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Abstract

Experience has shown that aircraft structures are generally
affected by structural nonlinearities. The focus in this paper is
concentrated on backlash and friction described in hysteresis loop
of the classical aircraft command systems and their influence on
flutter of aircraft. Based on AGARD No. 665 in paper is done
nonlinear flutter velocity analysis in function of backlash and
friction in the classical command system of aircraft. Unsteady
aerodynamic forces are calculated based on well known Doublet-
Lattice Method (DLM). Structural input data are taken from
AGARD No. 665. Flutter eigenvalues are obtained by modified
k-method. The flutter model of nonlinear aircraft structure is de-
veloped on base of harmonic linearization. The aim of paper is to
achieve useful and relatively reliable tool for critical observations
on different recommendations given in the various airworthiness
regulations for nonlinear characteristics of hysteresis loops in the
classical command systems of aircrafts.
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1 Introduction

In a broad sense, flutter is self-excited oscillation caused by structural
and aerodynamic forces coupling. The usual linear theory assumes both
the structural and the aerodynamic properties to be independent with
respect to (w.r.t.) the amplitudes of oscillation. Solution of the linear
flutter problem has long since become a routine matter. However, the
results of aircraft structure ground vibration tests and in flight flutter
test are pointing that certain structural nonlinearities must always ex-
ist. Usually, linear theory gives relatively unreliable prediction of flutter
speeds when certain amount of structural nonlinearities is incorporated.
These structural nonlinearities are caused by: backlash and friction in
command systems of classical aircrafts, spring tab nonlinearity, servo-
actuator nonlinear characteristics in the command systems of the mod-
ern aircrafts, fixation of the external stores by varying tightening torques
on military aircrafts, etc.

A lot of investigators have been dealing with these problems. The
nonlinear flutter of command systems of classical aircraft were investi-
gated in [1], [2], and [3]. Nonlinear tab flutter problems were analyzed
in [10] and [11]. Influences of servo-actuator nonlinear characteristics
due to preload in the command systems of the modern aircrafts and
fixation of the external stores by varying tightening torques on mili-
tary aircraft were investigated in [5] and [12]. Flutter analysis of missile
control surfaces containing structural nonlinearities was done in [13].

The purpose of this paper is to represent the author’s theoretical
investigations and software development in connection to the nonlinear
flutter of command systems of classical aircraft with some types of struc-
tural nonlinearities, using own previously developed tools for analysis of
linear flutter problems. Non-stationary aerodynamic forces are calcu-
lated using the Doublet-Lattice Method (software UNAD) and flutter
speeds are obtained using the k-method (software FLUTTER).

The goal of the considerations is to demonstrate the developed method
of approximate inclusion of one mode containing nonlinear structural
characteristics into the aircraft flutter calculation. The proposed theo-
retical and numerical development is based on the researches of a larger
number of authors presented in [1], [2], [3], [4], and [5]. The enclosed
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procedure is automated and software NELZAZ has been developed.
In the various airworthiness regulations empirically obtained recom-

mendations are given for allowed values of backlash and friction force
in classical command systems respective to flutter clearance. As direct
application of in paper outlined results any nonlinear command system
(with one nonlinear mode) flutter problem can be analyzed, and critical
observations to the recommendations given in the various airworthiness
regulations can be achieved.

2 Problem statement

Let, for sake of easier deriving interpretation, the advent of the lift-
ing surface flutter be analyzed. Due to the simplicity of consideration,
let only three modes be enclosed, and one of this modes be command
system (surface) rotation mode. Based on the assumption about the
structural and aerodynamic model linearity w.r.t. oscillations ampli-
tudes, the problem defines the following equations system of the flutter
eigenvalues:

3∑
s=1

{δr,sµr[ω
2 − ω2

r(1 + igr + ig)] + A∗
r,s}qr = 0; r = 1, (1), 3. (1)

In upper expression denote: i the imaginary unit, δr,s Kronecker’s
symbol, ω the current angular frequency, g the current damping decre-
ment, ωr the angular eigen frequency and g r the structural damping
coefficient of the r-the mode. The generalized mass of r-the mode (µr)
and the generalized aerodynamic force A∗

r,s are defined by expressions:

µr =

∫∫

S

ρm(h∗r)
2dS; A∗

r,s =
ρU2

0

2

∫∫

S

∆Cp∗sh
∗
rdS.

In the preceding expressions the following notations are used: S lift-
ing surface area, ρ air density, U0 velocity of the undisturbed air stream,
ρm mass density of the lifting surface per unit S, h∗r displacement of the
r-the mode shape, h∗s displacement of the s-the mode shape and ∆Cp∗s
the aerodynamic loading of the s-the mode. In case of considering the
command surface rotation mode, where the backlash and friction effects
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are introduced, the problem becomes nonlinear. This implies modifica-
tion of Equations (1).

