
Basic general concepts in the

network analysis

Nicolae Boja ∗

Theoret. Appl. Mech., Vol.31, No.3-4, pp. 235–263, Belgrade 2004

Abstract

This survey is concerned oneself with the study of those types
of material networks which can be met both in civil engineering
and also in electrotechnics, in mechanics, or in hydrotechnics,
and of which behavior lead to linear problems, solvable by means
of Finite Element Method and adequate algorithms.

Here, it is presented a unitary theory of networks met in the
domains mentioned above and this one is illustrated with ex-
amples for the structural networks in civil engineering, electric
circuits, and water supply networks, but also planar or spatial
mechanisms can be comprised in this theory.

The attention is focused to make evident the essential proper-
ties and concepts in the network analysis, which differentiate the
networks under force from other types of material networks. To
such a network a planar, connected, and directed or undirected
graph is associated, and with some vector fields on the vertex set
this graph is endowed.
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1 Introduction

The Finite Element Method (FEM) is a mathematical method of anal-
ysis of the behaviour of a material structure under the action of some
external (or/and internal) factors based on the structure formal decom-
position in structural elements which can be individually studied by
using known methods.

So, a material structure consists of a finite number of objects inter-
connected one to another. If one chooses a finite number of material
particles on the boundaries of structural elements, called nodal points

(or, simply, nodes), we also ask for the structure to be connected, i.e.
there exists at least one chain of structural elements that links any pair
of nodal points. But, generally, the structural elements can have two,
three, or more nodal points. Let us denote by Γ(6= ∅) the set of nodes of
a structure Ω, and by {Ωe} the set of its structural elements. Assume
|Γ| = n and |{Ωe}| = m, where |A| denotes the number of elements of
the set inside.

In FEM one defines a system of so-called variables of the prob-
lem, and also a system of external (or/and internal) factors (called,
as ”forces”)loading the structure; these are introduced with the help of
two scalar or vector fields defined on Γ.

At the beginning, any problem solved by FEM needs two important
phases:

I. Geometrical modelling of the structure. This stage, called ”dis-
cretization”, must be made accurately both with respect to the choosing
of an enough number of elements, and also having in view their physical
and geometrical properties.

By a discretization of a structure Ω we will understand the choosing
of a pair ({Ωe},Γ), consisting in a system {Ωe}m, (e ∈ {1, 2, ...,m}=̇1,m),
of m structural elements, and in a set Γ of n nodes on the boundaries
of elements, which satisfy the following conditions:

(D1). ∪e∈ 1,m Ωe = Ω ,

(D2). (∀) e, e′ ∈ 1,m, e 6= e′, Γee′ := Ωe ∩Γ Ωe′ ⊂ Γ∗,

where ∩Γ is an intersection restricted to the node set Γ and Γ∗ is
a submanifold of the Euclidean affine space E3 of dimension strictly
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less than each of the two dimensions of considered manifolds, that is
dim Γ∗ < min{dim Ωe, dim Ωe′}.

So, the set of common nodes Γee′ is either the empty set, or is entirely
enclosed in Γ∗, which can be a curve or a surface of E3. Certainly,
because Γ is finite, Γee′ is of dimension zero. In the case when Γee′= ∅
the elements Ωe and Ωe′ are not directly interconnected, that is Ωe and
Ωe′ do not have common nodes.

A discretization having m structural elements and n nodes will be
denoted by ({Ωe}, Γ)m, n.

The elements are characterized from the physical point of view with
respect to the material properties, and from the geometrical point of
view with respect to scheme of their disposition in the structure and with
respect to the dimension of the geometric varieties (manifolds) which
with these elements are assimilated. This last aspect is summarized in
the following table of correspondences:

Structural elements Geometric manifolds

- straight rods (or curved bars) → 1 - dimensional: line segments (or
arcs of curves)

- flat plates (or curved shells) → 2 - dimensional: plane domains (or
surface portions)

- solids → 3 - dimensional: spatial domains

The particles of a structure are assimilated with the points of the corre-
sponding manifold; the points are considered to be 0-dimensional manifolds
in the Euclidean affine space E3.

In the following parts of the paper only a particular case of structures,
namely the networks, will be considered.

2 The networks and their graphs

A material network (or, simply, a network) is a material structure whose each
individual component does connect exactly two nodes, and two different com-
ponents which are interconnected at a node do have not any other common
intersection. Shortly, we can say that networks are 2 - nodal element material
structure. Any network must have at least three nodes and two structural
elements.
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Among the most important 2-nodal material structures, appearing in the
technical problems, we enumerate the following loaded networks:

(a) structural networks with structural elements: beams, rods, arcs,. . .

