3 (For discussion of the non-dimensional parameters see
Allen and Tildesley [1].)

The radial tractions at the cavity perimeter, components of effective
stiffness and stress tensors, damage density, kinetic and deformation
energy, and the energy released by link rupture are computed in each
simulation step. The evolution curves are available in Mastilovic and
Krajcinovic [17].

The experimental observations (Shockey et al. [21], Strassburger

3It seems appropriate to emphasize that the mean link stiffness, k̄ = 8E0

/

5
√

3,
and critical strain of the link, εcr, are directly related to the measurable macroscopic
properties of the material, namely modulus of elasticity and the failure strain, respec-
tively. The repulsive wall parameter B could be inferred from the ballistic equation
of state. Its identification, therefore, requires a combination of the experimental and
simulation data. The disorder parameters αl and βl have to be, at present, arbitrar-
ily selected, due to their epistemic uncertainty (i.e., almost total absence of detailed
micrographic data).
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and Senf [22]) and PD simulations presented in this review (Figure 3)
indicate that the damage evolution pattern is strongly dependent on
the cavity expansion velocity (rate). When the cavity expansion rate
(and the corresponding externally imparted energy) is modest, the mi-
crocracks tend to localize into few macrocracks propagating in a radial
direction away from the cavity (Figures 3c and 3d).4 At cavity expan-
sion rates in excess of a critical magnitude, vc

rT , the material near the
hole is shattered by the overwhelming imparted energy (Figure 3a).

An approximate expression for the damage-mode transition velocity,
derived by Mastilovic and Krajcinovic [15] based on the PD simulation
results, is:

vc
rT =

1 + υ0

1 − υ0

·
√

3 (1 − 2 υ0)

(1 + υ0) · (3 − 2υ0)
· σf · CL (2)

where υ0 and σf are the Poisson’s ratio and the uniaxial tensile strength
of the material in the pristine (damage-less) state, respectively.

It is important to recognize diminishing of the importance of the local
fluctuations of the energy barriers (quenched within the material) and
the local fluctuations of stress on the damage evolution with increase of
the energy carried by the stress waves (i.e., with increase of the loading
rate). To put it plainly, the high-intensity stress waves “have no use” for
the subtlety of the material morphology. This discussion echoes Ander-
son’s [2] conclusions that: (1) localization is impossible in the absence
of disorder and (2) the localization range depends on the frequency and
energy of electron waves.

The scope of the following discussion is limited largely to the high-
velocity expansion (Figure 3a). According to the simulation data, avail-
able in Mastilovic and Krajcinovic [17], the damage pattern in Figure 3a
is distinguished by three distinct regions. Material within the trans-
formed (Mescall) region adjacent to the expanding cavity is commin-

4The formation of patterns and shapes associated with non-equilibrium growth
and relation between the macroscopic driving force and microscopic dynamics has
been and still is a fascinating field of research. The damage patterns obtained from
the PD simulations resemble morphologies of the Helle-Shaw cells studied extensively
in the last two decades (for example, see Ben-Jacob and Garik [4] or, for crack-growth
application, Hermann and Kertesz [9]).
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uted (crushed, pulverized) (D ≈ 1,Ḋ ≈ 0). Material within the process
region is damaged (0 < D < 1,Ḋ > 0) but still able to transmit tensile
stresses. The annular elastic region, furthest from the cavity, is in the
pristine state (D = 0,Ḋ = 0).

The estimation of the radial traction along the cavity perimeter σc
r is

one of the most interesting and important aspects of the simulation. The
dependence of the radial traction on the strain rate reflects the quan-
titative difference between damage evolution modes shown in Figure 3.
At the high rate of the cavity expansion (Figure 3a), the evolution of
the radial tractions σc

r is characterized by a sharp peak, followed by a
steep relaxation, and stagnation (Figure 4). The peak magnitudes of the
radial traction (the full circles in Figure 4) are in very good agreement
with the analytical solution for the radial stress at the elastic wave front
at the perimeter of an expanding cavity (Kromm [14]).

Fortuitously or not, the data in Figure 4 indicate that the average
stagnation values of the radial tractions at the cavity perimeter vary
within a narrow band of (0.32 – 0.36) of the corresponding peak values
for all three high-expansion-rate cases. Based on this observation, the
stagnation magnitude5 of the radial traction at the cavity perimeter
characterizing long-time response can be obtained in the following form:

〈σc
r〉 =

1 − υ0

1 + υ0

· vc
r

CL

· K0 (3)

where K0 is the bulk modulus of the pristine material. The traction
values obtained by using Eq. (3) are shown in Figure 4 by hollow squares.

The dependence of the long-time radial traction along the cavity
perimeter on the cavity-expansion velocity, illustrated in Figure 5, is
essential for analytical modeling of the material response to this type
of loading. The data points marked by hollow squares represent the
simulation estimates for seven different cavity-expansion velocities (no-
tice that only three highest-velocity cases are presented in Figure 4, the
remaining four curves are available in Mastilovic and Krajcinovic [17]).
The full circle denotes an analytical solution for static expansion of a
cylindrical cavity in an infinite brittle material (Forrestal and Longcope

5Defined as the time average: 〈σc
r
〉 = lim

t→∞

1

t

t0+t
∫

t0

σc
r
(τ) dτ (Krajcinovic [12])
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(a) (b)

(c) (d)

Figure 3: Dependence of the damage evolution pattern on the velocity
of cavity expansion: (a) vc

r = 0.135 CL, (b) vc
r = 0.0135CL, (c) vc

r =
0.00135CL, and (d) vc

r = 0.000135 CL. The cracks are perpendicular to
the ruptured links (indicated by short lines)

[8]). According to Figure 5, the simulation data for low-velocity cavity
expansion asymptotically approaches the static solution. The solid and
dashed lines represent the data approximation by a bilinear curve and
a second order polynomial, respectively. Both curves are obtained by
using the static solution and two data points based on Eq. (3).