Backlash and friction in the command system considered are influ-
encing the rotation mode generalized vibration coefficients of the com-
mand surface. If only this mode would be considered, i.e., a material
system with one degree of freedom (DOF), its nonlinear behavior can
be described by means of the following equation in time domain:

Ihδ̈(t) + M [δ(t), δ̇(t)] = Maero(t). (2)

In Equation (2) δ is the rotation angle and Ih is the command surface
moment of inertia w.r.t. its hinge axis. The magnitude Maero(t) is a
nonlinear function containing the stiffness and damping characteristics
of the nonlinear mode. The forcing, i.e., exiting force is the aerodynamic
moment Maero(t).

If the problem of eigenvalues is considered only, Equation (2) acquires
the form:

Ihδ̈(t) + M [δ(t), δ̇(t)] = 0. (3)

By generalization of Equation (3) it is passed to the problem, considered
in detail in [6] and [7]:

Q(p)δ + R(p)M(δ, pδ) = 0; p =
d(...)

dt
, (4)

where Q(p) and R(p) are polynomials and M[δ(t), δ̇(t)] is a nonlinear
function.

If the solution of Equation (3) is a periodical function, the concept
of harmonic linearization based on [7] can be used. Applied to the
nonlinear Equation (2), if the exiting moment Maero(t) is harmonic, i.e.,

Maero(t) = M̄aerosin(ωt + ε).

The solution δ(t) of this equation is a linear combination of the basic
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and higher harmonics. As the participation of the higher harmonics is
small, it can be assumed that:

δ(t) = δ̄sin(ωt). (5)

By applying the concept of harmonics linearization, the nonlinear func-
tion M[δ(t), δ̇(t)] is approximated by the first Fourier series harmonic.
Higher harmonics of this nonlinear function are neglected. The constant,
i.e., zero member in the Fourier expansion, according to [7], has to be
equal zero, in order that the solution of Equation (4) has the form de-
fined by Equation (5). In this paper has been proven that in this case the
nonlinear function M[δ(t), δ̇(t)] should be centrally symmetrical w.r.t.
the origin (δ= 0). Based on afore stated development follows:

M(δ, δ̇) = b1sin(ωt) + b2cos(ωt). (6)

In the preceding expression:

b1 =
1

π

2π∫

0

M(δ, δ̇)sin(ωt)d(ωt); b2 =
1

π

2π∫

0

M(δ, δ̇)cos(ωt)d(ωt). (7)

Let
M(δ, δ̇) = Kδδ(t) + BIδ(t). (8)

By substituting Equation (5) into Equation (8) follows:

M(δ, δ̇) = Kδ δ̄sin(ωt) + BIωδ̄cos(ωt). (9)

By comparing Equation (6) with Equation (9) follows:

b1 = Kδ δ̄; b2 = BIωδ̄. (10)

From theory of oscillations, it is known that b1 is defining the char-
acteristic of torsion stiffness, and b2 the damping characteristic of the
considered amplitude of nonlinear system δ̄.
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Aimed at natural phenomenological explanation of the afore stated,
the following analysis can be carried out. Let the linear angular modal
oscillations of the body be considered (material points system), moment
of inertia Ih. Let this body be connected to a torsion spring of stiffness
Kδ. Using Equation (3) and Equation (8), the considered modal oscil-
lations described by Equation (2) can be transformed to the following
differential equation:

Ihδ̈(t) + BI δ̇(t) + Kδδ(t) = 0. (11)

If the system is oscillating harmonically it can be assumed that the solu-
tion of Equation (11) is defined by Equation (5). Substituting Equation
(5) into Equation (11) yields:

[−ω2Ihsin(ωt) + BIωcos(ωt) + Kδsin(ωt)]δ̄ = 0. (12)

Same oscillation described via generalized vibration coefficients is de-
fined by the following equation:

µδ̈(t) + Bµδ̇(t) + γδ(t) = 0,

[−ω2µsin(ωt) + Bµωcos(ωt) + γsin(ωt)]δ̄ = 0. (13)

Based on the definition of the generalized vibration coefficients from [8],
the following relations are known:

µ = Ihδ̄
2; Bµ = gωµ; γ = ω2µ. (14)

By comparing Equation (12) and Equation (13), taking into account the
relations in Equation (14) it follows:

Bµ = BI δ̄
2; γ = Kδ δ̄

2. (15)

By transforming Equation (14) and Equation (15) it is obtained:
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BI =
Bµ

δ̄2
=

gωµ

δ̄2
= gωIh; Kδ =

ω2µ

δ̄2
= ω2Ih. (16)

Based on the upper expressions, Equation (10) acquires the following
from:

b1 = Kδ δ̄ = ω2Ihδ̄; b2 = BIωδ̄ = gω2Ihδ̄.

From upper relations follows:

ω=

√
b1

Ihδ̄
; g =

b2

b1

. (17)

Let for lifting surface considered the rotation of its command surface
δ be the third mode. If for this mode its nonlinear hysteresis loop M(δ, δ̇)
is known, based on Equation (7) and Equation (8) the corresponding
coefficients b1 and b2 can be calculated. Substituting into Equation
(17) it follows:

ω2
3 =

b1

Ihδ̄
; g3 =

b2

b1

.