(b) electric circuits with structural elements: resistors, capacitors,. . .

(c) pipe networks with structural elements: pipelines,. . .

(d) spatial mechanisms with structural elements: truss elements, links,. . .

and others, whose equilibrium equations are linear or almost linear in the
sense that we may approximate them by linear equations; also we can consider
the case of linear differential or differential-algebraic equations (see [15]).

But anyway, we can observe the networks under consideration usually
provide one-dimensional problems in the analysis by FEM; therefore their
structural elements can be simply assimilated with straight line segments.
Thus, to these networks we can associate some graphs.

So, to every material network Ω we can associate a finite, planar, di-
rected/undirected, connected and simple (without multiple arcs/edges) graph
G, with the help of a transfer mapping φ : Ω → G, suitable defined for each
case.

Looking for general (similar) properties of several types of material net-
works, in order to make use of specific mathematical methods of analysis, we
observe that two kinds of networks are frequently considered, namely, loaded
networks and transportation networks.

In order to represents a loaded network or a transportation network, G
will be chosen as a specific graph, either of the form (S, E), or of the form
(S, A), where S denotes the set of vertices (corresponding to the nodes of Ω)
and E or A are the sets of edges or of arcs, respectively, corresponding to the
structural elements.

(i) If a network is represented by a directed graph of which arc set is endowed
with a scalar field we will say that it is a network with flow and will be
denoted by GΦ. Usually, this is the case of transportation networks.

(ii) If a network is represented by a graph of which vertex set is endowed
with a vector field we will say that it is a network under force and will
be denoted by GF . Usually, this is the case of loaded networks.

Notations GΦ and GF designate the graphs associated to the considered
above networks. Sometimes, the notations GΦ=̇~G and GF =̇G or GF =̇~G for
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the graphs are preferable, to put in evidence that the graph ~G is directed
while G is not.

The most adequate mathematical methods used in connection with these
types of networks for optimization of a functional are simplex procedure and
finite element method, respectively. Among the networks enumerated above,
(b) and (c) are of the first type, while (a), (b), (c) and (d) can all be comprised
in the second class. The graphs associated to some networks of different types
on one and the same material structure Ω (such as the cases (b) and (c)) will
be different. Moreover, we may associate to a network either an directed
graph or an undirected one, with respect to our convenience for the solving
a specific technical problem.

Let us assume that a material structure Ω is a network and consider a
discretization ({Ωe}, Γ)m, n of Ω having m structural elements and n nodes.
For the nodes of the network and the vertices of the associated graph will be
used the same notations, because to the material points (in Ω) or to their
geometrical images by φ (in G, or in ~G) we can associate the same local
(sometimes, global) coordinates. Thus, to the node set Γ it corresponds in
the graph G (or in ~G) the set S = {xi}n of vertices and to the set of structural
elements {Ωe} it corresponds either the set E = {ae}m of edges of G, or the
set A = {~ae}m of arcs of ~G; in E (or in A), ae (or ~ae) is the edge (or, the arc)
that represents the element Ωe for any e ∈ {1, 2, ..., m}. When an edge ae

connects two vertices xi and xj , (i, j ∈ {1, 2, ..., n}), that is the points xi and
xj are nodes of a structural element Ωe, will be used the following notation
ae= [xi,xj ]; a pair of vertices (xi, xj) ∈ S × S are said to be adjacent if there
exists an edge ae connecting them. Similar notions and notations can be
considered for the arcs.

For a network Ω the set Γee′ either is ∅, or contains only one node; so, the
edges ae and ae′ either are not incident, or are incident at a vertex xi for an
i ∈ {1, 2, ..., n}, respectively; similar situation for the arcs. The set of all edges
(or arcs) incident with a given vertex, xi, will be denoted by Star [i]; this one
is a subset of E or of A. Analogously, the set of all structural elements which
have a common node,xi, will be denoted by [xi]. So, if Γee′={xi}, we can write
Ωe,Ωe′ ∈ [xi], and this fact is represented in the graph by the relations ae,ae′ ∈
Star [i]. Obviously, [xi] can contains more than two structural elements.

If it is necessary to be used a graph of type G when we analyze a network
Ω, we can associate to the graph two matrices:

1). I(G):= [pe
i ] , where pe

i =

{
1, ae ∈ Star[i]
0, ae /∈ Star[i]

, called matrix of inci-

dence, and
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2). A(G):= [qij ] , where qij =

{
1, [xi, xj ] ∈ E
0, [xi, xj ] /∈ E

, called matrix of adja-

cency,

which belong to the linear spaces M(m, n; |) and M s(n, n; |), respectively.
These matrices indicate the interconnection of the structural elements by

positions occupied of the number 1, or of the numbers +1 and –1, in the case
of I(~G), when indicates the incidence of an arc towards interior and exterior
at a vertex, respectively.

