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Abstract

Very important requirement for the helicopter rotor airfoils is
zero, or nearly zero moment coefficient about the aerodynamic
center. Unlike the old technologies used for metal blades, mod-
ern production involving application of plastic composites has
imposed the necessity of adding a flat tab extension to the blade
trailing edge, thus changing the original airfoil shape. Using com-
puter program TRANPRO, the author has developed and verified
an algorithm for numerical analysis in this design stage, applied it
on asymmetrical reflex camber airfoils, determined the influence
of angular tab positioning on the moment coefficient value and
redesigned some existing airfoils to include properly positioned
tabs that satisfy very low moment coefficient requirement.
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Nomenclature

α angle of attack
CL airfoil lift coefficient
Cmac airfoil moment coefficient about the aerodynamic center
Cm1/4 airfoil quarter chord moment coefficient
CD airfoil drag coefficient
CP pressure coefficient
M local Mach number
M∞ free stream Mach number
Re Reynolds number for the unit chord length
Rθ Reynolds number defined by boundary layer momentum

thickness as characteristic length
V local velocity
a local speed of sound
x, z physical space coordinates
ξ, η calculation space coordinates
f dξ/dx
g dη/dz
u local velocity component in x direction
w local velocity component in z direction
φ̄ nondimensional velocity perturbation potential
c airfoil chord length (unit)
x/c relative chordwise coordinate
ct/c relative tab chord length
H boundary layer shape factor
H̄ compressibility corrected boundary layer shape factor
Me local Mach number at the outer edge of the boundary layer
ue local velocity component at the outer edge of the boundary layer
ρe local density at the outer edge of the boundary layer
Θ boundary layer momentum thickness
θ assumed reference tab angle with respect to the chord,

from which tab angular deflection is defined
δ optimum tab position, for estimated or true Cmac = 0.0
δ∗ boundary layer displacement thickness
τ tab angular deflection (constant in this paper) from θ
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Subscripts

[n] superscript denoting the ”n”-th iteration cycle value
(te) subscript denoting a parameter value on the trailing edge
U subscript denoting a parameter value on the upper

airfoil surface
L subscript denoting a parameter value on the lower

airfoil surface

1 Introduction

Numerical aerodynamic design of the appropriate airfoils for the con-
temporary helicopter main rotor blades is probably one of the most
challenging and demanding areas of the computational fluid mechanics.
Helicopter main rotor blades in progressive forward flight are subjected
to combined cyclic pitching, flapping and leading – lagging motions, at
some 250 ÷ 400 cycles (revolutions) per minute. Local blade section
velocities are vector sums of the local tangential velocity of the rotating
motion and the velocity of the progressive flight, so their angles of attack
must change from some -5o at advancing positions to even +20o for the
retreating ones, in order to obtain the resultant lifting force of the rotor
disc in the plane of symmetry of the helicopter. The most important
consequences of such airflow conditions are: (1) the tips of the advancing
blades reach transonic speeds; (2) the tips of the retreating blades are
stalled, and (3) the root sections of the retreating blades are subjected
to the inverted flow, coming from the direction of their trailing edge.
Unlike aircraft propellers, helicopter rotor blades are very flexible and
they are kept spread in flight only by the centrifugal force acting normal
to their axis of rotation. Also, the aerodynamic center, center of gravity
and aeroelastic axis of all sections along the blade should coincide, or
should be at least very close to each other.

Considering that, some of the most important aerodynamic require-
ments for the helicopter rotor airfoils are: (a) aerodynamic moment
coefficient about the aerodynamic center Cmac must be equal or very
close to zero, to prevent the induction of the torsional moment along
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the blade and too large collective pitch control system forces; (b) criti-
cal (drag, moment, etc. divergence) Mach numbers should be reasonably
high, to prevent excessive transonic effects at the tips of the advancing
blades; (c) maximum lift coefficient and critical angle of attack should
be large enough to prevent substantial loss of lift at the tips of the re-
treating blades (luckily, very quick changes in pitch of the blades enable
achievement of higher maximum lift coefficients than in ”static” cases,
such as on airplane wings or in usual wind tunnel tests, because of the
inability of flow to separate so quickly); d) profile drag should be as
small as possible with previous requirements satisfied, etc.

2 Problem Definition

In this paper analyses will be focussed on the first requirement for main
rotor airfoil design, stating that the aerodynamic moment about the
aerodynamic center must be equal or very close to zero. In practice, two
general categories of airfoils are used for helicopters. The first category
are symmetrical airfoils, for which this requirement is readily satisfied
(Fig. 1(a)), with some minor exceptions at higher angles of attack. The
second group are the asymmetrical - reflex camber airfoils (Figures 1(b)
÷ 1(d)), whose positive camber in the nose domain is used to improve
airfoil characteristics at high angles of attack. They are characterized by
convex shape of the front portion of mean line, which locally generates
pitch-down aerodynamic moment. Thus the rear portion of the mean
line must be concave, to balance the moment about the aerodynamic
center and bring it as close to zero as possible. According to ref. [1],
which currently contains airfoil data for more than 240 existing heli-
copters, these two categories of airfoils have been almost evenly used in
helicopter industry.

Modern technologies imply the use of composite materials in the he-
licopter blade production, instead of metal (or sometimes even wooden)
blades that were used extensively on the helicopters of earlier genera-
tions. In order to properly polymerize and merge the plies of the upper
and lower composite blade surfaces, a small thin flat tab, of some 5% ÷
10% relative chord, is added at the trailing edge of the airfoil. For the
metal or wooden blades that requirement did not exist. The direction
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of the tab extension in case of symmetrical airfoils is straight behind,
at the zero angle with respect the chord of the original airfoil, and thus
the zero Cmac requirement is satisfied.

a)

b)

c)

d)

Figure 1: Some of the commonly used airfoils for main helicopter rotor
blades

In case of reflex camber airfoils applied on composite blades (example
is shown in Figure 2), determination of optimum angular tab position is
more complex. Improper selection of the tab angle with respect to the
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blade chord could alter initially small enough Cmac of the basic airfoil to
larger values that might induce excessive elastic torsion of the blade and
change the designed twist angle distribution. The consequence would be
the reduction of the overall rotor effectiveness, while in the most extreme
cases, large Cmac could even induce aeroelastic blade divergence and
fatal outcome of the flight. This problem could be partially solved by
applying additional number of plies and strengthening the blade skin
(but also increasing its mass). Even in that case, the increased control
forces due to pitching moment could still remain an inevitable problem.
So keeping the Cmac small enough is a necessity.