Based on the derived nonlinear problem, Equation (1) reduces by har-
monic linearization, to an equivalent linear system:

3∑
s=1

{δr,sµr[ω
2 − ω2

r(1 + igr + ig)] + A∗
r,s}qr = 0; r = 1, 2;

(18)

A∗
3,1q1 + A∗

3,2q2 + {Ihδ̄
2[ω2 − b1

Ihδ̄
(1 + i

b2

b1

+ ig)] + A∗
3,3}q3 = 0.

The command surface performs nonlinear oscillations with amplitudeδ̄.
The “ linear” system Equation (18) w.r.t amplitude δ̄, via the param-
eters δ̄, b1 and b2 is containing implicit the nonlinear function M(δ, δ̇).
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By means of this procedure the influences of backlash and function of
the command surface are practically included into the calculation of the
critical flutter speed of the considered lifting surface.

3 Modification of problem statement

By means of the previously developed procedure, the mathematical
model was defined, by means of which the considered problem is be-
ing solved. The question posed is how this model can be adapted to the
usual calculations of the flutter eigenvalues. The well-known package
NASTRAN was available, or the software UNAD [9], developed by the
author.

The accent of the analysis in this paper lies on the nonlinear struc-
tural effects. Hence generality is not lost, if it is assumed that the com-
mand surface is oscillating with small amplitude δ̄∗. This implies the
application of the linear non-stationary aerodynamics for calculation lift-
ing surface aerodynamic loading. Using previous mentioned conclusion,
the need for setting the calculations of the lifting surface aerodynamic
loading for various oscillation amplitudes δ̄ of the command surface is
surpassed. This is realized by direct scaling of the elements of the gener-
alized aerodynamic forces matrix, which are including the rotation mode
of the command surface, proportionally to the ratio of the current and
reference amplitudes of the command surface oscillations.

Previous assumption is also confirmed by the fact that the models of
linear aerodynamics are reliable for the calculations of the arrangement
of aerodynamic loads for small deflections of the command surfaces (δ̄∗ <
±6o). Fact is that the flutter is an event linked with the maximal aircraft
operation speeds. At these flight conditions, for drag minimization, the
command surfaces of aircraft are deflected up to a few degrees. This
implies the phenomenological correctness of the assumption introduced.

In order to include the procedure developed in previous Chapter 2.
into the concept given in [9], it is necessary to perform corresponding
modification.

First, the inertial normalization of the mode shapes should be per-
formed. Let µr be the generalized mass of the r-the mode, with the
mode shape h∗r. Then, after inertial normalization, it follows:
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µr = 1[kgm2] =

∫∫

S

ρm (h∗r/
√

µr)
2 dS =

∫∫

S

ρmh2
rdS; hr = h∗r/

√
µr.

That means, with known mode shapes and their generalized masses,
calculation of the generalized aerodynamic forces matrices and the flut-
ter eigenvalues in [9] is realized via the set of inertial normalized mode
shapes of the unit generalized masses.

For the inertial normalized mode shapes µr = µs= 1 [kg m2], the
corresponding elements of the generalized aerodynamic forces matrix
can be expressed in the following way:

Ar,s =
A∗

r,s√
µrµs

=

∫∫

S

h∗r√
µr

∆Cp∗s√
µs

dS =

∫∫

S

hr∆CpsdS; ∆Cps =
∆Cp∗s√

µs

.

In the preceding relations, ∆Cps is the distribution function of the non-
stationary aircraft aerodynamic load for the inertial normalized bound-
ary conditions of the s-the mode.

Equations (18) for the three eigenforms of lifting surface oscillations,
where the third mode is the rotation of its command surface, before
inertial normalization have the form:

{µ1[ω
2 − ω2

1(1 + ig1 + ig)] + A∗
1,1}q1 + A∗

1,2q2 + A∗
1,δ̄qδ̄ = 0,

A∗
2,1q1 + {µ2[ω

2 − ω2
2(1 + ig2 + ig)] + A∗

2,2}q2 + A∗
2,δ̄qδ̄ = 0, (19)

A∗̄
δ,1q1 + A∗̄

δ,2q2 + {Ih(δ̄
∗)2[ω2 − ω2

δ̄ (1 + i
b2

b1

+ ig)] + A∗̄
δ,δ̄}qδ̄ = 0.

In Equation system (19) δ̄∗ is the non-normalized, i.e., the real modal
oscillation amplitude of the command surface. In the third equation of
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system Equation (19), the nonlinear angular frequency of the command
surface rotation mode is defined by expression (17) ω2

δ̄
=b1/(Ihδ̄

∗).
Let the corresponding inertial normalizations for all three modes have

been performed, with the generalized masses
√

µ1,
√

µ2 and
√

Ih(δ̄∗)2. If
δ̄∗ = δ̄∗ref. for an arbitrary material point on the wing surface, it follows:

h1 =
h∗1√
µ1

; h2 =
h2

2√
µ2

; hδ̄ref.
= δ̄ref.Rh =

δ̄∗ref.Rh√
µδ̄∗ref

,

where Rh is the distance of the material point measured from the hinge
axis of the command surface. The generalized mass of the rotation mode,
based on the third equality of the upper relation, is:

µδ̄∗ref.
=Ih(δ̄

∗
ref.)

2; µδ̄ref.
= 1[kgm2].