Also, sometimes it is useful to put in evidence a preferential enumeration
of structural elements of a network of which matrix of adjacency A(G) is
known.

Thus, for a fixed index ”i” (∈ 1, n) the structural element of the network,
Ωe, represented in the graph G by the edge [xi, xj ] (with j > i , because
A(G) is symmetric), will be labeled as ae by an index ”e” (∈ 1, m) in an
increasing order of those indices ”j” that correspond to the nonzero entries of
the matrix. In other words, the sequence {a1, a2, .., am} will be an ordering
in the union

∪i∈1,n{Star[i] − (∪i′<iStar[i′])},

where Star[i] denotes the set of all edges [xi, xj ] ∈ E incident at the vertex
labeled by ”i”. The natural number |Star[i]|=̇ deg (i) is called degree of xi;
we have 1 6 deg (i) 6 m.

In such a manner, with the help of the matrix of adjacency, one can obtain
a good correspondence e ↔ (i, j) between the elements of E and the subsets
of S × S.

The networks with flow GΦ are not proper to be analyzed by FEM. So we
pass to present general bases and properties of the second type of networks
considered above, those of networks under force, GF .

3 The networks under force and associ-

ated FEM

Let Ω be a 2-nodal material structure, i.e. a material network. In order to
define on Ω a ”network under force structure”, GF , four fields will be used:
two of them will introduce the structure and other two will connect it with
an appropriate FEM.
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A network under force is a material network of which graph G = (S, E)
is endowed with:

(i). a vector field on the vertex set, defined by the function

F : S → |p, (p = 1, 2, 3, . . .),

of which values

F(xi) = Fi, (i ∈ {1, 2, ..., n}),

called nodal forces, load the nodes, and
(ii). a scalar field on the edge set

k : E → |∗+, (|∗+ = (0, +∞)),

of which values

k(ae) = re, (e ∈ {1, 2, ..., m}, re > 0),

called perviousness, give an influence about the network state under the action
of F.

The fields F and k are independent one from another, however the pres-
ence of k is put in evidence only by the action of F. Particularly, F can also
be a scalar field, when p = 1. The field F is defined, while the field k by
the material nature and by the geometrical shape of network is determined,
whenever Ω ”works”, i.e. F acts.

Thus a network under force will be denoted, as was shown before, by GF ,
and the pair (F, k) is its determinant couple; F is said to be the external

field and k is the structural field of the network. The previous pencil of
fields designate the ”action” of F and the ”influence” of k about the working
network.

As a result of the (F, k) presence on GF the answer consists in other two
assignments induced on the network:

(I). The first is a vector field on the node set

X : S → |p, (p = 1, 2, 3, . . .),

of which values

X(xi) = ui, (i ∈ {1, 2, ..., n}, n = |S|),

are called nodal vectors with components the nodal parameters: u1
i , ..., u

p
i .
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We will call X the nodal state field, because each of the nodal vectors,
given by a 1 × p matrix [u1

i ... u
p
i ] = uT

i , describes the network state at the
node xi, for i ∈ 1, n. This field can be extended to the whole network as
follows.

The number of nodal parameters on the whole network is equal to n ′ =
n · p, where p denotes the number of parameters per node.

The state of the network at an arbitrary point x can be approximate by
a matrix [u1... up] = ūT , where ū is the image-vector of x by the extended

state field X̄ : GF → |p, defined such that X̄|S = X and the p components
of the column-vector X̄(x) = ū, called parameters of state, by means of some
interpolation functions are expressed. For instance, the interpolation function
expressing one of the state parameters, say u1, by a polynomial of the form

u1 = a1 + a2s + ... + a2ps
2p−1, . . .

is given. Then, another can be its derivative, etc., depending on the network
type that we have in view. In any case the u1 is the most important state
parameter for almost all problems, so, we will call it the basic approximation

function at x.
We observe that in the case of one-dimensional problems only one variable

is needed. This is a real number s in the closed interval [si, sj ], of which
ends are the local coordinates of the nodes xi and xj ; to each value of s it
corresponds a position of the point x on ae = [xi, xj ], considered as a ”linear
element”. Thus we can consider n ′ = 2p, because x belongs to a ”local
structure” with two nodes.

The coefficients a1, a2, ..., a2p depend on the nodal parameters defined by
X.