One of the obvious approaches to this problem is undertaking the ex-
tensive wind tunnel tests during which, among the other results, the op-
timum angular tab position for the required chord length is determined.
This is the usual approach in case the high budget helicopter design
projects, applied by the companies such as Boeing, Hughes, Aerospa-
tiale, etc. Some of the reflex camber airfoils with the tab included in
the geometry shape, obtained by such wind tunnel tests, have been pub-
lished (and often patent protected, Figure 3). Unfortunately, according
to the ”UIUC Airfoil Coordinates Database Ver. 2.0”, published by the
University of Illinois [2], which currently contains data for more than
1550 airfoils, the number of available rotorcraft airfoils with tabs in-
cluded is still proportionally very small compared with the number of
the ”pure” rotorcraft airfoils that do not contain tab.

On the other hand, in low budget development programs, character-
istic for presently very popular light helicopters, extensive airfoil wind
tunnel tests could sometimes overload the available funds. Engineers
are often forced to select optimal airfoils for the given helicopter, whose
geometry does not include tab, and then add the tab in some of the
design stages. Instead of the wind tunnel tests, in such projects it might
be less expensive to produce several different blade sets and test them
directly on the helicopter prototype, until apparently satisfactory blade
behavior from the aspect of aerodynamic moment is reached.

Proper initial estimate of the tab angular position can be one of the
factors that could remarkably reduce the overall cost both of the wind
tunnel and/or the prototype tests. In the rest of this paper numeri-
cal simulation and analysis of the above mentioned initial design stage,
assuming static flow conditions, is presented. Tabs of usual relative
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Figure 2: Prototype of a light helicopter composite rotor blade; tab is
added to the ”pure” airfoil shape because of the composite production
requirements

chord lengths have been added to several ”pure” airfoils. The atten-
tion is paid to the analysis of influence of the tab angular position on
the achieved the Cmac-s, that may raise beyond the assumed low value
limits. Some existing asymmetrical helicopter airfoils have then been
redesigned to include properly positioned tabs that satisfy low moment
coefficient requirement. Finally, the accuracy of the whole presented
numerical modeling algorithm was tested and verified on a symmetrical
airfoil, for which the tab optimum position is readily known (δ = 0o),
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Figure 3: Several rotorcraft airfoils which include tab within their orig-
inal geometry; the number of such available airfoils is still relatively
small.

since it has to preserve the airfoil’s symmetry and the zero Cmac value.

3 Concise description of the applied nu-

merical model

Calculations presented in this paper are the results of the computer pro-
gram TRANPRO [3], an upgraded version of the Trandes [4] computer
program. The Trandes was developed by Prof. L.A.Carlson of the Texas
A& M Univ. USA, under the contract for the NASA agency, in the late
seventies. Very soon the Trandes has also been accepted by many lead-
ing aircraft corporations and universities throughout the world. This
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program was used for the aviation airfoil analysis and design, for sub-
sonic and lower transonic speed domains. Although the state of the
art software of its time due to many qualities it possessed, it has also
been the subject to some critics in scientific papers ever since the time
of it’s issue, and many of its users have developed their own upgraded
versions of this program. The author of this paper has had a chance
to use Trandes extensively, and from this experience, the TRANPRO
computer program has been developed.

Both in the Trandes and the TRANPRO computer programs, the
zonal approach in airflow calculation is applied. Although nowadays
quite classical, such approach is still very successful in many operational
engineering applications. The advantage of this approach lies mostly in
its extremely high computer resource and time efficiency, while at the
same time the accuracy of the results can be brought to more than
satisfactory level. In order to achieve this goal with TRANPRO and
make it compatible with contemporary commercial software packages,
the author has introduced some important changes and modifications to
the basic Trandes model, and established algorithms of its optimum use.
Some of them are briefly described in section 3.3, while considering men-
tioned specific aspects of helicopter airfoil design, detailed descriptions
and analyses are presented in sections 4 and 5.

3.1 Calculation of the inviscid part of the flow

The inviscid part of the flow is calculated over the displacement sur-
face of the airfoil, i.e. the airfoil contour increased by the numerically
smoothed local distribution of the δ*. In the TRANPRO, this calcula-
tion is done by the same general algorithm as the one applied in Trandes.
It is based on the solution of the full nondimensional perturbation po-
tential φ̄ nonlinear partial differential equation, which in the physical
x− z space for the unit airfoil chord length takes the form:

(
a2 − u2

)
φxx +

(
a2 − w2

)
φzz − 2 uw φxz = 0 (1)

while, applied in the calculation space ξ − η , it changes to:
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(
a2 − u2

)
f

(
φξ

)
ξ
+

(
a2 − w2

)
g

(
φη

)
η
− 2 uw fg φξη = 0 (2)

where f = dξ / dx andg = dη / dz. Specially, in the local supersonic
domain, where Jameson’s rotated finite difference s− n scheme is used,
the governing equation takes the form [3, 4]:

(1−M2)φss + φnn = 0 (3)

in which:

φss =
1

V 2

[
u2f(fφξ)ξ + 2 uw fgφξη + w2g(gφη)η

]
(4)

φnn =
1

V 2

[
w2f(fφξ)ξ − 2 uw fgφξη + u2g(gφη)η

]
(5)

Very quick convergence of the solution is obtained by calculating the
flow on the series of rectangular grids, starting with 13 x 7, then 25 x
13, 49 x 25 and 97 x 49. Very often the final solution is obtained on the
49 x 25 grid, so the finest grid need not be applied, which reduces the
computation time.