After inertial normalization the Equation system (19), acquires the
form:

[ω2 − ω2
1(1 + ig1 + ig) + A1,1]q1 + A1,2q2 + A1,δ̄ref.

qδ̄ = 0,

A2,1q1 + [ω2 − ω2
2(1 + ig2 + ig) + A2,2]q2 + A2,δ̄ref.

qδ̄ = 0, (20)

Aδ̄ref.,1q1 +Aδ̄ref.,2q2 + {ω2− (b1)ref.

Ihδ̄∗ref.

[1+ i
(b2)ref.

(b1)ref

+ ig]+Aδ̄ref ,δ̄ref
}qδ̄ = 0.

In Equation system (20), for r=1,2 and s=1,2, it follows:

Ar,s =

∫∫

S

h∗r√
µr

∆Cp∗s√
µs

dS =

∫∫

S

hr∆CpsdS;

Ar,δ̄ref
=

∫∫

s

h∗r√
µs

∆Cp∗̄
δref.√

Ih(δ̄∗ref.)
2
dS =

∫∫

S

hr∆Cpδ̄ref.
dS;
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Aδ̄ref ,s =

∫∫

S

h∗̄
δref.√

Ih(δ̄∗ref.)
2

∆Cp∗s√
µs

dS =

∫∫

S

hδ̄ref.
∆CpsdS; (21)

Aδ̄ref.,δ̄ref.
=

∫∫

S

h∗̄
δref.√

Ih(δ̄∗ref.)
2

∆Cp∗̄
δref.√

Ih(δ̄∗ref.)
2
dS =

∫∫

S

hδ̄ref.
∆Cpδ̄ref.

dS.

The Equation system (20), obtained by inertial normalization of the
Equation system (19), is corresponding directly to the form of the initial
expressions in the procedure for calculation of the flutter eigenvalues in
[9]. For arbitrarily adopted real reference amplitude δ̄∗ = δ̄∗ref., which

by means of the corresponding normalization reduces to δ̄ref.= 1/
√

Ih,
the procedure from [9] can be applied and directly calculated the critical
flutter speeds of the lifting surface considered. Based on the presented, it
should be kept in mind, that due to the inertial normalization performed
µδ̄ref.

= 1 [kg m2]. For some other oscillations amplitude the rotation of

the command surface δ̄∗ = δ̄∗nonlin. the Equation system (19) is of the
form:

{µ1[ω
2 − ω2

1(1 + ig1 + ig)] + A∗
1,1}q1 + A∗

1,2q2 + A∗
1,δ̄nonlin.

qδ̄ = 0,

A∗
2,1q1 + {µ2[ω

2 − ω2
2(1 + ig2 + ig)] + A∗

2,2}q2 + A∗
2,δ̄nonlin.

qδ̄ = 0, (22)

A∗̄
δnonlin.,1

q1 + A∗̄
δnonlin.,2

q2+

{Ih(δ̄
∗
nonlin.)

2[ω2− (b1)nonlin.

Ihδ̄∗nonlin.

(1+i
(b2)nonlin.

(b1)nonlin.

+ig)]+A∗̄
δnonlin.,δ̄nonlin.

}qδ̄ = 0.

In Equations (22) δ̄∗nonlin. is nonlinear and non-normalized, i.e., it is
the real modal oscillations amplitude of the command surface rotation.
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The generalized mass of the command surface rotation mode in this case
is:

µδ̄∗nonlin.
=Ih(δ̄

∗
nonlin.)

2.

For the dynamic model of the lifting surface considered, by means of
Equations (21) the elements of the generalized aerodynamic forces ma-
trix for the referent amplitude of the command surface rotation δ̄ = δ̄ref.

are calculated. For this calculation the procedure from [9] can be applied
directly, i.e., the corresponding method of non-stationary linear aerody-
namics. Let the rotation mode of the command surface with the new
real modal amplitude δ̄∗ = δ̄∗nonlin. was normalized by the correspond-
ing new generalized mass, i.e. by the factor√µδ̄∗nonlin.

. Transferring the
distribution of the non-stationary aerodynamic loads of the command
surface rotation mode from the old δ̄ref. to the new amplitudeδ̄nonlin.,
the following relations can be obtained:

∆Cp∗̄δnonlin.
=

∂Cp∗̄
δ

∂δ̄∗
δ̄∗nonlin. ⇔

∆Cp∗̄
δnonlin.√µδ̄∗nonlin.

=
∂Cp∗̄

δ

∂δ̄∗
1√
Ih

,

∆Cp∗̄δref.
=

∂Cp∗̄
δ

∂δ̄∗
δ̄∗ref. ⇔

∆Cp∗̄
δref.√

µδ̄∗ref

=
∂Cp∗̄

δ

∂δ̄∗
1√
Ih

.

From upper relations it follows:

∆Cp∗̄
δnonlin.√µδ̄∗nonlin.

=
∆Cp∗̄

δref.√
µδ̄∗ref

⇔ ∆Cpδ̄nonlin.
=∆Cpδ̄ref.