Previously discussed transition from the localized to distributed dam-
age occurs approximately within the shaded area in Figure 5. (The in-
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Figure 4: Radial traction along the perimeter of the expanding cavity
plotted vs. change of cavity radius for the three following velocities
of cavity expansion: vc

r = 0.040 CL, vc
r = 0.080 CL, and vc

r = 0.135 CL.
(Note: lc = λ̄ is the resolution length, and ∆ (t) = a (t)−a0 is the change
of cavity radius during expansion, such that vc

r = ∆̇ = ȧ = const.; thus,
∆/lc ∝ t)

terception of the two straight lines defines the damage-mode transition
velocity given by Eq. (2).) According to the PD simulation results, the
transition region is characterized by balance between the kinetic and
deformation energy (Ek ≈ U ). Notice that Nakamura et al. (as cited by
Anderson [3]) used the equality of the kinetic energy and deformation
energy to define a transition time between a short-time response (inertial
effects are significant) and a long-time response (essentially quasi-static)
of a dynamically loaded specimen.

Finally, the simulation observations and data are used in Mastilovic
and Krajcinovic [17] to derive an analytical model for the high-velocity
expansion of a cylindrical cavity for the axially symmetric, elastic-damaged-
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Figure 5: Radial traction along the cavity perimeter plotted vs. velocity
of the cavity expansion

comminuted damage evolution pattern (Figure 3a).

4 Conclusion

This study provides insight into the process of high-velocity expansion
in the brittle material and the transition from the statistically uniform
damage evolution mode to the localized damage evolution mode on an
example that is of significance in many fields of engineering. The ob-
tained PD simulation results demonstrate importance of material dis-
order and provide an indication that PD simulations may be useful in
the research of critical state. The resulting damage evolution process is
non-stationary, non-local, and non-equilibrium. These problems belong
to the class of phenomena for which the traditional continuum models
are of limited value, and detailed experimental data are either difficult
to get or not available at all. The present review suggests that PD sim-
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ulations have a potential to fill these gaps to a certain extent. There is
no doubt that, to paraphrase Hoover [10], the main contributions of the
particle simulations remain to be understanding, semiquantitative esti-
mates, and the capability to interpolate and extrapolate experimental
data into regions that are hard to reach in the laboratory. Nonetheless,
possibility of an extension of this traditional role of the molecular and
particle dynamics to model elastic, plastic, and brittle behavior in a solid
has been recognized in the last decade (as an example, see Scagnetti et
al. [20]). A prominent aspect of the PD method is the ability to in-
troduce the material texture (with all of its statistical subtlety) in a
natural manner. All material parameters of the particle lattice can be
unambiguously identified and determined from the experimental data.
The virtually unlimited control over the “computational experiment” of-
fers insights in qualitative and quantitative aspects of damage evolution
in the considered class of materials subjected to dynamic loading, and
potential to infer data necessary for rational analytical modeling. The
present study is a successful realization of that potential.

References

[1] M.P. Allen and D.J. Tildesley (1987) Computer Simulation of Liq-
uids, Oxford University Press Inc., New York

[2] P.W. Anderson (1958) Absence of Diffusion in Certain Random Lat-
tices, Phys. Rev., 109, 1492-1505

[3] T.L. Anderson (1991) Fracture Mechanics, CRC Press, Boston

[4] E. Ben-Jacob and P. Garik (1990) The formation of patterns in non-
equilibrium growth, Nature, 343, 523

[5] M. Born and K. Huang (1956) Dynamical Theory of Crystal Lattices,
Clarendon Press, Oxford

[6] W.A. Curtin and H. Scher (1990) Brittle fracture in disordered ma-
terials: a spring network model, J. Mater. Res., 5, 535-553



358 S.Mastilović, D.Krajčinović
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Širenje cilindričnog otvora u krtom materijalu:
evolucija oštecenja

UDK 539.42

U radu se razmatra problem širenja cilindričnog otvora u beskonačnom
krtom materijalu sa stohastičkom mikrostrukturom, pri velikim brzi-
nama deformisanja, i u uslovima ravanskog stanja deformacija. Ma-
terijal je predstavljen skupinom “čestica kontinuuma” koje sacinjavaju
dvodimenzionalnu, geometrijski i strukturno stohastičku (disordered)
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mrežu, i koje su u medjusobnoj interakciji preko nelinearnih centralnih
sila. Izloženi model uzima u obzir neizvesnu (aleatornu) promenljivost
i epictemičku neodredjenost razmatranog procesa. Simulacije širenja
otvora u opisanoj mrezi su izvršene za sedam razlicitih brzina deformisanja,
korǐsćenjem metode dinamike čestica. U svakom vremenskom koraku
beleže se: radijalni napon na obodu otvora, komponente tenzora napona
i efektivne čvrstoce, gustina izotropnog oštećenja, kinetička i poten-
cijalna energija, i energija oslobodjena kidanjem medjucestičnih veza.
Rezultujuci process evolucije oštecenja je nestacionaran, nelokalan, i
neravnotezan. Dotična fizicka pojava, dakle, pripada kategoriji za koju
tradicionalni modeli mehanike kontinuuma nisu najpodesniji, a detaljnih
eksperimentalnih podataka je ili malo ili ih uopšte nema. Ovaj rad je
posvećen istraživanju mogućnosti mehanike čestica u rešavanju ovakvih
problema.