Figure 4: Grid 49 x 25 in the vicinity of the airfoil
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3.2 Calculation of the viscous effects

In this paper only turbulent boundary layer case with transition point
fixed close to the leading edge will be discussed (reasons for that will
be explained in the section 4). In Trandes, the Nash-Macdonald inte-
gral turbulent boundary layer calculation is used, while in Tranpro, the
modified [5, 6] version of this model is applied. The momentum integral
equation [7,8]:

(
dθ

dx

)[n]

= −(θ+)[n−1]

u+
e

due

dx

(
H + 2−M2

e

)
+

1

(ζ [n])
2 (6)

is solved for the momentum thickness θ. In (6), “e” denotes the values
on the outer edge of the turbulent boundary layer, while [n] denotes a
certain iteration cycle value. Parameter ζ is defined by:

ζ [n] = FC

[
2.4711 · ln

(
FR R

[n−1]
θ

)
+ 4.75

]
+

1.5 G[n−1] +
1724

(G[n−1])
2
+ 200

− 16.87 (7)

in which:

FC = 1 + 0.066 (Me)
2 − 0.008 (Me)

3 (8)

FR = 1− 0.134 (Me)
2 + 0.027 (Me)

3 (9)

where G is the Clauser parameter. Shape factor H = δ∗/θ is calculated
by:

H̄[n] =
1

1−G[n−1] (1/ζ)
(10)

and
H[n] =

(
H̄[n] + 1

) [
1 + 0.178

(
M+

e

)2
]
− 1 (11)

In the modified TRANPRO’s numerical model [5, 6], the Clauser pa-
rameters G and βp are related by :
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G[n] = 6.1

√
β

[n]
p + 1.81− 4.1 (12)

(while in the original Carlson/Nash-Macdonald model used in Trandes,
the usual equation of Nash [1, 10] is applied, giving quite inaccurate
results). Once θ is determined, turbulent boundary layer displacement
thickness is calculated by δ∗ = H · θ. Finally, the distribution of δ* is
smoothed [3, 4] over the airfoil, and so the airfoil displacement surface
is obtained.

For the profile (joined pressure and friction) drag coefficient calcu-
lations, the modified Squire-Young formula, with the separate trailing
edge values for upper and lower surface, is used:

CDP = 2 ·

θ(te) U

(
ue(te)

u∞

)H(te)U+5

2

U

+ θ(te) L

(
ue(te)

u∞

)H(te)L+5

2

L


 (13)

In case of the transonic (supercritical) flow, it is necessary to calcu-
late and add the wave drag coefficient to this value [3, 4, 9]. Otherwise,
airfoil drag coefficient is CD = CDP.

3.3 Overview of some specific characteristics of the
applied software

Compared with Trandes, program TRANPRO developed by the author
of this paper, has many additional modules and modifications that give
it substantial advantages over the source program, such as:

1) Completely automated trailing edge closure control in the inverse
stage of the introduced inverse-direct airfoil design algorithm, based on
controlled corrections of the initial pressure distributions initially defined
by the user; purely inverse approach of Trandes was prone to giving ”U”
or ”gamma” airfoil shapes, and required manual corrections in pressure
coefficient inputs by the user, and the successful outcome was largely
influenced by the user’s experience in that [3].

2) Capability of additional automatic corrections of the mean line
shape in the direct design stage, in order to generate airfoils that will
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satisfy required quarter chord moment coefficient value or indirectly the
prescribed lift coefficient; this option did not exist in Trandes [3].

3) Modified boundary layer calculation model, and thus largely im-
proved accuracy in profile drag calculations, giving good agreements
with experimental results in wide range of angles of attack; Trandes had
problems with profile drag accuracy even at smaller angles of attack [5],
[6].

4) Improved transonic flow algorithm, that gives stable and unique
solutions for the wave drag and does not rely on the ”user’s experience”
factor; on the other hand, Trandes could in some cases give even negative
wave drag coefficients, and user had to eliminate this problem by some
suggested approaches, whose final outcome also depended very much on
his skills [9], etc.

Application of rectangular grids (Figure 4) has advantages, because
the generation of grids is performed using rather simple algorithms, they
do not depend on airfoil shape and the results on coarser grids are used
to interpolate initial values on finer ones. Such approach gives very
quick convergence of the final solution, and thus, on modern comput-
ers, TRANPRO’s CPU time is reasonably short even for more complex
analyses, involving calculations for wide ranges of angles of attack and
Mach numbers in a single program run (Trandes could only analyze one
angle of attack for one given Mach number in a single run).

On the other hand, the application of such grids also has some disad-
vantages, that come out from the fact that the airflow parameters on the
effective airfoil shape (geometrical shape plus local displacement thick-
ness) must be interpolated, since grid points generally do not coincide
with that contour. Because of the applied calculation scheme (Figure 4),
boundary layer might be slightly ”numerically” thickened on one airfoil
surface and thinned on the other, compared with their actual distribu-
tion, which than induces proportional redistribution of the calculated
pressure coefficient, and vice versa, during the viscous-inviscid closed
loop iteration procedure. Owing to that, the results are sometimes sys-
tematically ”shifted” with respect to the experimental values for a given
true angle of attack, depending on the basic airfoil shape and airflow
parameters. In literature it is known as ”the angle of attack systematic
error”, or ”shift”, which sometimes might be of the order of 1 ÷ 2 de-
grees. In case of lift and drag calculations, it can be easily overcome
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by comparing drag coefficient directly with the lift coefficient, i.e. by
polar curve presentation (CD versus CL), because both parameters are
proportionally shifted. In such representation of the results, TRANPRO
gives good agreements with the appropriate experimental data [5].

It should be noted that for a given basic airfoil shape and airflow
conditions, eventual shift of the results is quite steady and uniform in
a wide range of angles of attack. That is the reason why this kind of
numerical behavior is usually rather called shift than error, since the
term error often implies quite stochastic and unpredictable scatter in
numerical solutions, which is not the case here.

If it appears, the shift is also reflected in the moment coefficient
results to a certain extent. Since by its definition the Cmac does not
depend on the angle of attack or the lift coefficient, except at high an-
gles of attack, shift in this particular case could not really be treated as
”the angle of attack shift” (maybe ”effective shape redistribution”, or
some similar formulation would suit it better). To calculate Cmac and
the aerodynamic center position, values of Cm1/4and CL for two angles
of attack must be used. Very important fact about the application of
here applied numerical model is that, whatever pair of angles of attack
is used, the calculated Cmac is always practically the same, and the shift
in calculated value of this parameter is also quite constant and stable.
This enables that, for certain engineering applications, algorithms could
be established to eliminate the shift from the calculated value of the mo-
ment coefficient about aerodynamic center, and give results that can be
used in airfoil design as very reliable for practical engineering purposes.
Such an algorithm, introduced by the author of this paper and applied
for the analysis of the helicopter airfoil design problem described in this
paper, will be demonstrated in the following sections.