. (23)

The first two equations of Equation system (22), by using Equations
(21) and Equations (23), can be modified into the following form:

[ω2 − ω2
1(1 + ig1 + ig) + A1,1]q1 + A1,2q2 + A1,δ̄ref.

qδ̄ = 0,

(24)
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A2,1q1 + [ω2 − ω2
2(1 + ig2 + ig) + A2,2]q2 + A2,δ̄ref.

qδ̄ = 0.

By inertial normalization of the command surface rotation mode with√µδ̄∗nonlin.
, i.e.:

hδ̄nonlin.
=

hδ̄∗nonlin.√µδ̄∗nonlin.

=
Rh√
Ih

=
hδ̄∗ref.√
µδ̄∗ref

= hδ̄ref.
.

It is obtained that the modal surface of this mode of normalized ampli-
tude δ̄nonlin. is being transformed in the same way as in Equation (23).
Due to that, the third equation of Equation system (22) can be modified
in the following manner:

Aδ̄ref.,1q1 + Aδ̄ref.,2q2 + {ω2−ω2
nonlin.[1 + ignonlin. + ig] + Aδ̄ref ,δ̄ref

}qδ̄ = 0,
(25)

where

ω2
nonlin.=

(b1)nonlin.

Ihδ̄∗nonlin.

; gnonlin. =
(b2)nonlin.

(b1)nonlin.

. (26)

Based on Equation (24), Equation (25) and Equation (26), the Equa-
tion system (22) reduces to the system:

[ω2 − ω2
1(1 + ig1 + ig) + A1,1]q1 + A1,2q2 + A1,δ̄ref.

qδ̄ = 0,

A2,1q1 + [ω2 − ω2
2(1 + ig2 + ig) + A2,2]q2 + A2,δ̄ref.

qδ̄ = 0, (27)

Aδ̄ref.,1q1 + Aδ̄ref.,2q2 + {ω2−ω2
nonlin.[1 + ignonlin. + ig] + Aδ̄ref ,δ̄ref

}qδ̄ = 0.
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By means of the developed procedure, it is proven that the theoreti-
cal approach, defined by Equation system (18), can be modified into the
equivalent Equation system (27). It is shown that the non-stationary
aerodynamic forces can be calculated for one amplitude of the command
surface rotation. Then, by simple scaling, using inertial normalization,
new values of these forces for some other oscillations amplitude can be
obtained. By means of this the tedious repeating of the lifting surface
generalized aerodynamic forces matrices calculations for various oscilla-
tions amplitudes of its command surface, has been avoided.

The enclosed deriving was given for the lifting surface with three
oscillation modes, for the sake of interpretation simplicity. As it can be
seen from the deriving, there are no limitations whatsoever that the same
procedure be generalized and applied to the aircraft dynamic model,
with the real existing modes. The choice of the mode containing the
structural nonlinearities is also arbitrary. Limitation in the analysis is
that only one mode with nonlinear characteristics can be considered.

4 Fourier expansion of centrally symmet-

rical hysteresis loop M [δ(t),δ̇(t)]

4.1 Zero member of Fourier expansion of M [δ(t), δ̇(t)]

The nonlinear function M[δ,δ̇] implicitly contains the nonlinear struc-
tural characteristics of the mode analyzed. Depending on the develop-
ment phase and availability of the aircraft, this nonlinear function can
be known from different sources: from measurement on the real object,
from tests on the test bench, or it can be assumed and parametrically
varied based on previous experience.

Experimental determining of the nonlinear function M[δ,δ̇] can be re-
alized by means of quasi-stationary measurements of the hysteresis loop
of one full cycle of this structural event. For instance, let the command
loop be considered, together with the corresponding command surface.
The quasi-stationary measurement is realized by means of very slow
excitation of this command surface rotation mode. Then the inertial
moment in Equation (2) becomes negligibly small, and it follows:
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M [δ(t), δ̇(t)] = Maero(t).

If the excitation moment Maero(t) is recorded as function of the quasi-
stationary harmonic oscillation δ(t) in domain of its full period, the
function M[δ,δ̇], i.e., the structural hysteresis loop of the object consid-
ered, is obtained on the plotter as in Figure 1(a).

Figure 1: Hysteresis loops

Based on [7], in order to be able to apply the procedure displayed
in this paper, the nonlinear function M[δ,δ̇] expanded into a Fourier
series should have a constant (zero) expansion member equal zero, i.e.,
b0=0. At this point of paper, it will be proven that all the centrally
symmetrical (w.r.t. point δ(t) = 0) points of the nonlinear function
M[δ,δ̇] are satisfying the stated condition. The central symmetry w.r.t.
the coordinate system origin is synonymous odd function. For any odd
function per definition it holds f(δ)= - f(-δ).

The arbitrary, continuous, centrally, symmetrical function M[δ,δ̇],
is presented in Figure 1(a) and can be substituted in the nonnegative
domain of the first half-period of the variable δ(t), with desired accuracy,
by a set of polygonal rectilinear lines (segments), as in Figure 1(b).

The original of the polygonal line form Figure 1(b) and its centrally
symmetrical image, for the symmetry center [δ(t)=0 ; M=0], are present-
ing the approximation of function M[δ(t),δ̇(t)] in the domain of the first



332 N.Maričič

full period of the variable δ(t) = 0. For each next period of the variable
δ(t), the same approximation of the nonlinear function holds, because
the variable δ(t) based on Equation (5) is a pure harmonic function. By
the stated, it was achieved that for any oscillations period of the variable
in Equation (5), the nonlinear function M[δ,δ̇] is approximated with the
desired accuracy by arranged pairs of centrally symmetrical segments.

The condition from [7] ”if M[ δ, δ̇] is an odd function, then the con-
stant member b0 in the Fourier’s development of this function equals
zero” can be proven based on the previously displayed approximation
of this function by a set of arranged pairs of centrally symmetrical seg-
ments. Let the arranged pair of centrally symmetrical segments be given
as in Figure 1(c).

The points designated in Figure 1(c) were determined by the follow-
ing coordinates in the amplitude and time domains:

A[δA,MA] ≡ A[ωtA,MA]; C[−δA,−MA] ≡ C[ωtA + π,−MA],

B[δB,MB] ≡ B[ωtB,MB]; D[−δB,−MB] ≡ D[ωtB + π,−MB].

Let the segments ABand CD be the j-the arranged pair of the centrally
symmetrical segments. Then, in the amplitude domain is:

AB : M = k(δ − δA) + MA; CD : M = k(δ − δA)−MA,

δ = δ̄ sin(ωt); k =
MB −MA

δB − δA

.

Contribution of the j-the pair of centrally symmetrical segments to mem-
ber b0 of the Fourier expansion of function M[δ,δ̇] is:

bj
0 = (bj

0)p + (bj
0)m,

(bj
0)p =

1

π

ωtB∫

ωtA

{k[δ̄sin(ωt)− δA] + MA}d(ωt), (28)
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(bj
0)m =

1

π

ωtB+π∫

ωtA+π

{k[δ̄sin(ωt) + δA]−MA}d(ωt).

By integration of the upper expressions, after a few steps, it shows that
it is:

(bj
0)p =

1

π
{kδ̄[cos(ωBt)− cos(ωAt)]− (kδA −MA)ω(tB − tA)},

(bj
0)m =

1

π
{−kδ̄[cos(ωBt)− cos(ωAt)] + (kδA −MA)ω(tB − tA)}.

By substituting the upper relations into (28), it follows:

bj
0 = (bj

0)p + (bj
0)m = 0.

If n is the number of the arranged pairs, by which the function M[δ,δ̇]
is approximated, then it follows:

b0 =
n∑

j=1

bj
0 = 0. (29)

By that it was proven that for an arbitrary, continuous, centrally sym-
metrical, nonlinear function M[δ,δ̇] the condition described by Equation
(29) is fulfilled, i.e., that the procedure proposed in this paper holds. It
should be noted that the function M[δ,δ̇] has not to be continuous from
the first and higher derivatives in the amplitude domain.

4.2 First member of Fourier expansion of M [δ(t), δ̇(t)]

By applying the concept outlined in the Chapter 4.1., for the j-the pair
of centrally symmetrical segments, defined in Figure 1(c), bj

1 and bj
2 can

be calculated. According to that figure, it holds that:

A[δA,MA] ≡ A[δ1,j,M1,j] ⇔ A[ωt1,j,M1,j] ≡ A[ωtA,MA],
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B[δB,MB] ≡ B[δ2,j,M2,j] ⇔ B[ωt, M ] ≡ B[ωtB,MB],

C[−δA,−MA] ≡ C[−δ1,j,−M1,j] ⇔ C[ωt1,j+π,−M1,j] ≡ C[ωtA+π,−MA],

D[−δB,−MB] ≡ D[−δ2,j,−M2,j] ⇔ D[ωt+π,−M ] ≡ D[ωtB +π,−MB],

AB : M = kj(δ − δ1,j) + M1,j; CD : M = kj(δ + δ1,j)−M1,j,

δ = δ̄sin(ωt); kj =
M2,j −M1,j

δ2,j − δ1,j

,

ψ1,j=ωt1,j = arcsin

(
δ1,j

δ̄

)
; ψ1,j ∈ {0, π],

ψ2,j=ωt2,j = arcsin

(
δ2,j

δ̄

)
; ψ2,j ∈ {0, π].

Then it is:

bj
1 =

1

π

ωtB∫

ωtA

{k[δ̄sin(ωt)− δA] + MA}sin(ωt)d(ωt)+

1

π

ωtB+π∫

ωtA+π

{k[δ̄sin(ωt) + δA]−MA}sin(ωt)d(ωt),

bj
2 =

1

π

ωtB∫

ωtA

{k[δ̄sin(ωt)− δA] + MA}cos(ωt)d(ωt)+

1

π

ωtB+π∫

ωtA+π

{k[δ̄sin(ωt) + δA]−MA}cos(ωt)d(ωt).
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By integration of the upper expressions, it follows:

bj
1=

1

π
{kj δ̄(ψ2,j − ψ1,j) +

kj δ̄

2
[sin(2ψ1,j)− sin(2ψ2,j)] + 2(kjδ1,j−

M1,j)(cosψ2,j − cosψ1,j)}, (30)

bj
2 =

1

π
{kj δ̄

2
[cos(2ψ1,j)−cos(2ψ2,j)]−2(kjδ1,j−M1,j)(sinψ2,j−sinψ1,j)}.