4 First stage of airfoil design – evaluation

of the influence of tab geometry on the

variation of Cmac

As mentioned in section 2 of this paper, trailing edge tab is a necessity
in the composite blade production. Although this structure element is
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added because of the production technology requirements, its existence
may affect the aerodynamic behavior of the blade and thus the whole
rotor efficiency, if not properly designed and positioned on reflex camber
airfoils. Relative chord lengths of the tabs (ct/c) range from approxi-
mately 5% in case of large transport helicopters to some 10% for light
helicopters. Such small relative chord lengths may sometimes lead the
designers to underestimate the tabs’ capacity to retrim the initially suf-
ficiently small Cmac of pure reflex camber rotorcraft airfoils to values
that might be improper for this purpose.

The problem of initial tab positioning will be introduced by an exam-
ple of simple theoretical analysis, that will be presented for the NACA
8-H-12 helicopter airfoil (Figure 5). Initially we will suppose that an
infinitely thin flat tab of 5% chord length should be added behind the
original trailing edge and that it is necessary to define some limits be-
tween which the optimum tab position, that will give Cmac = 0.0000,
could be expected. If the mean line would be extrapolated following its
trend in the vicinity of the trailing edge, point at 5% behind the airfoil
connected with the trailing edge point would give a flat tab angle of
some 8.3o above the chord. For airfoil without the tab, the rear - con-
cave part of the mean line is designed balance the pitch-down moment
of its front convex section, so the total moment about the aerodynamic
center is nearly zero. With this modification, only the concave mean line
portion is extended and the airfoil will be overbalanced nose-up, prob-
ably even to an extent that might be unacceptably large for helicopter
applications.

Figure 5: Determination of the possible domain of tab angular positions
for 8-H-12 airfoil

On the other hand, if the tab would be positioned just straight be-
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hind as a chord extension, the natural slightly upward oriented flow
just behind the trailing edge of the original airfoil in this case would be
immediately forced to change direction. As a consequence, an upward
oriented reaction force on the tab would be produced, causing over-
balancing pitch-down moment about the aerodynamic center. So, the
optimum position of the tab on the 8-H-12 airfoil should be somewhere
between these two established limits. This means that a blade designer
who wishes to use the 8-H-12 airfoil, when defining the initial shape for a
wind tunnel test model or a prototype test blade, will have to assume (or
maybe better – guess) the initial tab position somewhere in this range.
The 8.3o range is quite large, and so are the chances that optimum tab
position might be missed to an extent when Cmac would become too
large for a rotor airfoil. That would certainly require production of a
new test model or test blade, additional time and funds, etc.

In order to more profoundly evaluate the tab size and angular po-
sition influence on Cmac, the author has redesigned four airfoils widely
used in helicopter industry, by fitting them with approximately 0.5%
÷ 0.9% thick flat tabs. Beside the three asymmetrical airfoils - NACA
23012 (ref. [10]), NACA 8-H-12 (ref. [11]) and Bell/Wortmann FX 69-
H-098 (ref. [2]), symmetrical airfoil NACA 0012 (ref. [10]) has also been
included in the analysis as a control case, in order to verify the accuracy
of numerical calculations and conclusions obtained by them (neutral tab
position and some of its influences are readily known for symmetrical
airfoils). Airfoils were redesigned by extending them initially for 5%
chord behind the original trailing edge (7.5% in case of FX 69-H-098)
at an assumed reference angle θ with respect to the chord. Because of
the finite thickness, tabs were also extended from trailing edge position
towards the leading edge, until they blended with the original airfoil
contours. Their heights were adjusted so that blending points were at
the same longitudinal position considering upper and lower surfaces.
By this, smooth aerodynamic shape at the airfoil-tab junction has been
achieved for all airfoil modifications; such general approach is usual in
composite blade design. It should be noted that in some cases, in order
to simplify the production technology, designers form the tabs simply
by squeezing the trailing edge domain of the original airfoil (by which
Cmac is also altered). That approach generates grooves at the upper
and lower surface tab junction and, as a consequence, the profile drag
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is slightly increased. Also, such airfoil forms with discontinuities could
cause numerical problems in computational analysis, so they have not
been considered in this paper.

Finally, the new airfoils with tabs were scaled to the unit chord
length. After that, true tab relative chords were: 7.1% for NACA 0012
and NACA 23012; 9.5% for NACA 8-H-12 and 9.3% for Bell/Wortmann
FX 69-H-098. For NACA 0012 initial tab angle with respect to the chord
was θ = 0o, because it is symmetrical; the same angle θ was assumed for
23012 and FX 69-H-098, because their mean lines are practically tangen-
tial to the chord at the trailing edge. In case of 8-H-12, approximately
the middle position of the range, shown in Figure 5, was selected, θ =
-4.27o. It was obtained by connecting points of the mean line at 95%
chord and the trailing edge, extending it for another 5% chord length
behind the original airfoil, and setting it to proper thickness. Shape of
the initial 8-H-12 geometry with the tab added is shown in figure 6.

Figure 6: Shape of the NACA 8-H-12 helicopter airfoil in the initial
design stage, with the tab added at the assumed reference position θ =
-4.27o from which the tab static deflections will be analyzed

The next stage was generation of airfoil modifications with tab posi-
tions altered from their initial angle θ in 1o steps, in the selected range of
τ = ± 4o (example of 8-H-12 modifications is shown in figure 7). Thus,
for each of the four considered airfoils, nine modifications with the tabs
were designed and the total of 40 airfoils were prepared for the analysis,
including 36 new airfoils with tabs and 4 original airfoils.

After that, the reference airflow conditions were selected. A light
helicopter was assumed, in cruising flight at the horizontal speed of 150
km/h. From the aspect of the largest absolute moment in [Nm] about
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aerodynamic center that can be achieved on rotor disc, the most critical
the position is that of an advancing blade at an angle of 90o to the
direction of flight. In this case the pitch angles, i.e. local blade angles
of attack are small. According to that, for usual reference blade section
at 75% of a light helicopter rotor radius, Mach and Reynolds numbers
obtained were M∞ = 0.5 and Re = 2.3 · 106, while the angle of attack
range was selected in the domain of α = 0o ÷ 3o, with 1o calculation
step.