By summing Equation (30) over all n pairs of the centrally symmet-
rical segments, the first members of the development into the Fourier
series the nonlinear function M[δ,δ̇] are obtained:

b1 =
n∑

j=1

b1
j ; b2 =

n∑
j=1

bj
2. (31)

The presented procedure is adapted for simple programming on com-
puter.

4.3 Examples

The procedure from Chapters 4.1. and 4.2. are used in two examples
to demonstrate the development of the nonlinear centrally symmetrical
functions M[δ,δ̇] into the corresponding Fourier series. The examples are
taken from [3] and [5] and are using for the verification of the procedure
proposed.

The first example, illustrated in Figure 2(a), is representing the sim-
plest case of the M[δ,δ̇] function, i.e., the hysteresis loop of the centrally
symmetrical backlash without friction.

Let, in the amplitude and time domains, the following points are
defined:

O[0, 0] ≡ O[0, 0]; A[δA, 0] ≡ A[ωtA, 0]; B[δ̄,MB] ≡ B[π/2,MB],
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C[δA, 0] ≡ C[π − ωtA, 0]; D[0, 0] ≡ D[π, 0].

The corresponding straight lines in analytical form are:

OA ≡ CD : M = 0; AB ≡ BC : M = k(δ − δA);

δ = δ̄sin(ωt); k =
MB

δ̄ − δA

.

By applying Equation (30) and Equation (31), it follows:

b1 =
1

π
{kδ̄[π − 2ψA + sin(2ψA)]− 4kδAcosψA}; b2 = 0, (32)

ψA = ωtA = arcsin

(
δA

δ̄

)
; δ̄ = δB.

The obtained relations in Equations (32) are the same as the results
in [3] and [4]. As M[δ,δ̇] is describing a centrally symmetrical frictionless
case, it must be b0=0 and b2=0.

Second example was taken from [5]. On Figure 2(b) the function
M[δ,δ̇] is given.

Let according to Figure 2(b) the following points are defined:

O[0,MA] ≡ O[0, MA]; A[δA,MA] ≡ A[ωtA,MA];

B[δ̄,MB] ≡ B[π/2,MB],

C[δC , MC ] ≡ C[ωtC ,MC ]; D[δD,−MA] ≡ D[ωtD,−MA];

E[0,−MA] ≡ E[π,−MA].

Based on these points the following functions can be defined:
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Figure 2: Hysteresis loops for examples

OA : M = MA

AB : M = k1(δ − δA) + MA

BC : M = k2(δ − δ̄) + MB = k2(δ − δ̄) + k1(δ̄ − δA) + MA

CD : M = k1(δ − δC) + MC = k1(δ − δC + δ̄ − δA) + k2(δC − δ̄) + MA

DE : M = −MA

δ = δ̄sin(ωt); k1 =
MB −MA

δ̄ − δA

; k2 =
MB −MC

δ̄ − δC

.

By applying Equation (30) and Equation (31), for (δ̄ > δA) and
(δC > δD), it follows:

b1 =
1

π
{k1δ̄

2
[π − 2ω(tA − tD + tC) + sin(2ωtA)−

sin(2ωtD) + sin(2ωtC)] +
k2δ̄

2
[2ωtC−

π − sin(2ωtC)]− 2k1δAcos(ωtA)+

2(k2 − k1)δCcos(ωtC) + 2k1δDcos(ωtD)}, (33)

b2 =
1

π
{k1δ̄

2
[1 + cos(2ωtA)− cos(2ωtD)+

cos(2ωtC)]− k2δ̄

2
[1 + cos(2ωtC)]−
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2k1δAsin(ωtA) + 4MA + 2(k2 − k1)δCsin(ωtC)+

2k1δD[1− sin(ωtD)]}, (34)

ωtA = arcsin

(
δA

δ̄

)
; ωtB =

π

2
;

ωtC = arcsin

(
δC

δ̄

)
; ωtD = arcsin

(
δD

δ̄

)

By means of elementary transformations, the coincidence of relations
obtained in Equation (33) and Equation (34) with the results in [5] can
be proven.

Based on the examples enclosed the validity of the proposed pro-
cedure is verified. This procedure is generally applicable for arbitrary,
continuous, centrally symmetrical functions M[δ,δ̇]. Examples of cen-
trally asymmetrical hysteresis loops will be analyzed in next papers.

5 Numerical example

Described problem is well known in flutter analysis, but on the other
hand it is difficult to find appropriate data in aeroelastic literature for
verification of in the paper proposed procedure. That’s the why AGARD
has announced report [1].

Results from testing of nonlinear flutter of half span wing model
with aileron in wind tunnel are given in [1]. Mode of the first rota-
tion of aileron contains structural nonlinearity respective to amplitude
of aileron’s rotation. Based on [1] it was impossible to replicate all neces-
sary input data, but obtained calculation results from proposed method
given in this paper are very similar to the results in [1].

Dimensions of half span wing aileron model are given on Figure 3.
Ground vibration test was performed on model and obtained mea-

sured modal characteristics µj(generalized mass), fj(eigen frequency)
and gj(modal structural damping) are given on Figure 4 with normal
mode shapes of significant three modes. Only the first mode was non-
linear.
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Figure 3: Dimensions of semi wing model

Figure 4: Normal mode characteristics

Unsteady aerodynamic forces of model are calculated by Doublet-
lattice method (DLM) using UNAD software, developed by author. Semi
wing is divided on 8 equal strips. Each strip is divided on 5 panels.

Three equal panes are on semi wing’s strip in front of aileron and
two equal panels on aileron part of strip.

Nonlinear function M[δ,δ̇] of aileron rotation is given on Figure 5.
Aileron’s rotation backlash is ±3 mm (±1.02934o) and hinge moment is
Ih= 0.0176 kg m2. Based on proposed procedure software NELZAZ
was developed. Using this program, coefficients b1and b2of Fourier ex-
pansion of any central symmetric function M[δ,δ̇] can be obtained. In
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Figure 5: Aileron hysteresis loop

Figure 6: Flutter boundary of nonlinear model

closed loop, program is executing for large number of amplitudes of se-
lected structural nonlinear mode. For each nonlinear selected amplitude
δnonlin. appropriate nonlinear eigen frequency f(δnonlin.) and structural
damping g(δnonlin.) are calculated.

Critical flutter speeds of semi wing model were calculated for large
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Figure 7: Equivalent aileron hinge stiffness vs.

Figure 8: Critical flutter speed vs. equivalent nonlinear amplitude ratio
aileron hinge stiffness

number of amplitudes for selected nonlinear mode and other two linear
modes using software FLUTTER. Obtained results are given on Figure
6.

The equivalent aileron hinge stiffness of the nonlinear model as a
function of the amplitude ratio δ̄nonlin./(δz)0 is plotted on Figure 7. Flut-
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ter boundary of the model vs. the equivalent aileron hinge stiffness is
given on Figure 8.

Calculated results given in this paper agree very well respective to
results in [1].

6 Conclusion

The form of the nonlinearity encountered on actual aircraft structures
is in general not very well known and is an area worthy of further re-
search. In absence of more definite information, two relatively simple
characteristic types of structural nonlinearities are studied: backlash
and centrally symmetric hysteresis loop.

The theoretical approach based on harmonic linearization is devel-
oped in details. One nonlinear mode is incorporated into classic flutter
equations. For any amplitude of oscillation of the nonlinear mode classic
calculation of critical flutter speed can be done. Calculation of nonlinear
characteristics of selected nonlinear mode is automated by the developed
software NELZAZ.

The presented procedure is tested on example [1]. Good coincidence
to experimentally obtained results is achieved. The results of this inves-
tigation (Figure 6) show that nonlinear effects can influence the flutter
speed significantly.

The results of presented investigation can be used in engineering
practice for incorporation in flutter analysis a great number of nonlin-
ear cases such as: nonlinear rotation of classic command system surface
and it’s tab, nonlinear characteristics of servo-actuator, nonlinear modal
motion of external store, etc. Per example, nonlinear analysis of exter-
nal store oscillation influences directly to the value of tightening torque
between the store and it’s pod.

Using the developed procedure critical analysis of different recom-
mendations given in various airworthiness regulations can be done for
distinguished hysteresis loops of classical command systems of aircrafts.
Direct application of the outlined results is that any nonlinear command
system (with one nonlinear mode) flutter problem can be analyzed.

The further investigations will be focused to the incorporation into
flutter analysis effects of asymmetric hysteresis loops, nonlinear charac-
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teristics of servo-actuators due to preload and nonlinear modal motions
of external store. The main problem in these investigations will be the
lack of experimental results.
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Uticaj zazora i trenja u komandnim kolima na
flater aviona

UDK 534.13

Praksa je pokazala da struktura aviona sadrzi razlicite tipove struk-
turalnih nelinearnosti. Paznja u ovom radu je posvecena zazoru i trenju,
koji su obuhvaceni histreznom petljom komandnog kola klasicnog aviona
i njihovom uticaju na flater aviona. Na bazi AGARD-a No.665 u radu
je izvrsena neliearna analiza flatera aviona u funkciji zazora i trenja
njegovog komandnog kola. Nestacionarne aerodinamicke sile aviona
odredjene su poznatom metodom resetke dubleta. Ulazni podaci, koji
definisu karakteristike strukure aviona, uzeti su iz AGARD-a No.665.
Sopstvene vrednosti flatera odredjene su k-metodom. Model jednacina
flatera nelinearne strukture aviona razvijen je na bazi metode harmoni-
jske linearizacije. Cilj rada se sastoji u dobijanju upotrebljivog i rela-
tivno pouzdanog postupka za kriticku analizu razlicitih preporuka, datih
u brojnim svetskim vazduhoplovnim propisima, s aspekta dozvoljenih
vrednosti nelinearnih karakteristika histereznih petlji klasicnih komand-
nih kola aviona.