Figure 7: Modifications of the 8-H-12 airfoil with tab, obtained by de-
flecting the tab in the range of τ = ± 4o from the initially assumed θ =
-4.27o reference angular position

As mentioned in the introduction of this paper, during the cruising
flight, helicopter blades are exposed to very intensive dynamic motions
including pitching, flapping and leading-and-lagging at some 4÷7 cycles
per second, causing vibrations that can readily induce an early transi-
tion from laminar to turbulent boundary layer. Although this paper
represents the first stage of helicopter airfoil design, in which initially
only the static airflow conditions are assumed, this fact was taken into
account by fixing the transition point at approximately 5% from the
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Table 1: Influence of tab position on Cmac calculated for 36 airfoil mod-
ifications with tabs

Tab
deflec-
tion
τ [deg]

CONTROL
CASE

DESIGN CASES

NACA 0012 NACA 23012 NACA 8-H-12 Bell/Wortmann FX
69-H-098

θ = 0[deg]∗,
ct/c = 7.1%

θ = 0[deg]∗,
ct/c = 7.1%

θ = −4.27[deg]∗,
ct/c = 9.5%

θ = 0[deg]∗,
ct/c = 9.3%

Cmac
calc.

∆Cmac Cmac
calc.

∆Cmac Cmac
calc.

∆Cmac Cmac
calc.

∆Cmac

-4 0.03859 0.02851 0.04114 0.02859 0.09137 0.04286 0.04444 0.04046

-3 0.03115 0.02107 0.03465 0.02210 0.07792 0.02941 0.03458 0.03060

-2 0.02404 0.01396 0.02790 0.01535 0.06800 0.01949 0.02442 0.02044

-1 0.01710 0.00702 0.01975 0.00720 0.05815 0.00964 0.01455 0.01057

0 0.01008 0.00000 0.01255 0.00000 0.04851 0.00000 0.00398 0.00000

1 0.00289 -0.00719 0.00522 -0.00733 0.03966 -0.00885 -0.00662 0.01060

2 -0.00485 -0.01493 -0.00241 -0.01496 0.02980 -0.01871 -0.01744 -0.02142

3 -0.01303 -0.02311 -0.01049 -0.02304 0.02018 -0.02833 -0.02863 -0.03261

4 -0.02190 -0.03198 -0.01800 -0.03055 0.01048 -0.03803 -0.03968 -0.04366

* - angle from the airfoil chord (negative upward) at which initial tab position τ = 00 was assumed

leading edge. Results obtained by TRANPRO for 36 airfoil derivatives
with tabs, with all previously mentioned parameters applied, are shown
in Table 1. It should be noted that term ”tab deflection” in this paper
implies angular differences between fixed tab positions of a certain airfoil
modification and the basic modification, on which the tab is placed at
an angle θ with respect to the original airfoil chord.

The analysis of the obtained results should be started with consider-
ing the ”control case” values, obtained for the NACA 0012 airfoil with
tab added. For symmetrical airfoils, zero tab deflection θ & τ = 0o

can be the only correct solution for which Cmac = 0.0. On the other
hand, the calculated value for τ = 0o is Cmac = 0.01008, which actually
represents the numerical shift of the results for the given basic airfoil
shape and airflow conditions, typical for rectangular grids, as explained
in section 3.3.

When tab influence on moment coefficient should be analyzed, one of
the obvious ways to eliminate shift in obtained Cmac results is to consider
the differences between calculated Cmac-s for certain tab deflections and
the reference zero deflection, instead of considering the actual Cmac

values (in Table 1 ” Cmac calc.”). Such differences, the ∆Cmac values,
should be quite ”shift free” results because of the similarity of basic
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airfoil shapes (both tab sizes and deflections are small), which generate
almost the same shifts for the same airflow conditions and angles of
attack used in the analysis. For symmetrical airfoils, ∆Cmac for the
same tab deflection in positive and negative direction must be exactly
the same, only with the opposite sign. Table 1 shows that for NACA
0012 such pairs are very close by the absolute values, but not exactly
the same. The largest difference in calculated results, obtained for the
highest analyzed tab settings of τ = +4o and -4o, is about 0.0035, and
it represents the real order of TRANPRO’s effective calculation error
when such an approach is applied. This level of error is quite small even
for Cmac considerations that are subject of this paper, which shows that
obtained results can be trustworthy.

Figure 8: Variation of ∆Cmac for certain tab deflections from the as-
sumed reference positions, for NACA 0012 (verification case) and NACA
23012 airfoils, both originally 12% thick (M∞ = 0.5 and Re = 2.3 · 106)
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In figures 8 & 9 the TRANPRO’s results were compared with the
analytical values. They were obtained by compressibility corrected thin
airfoil theory [12] for the calculation of Cm1/4gradient with plain flap de-
flection and appropriate relative chord lengths, i.e. 7.1% in Figure 8 and
9.5% in Figure 9, and then applied for the same angles of deflection as
in numerical analysis. Theory assumes thin airfoils and inviscid flow, so
theoretical gradients are slightly larger than numerically obtained gradi-
ents for medium thickness airfoils with boundary layer effects included.
Such results are expected, since boundary layers developed on reason-
ably thick airfoils decrease effectiveness of the thin flat tabs at small
angles of deflection. Numerically calculated moment gradient of a thin-
ner airfoil FX 69-H-098 (originally 9.8% thick, before tab was added) is
also slightly larger than the gradient of a thicker 8-H-12 (originally 12%
thick), for practically the same relative chord, but is still smaller than
the thin airfoil theory values (Figure 9).

For each of the considered airfoils there always exists an optimum
position of the tab for which moment coefficient about the aerodynamic
center is exactly equal to zero. In the starting stage of helicopter airfoil
design, in which tab should be added to the basic airfoil, that position
is not known in advance, except for symmetrical airfoils. Thus, the
angular position of a tab must be initially assumed, and the tolerance
level of an error in estimating the optimum angular position of the tab
can be evaluated from Figures 8 and 9. In order to do that, it was
necessary to establish a limit Cmac value, below which moment coef-
ficient could be considered small enough and suitable for applications
on helicopter rotors. In the existing literature, such an explicit limit
can hardly be found, because it may depend to a certain extent on the
actual blade’s structural and/or rotor control system design. Because
of that, the author has applied a statistical approach to estimate this
value. Considering the data for some 240 helicopters that have been in
production and operational use until present time [1], one of the most
widely applied medium thickness asymmetrical airfoils is NACA 23012.
Its Cmac [10] is equal to -0.008 for Re = 8 · 106 and approximately
-0.012 for Re = 3 · 106 (although theoretically Cmac should not be in-
fluenced by Reynolds number, in practice small variations exist). The
latter value is quite appropriate for airflow conditions characteristic for
helicopter rotors, and it has been adopted as a limiting value of small
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Figure 9: Variation of Cmac for certain tab deflections from the assumed
reference positions, for 8-H-12, originally 12% thick and FX 69-H-098,
originally 9.8% thick airfoils (M∞ = 0.5 and Re = 2.3 · 106)

enough Cmac − s in this analysis.

Considering graphs in Figures 8 & 9, it is obvious that tolerance
limits above and below the optimum tab angular position in initial design
estimates are actually very small, and range between 1.2o ÷ 1.6o in one
or the other direction, depending on the airfoil asymmetry, thickness
and relative chord of the applied tab. Since the optimum tab position
on asymmetrical airfoils can not be known in advance, there is a large
probability that initial designs of wind tunnel test models or prototype
blades with tabs, produced without any serious prior analyses, may not
prove quite satisfactory in the sense of the moment coefficient.

One of the apparent ways to solve this problem is application of
numerical analyses for helicopter airfoils redesigned to contain the tab.
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On the other hand, since the Cmac requirement for helicopter airfoils is
very strict, the use of computer programs whose accuracy is quite sat-
isfactory in the analysis of the airplane wing airfoils, might sometimes
be unreliable in this particular case. Even contemporary and very so-
phisticated commercial computer packages with very wide domains of
application, often possesses a large variety of adjustable input control
parameters that must be tuned and tested very carefully and thoroughly
for each particular analysis problem, or otherwise their results might also
be questionable in operational design work.

In the next section of this paper, the author has tested the capabili-
ties of TRANPRO to be applied in the delicate task of actual determi-
nation of optimum tab position that generates sufficiently small moment
coefficient about aerodynamic center and satisfies rotorcraft application
requirements.

5 Second stage of airfoil design and exam-

ples of numerically optimized helicopter

airfoils with tabs

5.1 Redesign of NACA 23012 and 8-H-12 airfoils
with tabs fitted

For numerical design of helicopter airfoils to which tabs should be added
and optimized to give small moment coefficients about the aerodynamic
center, the NACA 23012 and NACA 8-H-12 public domain airfoils have
been chosen (the ”legal status” of Bell/Wortman airfoil is presently not
known to the author, so its new geometry with tab could not be pub-
lished in this paper anyway). The 8-H-12 has also been very widely used,
specially in light helicopter production [1]. Before determination of the
optimum tab position, procedure described in section 4 of this paper
must be applied, giving the results as shown in Table 1. Taking into ac-
count already mentioned characteristics and capabilities of TRANPRO,
the author has then introduced and applied the following algorithm:

Experimental values of Cmac for the original airfoils were obtained
[10, 11].
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Using TRANPRO, Cmac was calculated for the same original airfoils
without the tab. The calculated results were obviously different from
the experimental values to a certain extent because of their shift, as
discussed in section 3.

If the Cmac value of the original airfoil should have been preserved,
the target value of calculated Cmac for airfoil redesigned to contain the
tab should be the same as obtained in item (B). On the other hand, it
was more appropriate to design the airfoil with tab that was supposed
to give true Cmac exactly equal to zero. For that purpose, target value
for the calculated moment coefficient was obtained as the difference of
the values defined in (B) and (A), giving (C) = (B) – (A). This approach
was based on the fact that the shift of TRANPRO’s numerical results
from experiment is stable and constant for a given basic airfoil shape
and airflow conditions, and the assumption that shift of the calculated
values for airfoil with the tab would be very close to that of the original
airfoil.

For the target value calculated in (C), interpolation of tab position
τ that will give same target Cmac was done.

Using the known initial tab angle θ (Table 1) and deflection τ calcu-
lated in (D), the angular position of the tab δ with respect to the chord,
for which true Cmac of airfoil with the tab should be zero, was obtained
as δ = θ + τ .

This algorithm is established in order to eliminate the influence if
any eventual inherent systematic errors, or shifts of the results, and
give the airfoils whose true moment coefficient about the aerodynamic
center will be very close to zero (Figures 10 (a) & (b)). It can be readily
expected that beside the Cmac, other aerodynamic parameters of the
original airfoils will not change very remarkably when tabs are fitted to
them (see Table 4). On the other hand, existence of the tabs on rotor
blades is practically inevitable when composite technologies are applied,
and satisfying low moment coefficient requirement in this case is the
primary task during the first stage of the airfoil design and analyses,
which assumes ”static” airflow conditions applied in presented analysis.

Coordinates of the airfoils shown in Figures 10 (a) & (b) are pre-
sented in the Appendix.
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Table 2: Second stage of airfoil design – determination of optimum
angular position of the tab; prior to that, design work and analyses
must be done as described in section 4 and Table1.

NUMERICAL DESIGN OF
THE TWO ASYMMET-
RICAL AIRFOILS WITH
TABS ADDED, for required
Cmac = 0.0 (values ”Cmac

calc.” as presented in Table
1, must be calculated first)

NACA 23012
ct/c = 7.1%
θ = 0o

NACA 8-H-12
ct/c = 9.5%
θ = −4.27o

(A) Experimental Cmac (airfoil
without tab)

- 0.012 0.0050

(B) Calculated Cmac (airfoil
without tab)

0.00570 0.03983

(C) Target Cmac to achieve true
Cmac = 0.0 with tab ⇒ (B)-(A)

0.0177 0.03483

(D) Interpolated tab position us-
ing Table 1 (Cmac calc.) to ob-
tain (C)

τ = −0.71o τ = +1.49o

(E) Calculated tab position
from the chord δ = θ + τ
for zero moment coefficient
about the aerodynamic cen-
ter

δ = −0.71o δ = −2.78o



306 Ivan Kostic

a)

b)

Figure 10: Airfoils fitted with tabs, designed with intention to generate
very small moment about the aerodynamic center

5.2 Verification of the presented algorithm

The point which deserves most of the attention in the presented algo-
rithm, contained in item (C), is the assumption that the shift of the
calculated results from the true values for airfoils with tabs added will
be very close to that of the original airfoils, considering the fact that
basic airfoil shapes are quite similar. On the other hand, a small differ-
ence in those shifts will cause that the true Cmac of the airfoils with the
tabs added will not be exactly equal to zero, as desired. Determination
of the amount of that discrepancy can be used for evaluation the overall
accuracy of the presented method.

In order to quantify the amount of expected difference in the calcu-
lated and true value of the zero moment coefficient about the aerody-
namic center, the same procedure has been applied for the symmetrical
airfoil NACA 0012. As already mentioned, the actual optimum tab
position for this airfoil is δ = 0o. Results of this verification case are
presented in Table 3 and Figure 11. Obtained result shows the error
of 0.43o in estimated optimum tab angle with respect to the already
known true value. It also gives the ∆Cmac = 0.003, interpolated using
column ”∆Cmac” of Table 1 for NACA 0012 airfoil. It should actually
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Table 3: Evaluation of here presented algorithm shows that the error
in determination of optimum tab position for NACA 0012 airfoil is less
than half a degree

VERIFICATION CASE - DESIGN OF A SYMMETRI-
CAL AIRFOIL WITH TAB. Known true tab position
angle δ for symmetrical airfoils is δ = 0o (values ”Cmac

calc.” as presented in Table 1, must be calculated first)

NACA 0012
ct/c = 7.1%,
θ = 0o

(A) Experimental Cmac (airfoil without tab) 0.000

(B) Calculated Cmac (airfoil without tab) 0.01305

(C) Target Cmac to achieve true Cmac = 0.0 with tab ⇒
(B)-(A)

0.01305

(D) Interpolated tab position using Table 1 (Cmac calc.)
to obtain (C)

τ = −0.43o

(E) Calculated tab position from the chord δ =
θ + τ for zero moment coefficient about the aero-
dynamic center

δ = −0.43o

Numerical error in determination of optimum tab posi-
tion using presented method

−0.43o

correspond to the real moment coefficient about the aerodynamic center
of this airfoil if a tab of a given geometry would be positioned at an
angle of δ = - 0.43o.

Formal application of the presented algorithm, used in Table 3, could
have been avoided in case of symmetrical airfoils, if only the divergence of
calculated Cmac from the target true value should have been quantified.
The value ∆Cmac = 0.003 could be readily obtained as a difference
between the calculated Cmac for the original airfoil (Table 3, (B)) and
for the airfoil fitted with the tab at the already known optimum position
(Table 1, τ = 0o). That difference is actually the difference between the
TRANPRO’s result shifts for airfoil without the tab and its modification
with the tab added. When item (C) of the algorithm is applied, it
generates a small error of – 0.43o in tab positioning. Mentioned value
of Cmac is well within the posted limits of sufficiently small moment
coefficients, and suggests that the expected true values of Cmac-s for the
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other two airfoils, presented in section 5.1, should also be sufficiently
small and that the rigorous Cmac requirement would be satisfied to an
extent that further adjustments in tab position in later test stages would
most probably not be necessary.

Figure 11: Difference between calculated and true optimum tab position
for NACA 0012 airfoil in the verification case is well within the tolerance
limits

5.3 Evaluation of the tab influence on drag coeffi-
cient

In this section only a brief insight in the tab influence on drag coeffi-
cient of the two newly designed airfoils, presented in section 5.1, will
be given. Numerical drag tests were done using airflow conditions for
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which experimental data [10, 11] for leading edge roughness case were
available. Results are presented in Table 4. TRANPRO’s results for
CD coincide quite well with experiment for NACA 23012 original air-
foil, while in case of the original NACA 8-H-12 airfoil, obtained drag
coefficients are slightly larger than experimental (experimental polar in
around-minimum drag domain shows noticeable irregularities, which is
characteristic for many airfoils at small Reynolds numbers). Calculated
drag coefficient values obtained for modifications with the tabs are all
generally smaller than for the basic airfoils. When considering this fact,
it must be remembered that new airfoils were obtained by extending the
original ones, and then scaling the new shapes back to the unit chord
length. Relative thickness of such airfoils is smaller than of the original,
and is approximately 11.2% for both new airfoils (see the Appendix).

This leads to conclusion that the obtained amount of reduction in
profile drag must be influenced primarily by the decreased effective rela-
tive thickness of the new airfoils, while the influence of tabs on variation
of the drag coefficient in this case is practically negligible. This sup-
ports the assumption stated in section 5.1 that, beside the Cmac, other
aerodynamic parameters of the original airfoils, such as minimum drag,
maximum CL/CD ratio etc, will not change remarkably when tabs are
fitted to them.

6 Conclusion

In the process of design or redesign of asymmetrical rotorcraft airfoils
that should be fitted with tabs for the composite blade production pur-
poses, primary attention must be focused on preservation of nearly zero
moment coefficient about the aerodynamic center. In the preliminary
analysis stage, the author has fitted tabs to several airfoils operationally
used in helicopter blade production, which initially did not have them
and then, using computational analysis, quantified the influence of the
tab’s size and possible angular position ranges on the variation of their
Cmac values. The tolerance limits of Cmac for rotorcraft airfoils, in
this case established using statistical approach, proved to be very nar-
row. This analysis has shown that, although the usual relative chord
lengths of the tabs are proportionally small, the domains of acceptable
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Table 4: Review of the experimental drag coefficient values for original
airfoils, values calculated for original airfoils and values calculated for
airfoils with tabs, whose relative thicknesses are decreased to 11.2% .

DRAG COEFFICIENT RE-
SULTS

NACA 23012 NACA 8-H-12

Airflow parameters used both
in experiment and in numeri-
cal analysis

M = 0.2,
Re = 6 · 106

M = 0.2,
Re = 2.6·106

Nominal angles of attack,
used in numerical analysis

α = 0o α = 3o α = 0o α = 3o

Calculated and experimental
lift coefficient CL of the origi-
nal airfoil

0.1287 0.4558 0.0407 0.3667

Experimental drag coefficient
CD of the original airfoil;
leading edge roughness case
(boundary layer transition
forced close to the leading
edge)

0.0099
ref.[10]

0.0104
ref.[10]

0.0100
ref.[11]

0.0112
ref.[11]

Calculated drag coeffi-
cient CD of the original
airfoil

0.00959 0.01003 0.01144 0.01187

Calculated lift coefficient
CL of the airfoil with the
tab added

0.0359 0.3881 0.0463 0.3913

Calculated drag coeffi-
cient CD of the airfoil with
the tab

0.00899 0.00902 0.01079 0.01118
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tab angular positions of only some ± 1.2 ÷ 1.5o around the optimum
one. Since the optimum angular tab position, that will give exactly
zero Cmac value, can not be known in advance for asymmetrical airfoils,
these results have also proven that tab positions in such kind of airfoil
design should by all means be first predefined by numerical analysis, in-
volving special attention and care, before undertaking any further more
expensive and time consuming design stages.

The obtained results also imply that the influence of eventual inher-
ent numerical errors of applied software on the results must be reduced
to an absolute minimum. For that purpose, in this paper an original
approach has been established and applied using the author’s computer
program TRANPRO for redesign of the several asymmetrical airfoils.
This program has many advantages over the source NASA-Trandes code,
from which it has been derived, although both programs use rectangu-
lar grids for airflow calculations. Such grids are very favorable from the
aspect of their generation, but sometimes they are prone to induce the
”shift of the results” systematic numerical error. In the existing publica-
tions, ways to eliminate it for CL and CD coefficients are well known. On
the other hand, for Cmac calculations, this problem becomes much more
complex. Here presented original algorithm has been established in a
way that eventual ”shift” errors in subsequent steps practically cancel
out, and the final results contain a very small inevitable numerical error,
which to a certain extent exists in all kinds of software nowadays. Using
this algorithm, the two asymmetrical rotorcraft airfoils have been fitted
with the tabs with the optimum positions determined. Then, the same
algorithm has been applied and verified on a symmetrical airfoil (con-
trol case), for which the optimum tab position is readily known, proving
that the presented approach can give very useful and reliable results.
Although here applied on a particular software, the general concept of
presented approach can be used with any other computer program in
order to achieve the highest possible accuracy, required in helicopter
airfoil design.
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Appendix
Coordinates of the two airfoils suitable for application on composite

helicopter rotor blades, with the tabs added using algorithm described
in sections 4 and 5.1 of this paper and presented in figures 10 (a) & 10
(b).
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NACA 23012 with 7.1% tab NACA 8-H-12 with 9.5% tab

X upper Y upper X lower Y lower X upper Y upper X lower Y lower

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

-0.00022 0.00771 0.00403 -0.00656 0.00140 0.01170 0.00812 -0.00780

0.00153 0.01259 0.00799 -0.00976 0.00341 0.01448 0.01088 -0.00901

0.00727 0.02083 0.01654 -0.01404 0.00766 0.01910 0.01615 -0.01074

0.01824 0.03061 0.02938 -0.01793 0.01886 0.02801 0.02876 -0.01348

0.02999 0.03819 0.04144 -0.02046 0.04213 0.04107 0.05310 -0.01653

0.04216 0.04441 0.05308 -0.02241 0.06585 0.05124 0.07701 -0.01829

0.06715 0.05397 0.07571 -0.02556 0.08978 0.05965 0.10070 -0.01961

0.09249 0.06071 0.09799 -0.02831 0.13807 0.07263 0.14765 -0.02135

0.11780 0.06536 0.12029 -0.03091 0.18673 0.08195 0.19422 -0.02239

0.14286 0.06842 0.14285 -0.03340 0.23575 0.08803 0.24044 -0.02302

0.16752 0.07033 0.16582 -0.03573 0.28542 0.09079 0.28601 -0.02338

0.19168 0.07146 0.18927 -0.03780 0.33499 0.08983 0.33168 -0.02371

0.23934 0.07234 0.23685 -0.04080 0.38373 0.08600 0.37817 -0.02375

0.28698 0.07187 0.28445 -0.04242 0.43200 0.08019 0.42514 -0.02358

0.33458 0.07031 0.33208 -0.04297 0.47990 0.07301 0.47248 -0.02320

0.38217 0.06787 0.37973 -0.04263 0.52750 0.06471 0.52012 -0.02264

0.42974 0.06470 0.42740 -0.04157 0.57484 0.05568 0.56802 -0.02181

0.47730 0.06092 0.47508 -0.03989 0.62201 0.04619 0.61609 -0.02074

0.52485 0.05662 0.52277 -0.03769 0.66905 0.03655 0.66429 -0.01937

0.54862 0.05429 0.54662 -0.03642 0.71604 0.02703 0.71253 -0.01771

0.57239 0.05186 0.57047 -0.03504 0.76303 0.01805 0.76078 -0.01567

0.59615 0.04933 0.59432 -0.03356 0.81010 0.00996 0.80895 -0.01318

0.61992 0.04671 0.61818 -0.03199 0.85730 0.00327 0.85699 -0.01001

0.64368 0.04400 0.64204 -0.03032 0.90471 -0.00113 0.90481 -0.00599

0.66744 0.04120 0.66590 -0.02858 0.92857 0.00003 0.92857 -0.00483

0.69119 0.03831 0.68976 -0.02674 0.95238 0.00119 0.95238 -0.00367

0.71495 0.03535 0.71362 -0.02483 0.97619 0.00235 0.97619 -0.00251

0.73870 0.03231 0.73749 -0.02284 1.00000 0.00352 1.00000 -0.00135

0.76246 0.02918 0.76135 -0.02077

0.78621 0.02598 0.78522 -0.01862

0.80996 0.02270 0.80909 -0.01639

0.83370 0.01933 0.83296 -0.01408

0.85745 0.01589 0.85684 -0.01168

0.88119 0.01235 0.88071 -0.00920

0.90493 0.00873 0.90459 -0.00663

0.92867 0.00501 0.92847 -0.00396

0.95238 0.00531 0.95238 -0.00367

0.97619 0.00560 0.97619 -0.00337

1.00000 0.00590 1.00000 -0.00308
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Neki praktični aspekti u kompjuterskom
projektovanju aeroprofila za lopatice glavnih rotora

helikoptera

UDK 534.14

Jedan od veoma važnih zahteva koji aeroprofili rotora helikoptera
treba da ispune jeste da koeficijent momenta oko aerodinamickog cen-
tra mora približno biti jednak nuli. Za razliku od starijih tehnologija,
korǐsćenih u proizvodnji metalnih lopatica, savremene izvedbe koje se
baziruju na primeni plastičnih kompozita zahtevaju da se na izlaznoj
ivici doda ravan repić, čime se menja izvorni oblik aeroprofila. Uz pomoc
kimpjuterskog programa TRANPRO, autor je razvio i verifikavao algo-
ritam za ovu fazu projektovanja, namenjen promeni na nesimetričnim
aeroprofilima sa srednjom linijom u obliku latiničnog slova ”S”, kvan-
tifikavao globalni uticaj ugaonog polozaja repića na promenu momenta
oko aerodinamičkog centra, a zatim reprojektovao nekoliko aeroprofila
kojima je dodao repić na takav način da je zahtev za malom vrednošću
ovog koeficijenta momenta u potpunosti ispunjen.