Indeed, replacing the nodal coordinates into u1 we obtain a system of 2p
linear equations for each pair of indices (i, j)

u1
i =

2p
∑

k=1

aks
k−1
i , ..., u1

j =

2p
∑

k=1

aks
k−1
j , ... (1)

where the terms in the left hand sides of the 2p equations are the nodal
parameters. This system can be solved with respect to ak, (k ∈ {1, 2, ..., 2p}).
Now we replace the coefficients so obtained into the polynomial, which can
be reordered with respect to the nodal parameters as

u1 = Φ1(s) · ue, ... (2)
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where Φ1(s), ..., called shape functions, are 1 × 2p matrices of nodal coordi-
nates, while the column vector ue, associated to ae, is the same for all shape
functions.

(II). The second assignment induced on GF by (F, k) is a bipartite scalar
field on the edge set,

F̃ : E → | × |,

of which values on the edges

F̃ ([xi, xj ]) = (Fij , Fji),

called couple-field of internal forces, be the following conditions are related :

(a*). Fij 6= 0 ⇔ (i, j) 7→ [xi, xj ] = ae(∈ E),

(b*). Fij + Fji = 0, for all i, j ∈ {1, ..., n}, i 6= j.

This answer consists in a system of 2m ”internal forces” appearing as
couples in the structural elements of GF . These represent the action of some
nodes upon others, and may be assumed of ”mechanical” nature according
to (b*), which is a mechanical axiom (see [22]).

Because to each pair (i, j) of unordered indices, chosen such that [xi, xj ] ∈
E, it corresponds a unique e ∈ 1, m, the absolute values of the images by F̃
are equal and we can denote by Ie = |Fij | = |Fji| the common value; this
is called intensity of the internal forces induced by (F, k) on the structural
element ”e”.

Finally, we remark that when it is necessary to use a directed graph ~G,
the edge set E will be replaced by the arc set A allover in the previous stages.
Such an example can be met in the Section 8.
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4 One dimensional problems and stiffness

matrices

To each element ”e” of the network one associates the elemental stiffness

matrix

Ke =

∫

Ωe

BT · D · B dµ,

where Ωe is the domain occupied in E3 by element and dµ is its measure.

But, if the element can be assimilated with an one dimensional manifold
and represented in the graph G by the edge ae, its stiffness matrix becomes

Ke =

∫ sj

si

BT · D · B ds, (3)

where the limits of the integral are the local coordinates of the nodes xi and
xj .

Also, s ∈ [si, sj ] is the coordinate of an arbitrary point x ∈ ae, BT is the
1×2p matrix of derivatives (sometimes, of second order) of the shape function
Φ1(s)=̇Φ(s), B = (BT )T , and D is the characteristic constant expressing the
local material property. The interval length of integration, sj −si = L(= Le),
also plays a role in the element geometry, being another factor that defines
the perviousness re of the element.

Thus, we can conclude that the values of the field k on the edges ‘e’ are
constants of the form re = re(D, 1/L), e ∈ 1, m, because L behaves oneself
”like a resistance” relatively to the action of F.

When the elemental geometry is not important (as, for instance, in the
case of electric circuits) one can takes L = 1, and the integral will be extended
to [0,1].

The case of networks under force with only one parameter per node is not
only interesting but also it is very frequent. This is the case that offer some
possibilities of the FEM generalization by emphasizing of common properties
for a lot of networks, such as the electric circuits, or some beam structures,
or others, which lead to one dimensional problems.

Thus, if p =1, X becomes a scalar field and nodal vectors uiwill have only
one coordinate, as such the upper indices will be omitted.
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At an arbitrary point x ∈ [xi, xj ] the extended state field X̄ : GF → |
has the value X̄(x) = ū with only one state parameter, defined by a single
polynomial of the form

u = a1 + a2s.

The previous system of linear equation, (1), becomes

[
ui

uj

]

=

[
1 si

1 sj

]

·

[
a1

a2

]

Solving this system, one obtains the solution

a1 =
1

sj − si
(sjui − siuj), a2 =

1

sj − si
(−ui + uj).

Using these coefficients it results the following form of interpolation function

u =
1

sj − si
(sj − s)ui −

1

sj − si
(si − s)uj , (4)

which also can be written under the matrix form

u = Φ(s) · ue, with Φ(s) =

[
1

L
sj −

s

L
−

1

L
si +

s

L

]

, ue =

[
ui

uj

]

, (5)

where L = sj−si. From here one obtains B =
[
− 1

L
1
L

]
and, using the formula

of Ke, the elemental stiffness matrix is derived

Ke=re ·

[
1 −1
−1 1

]

, (re =
D

L
) (6)

First we observe that, although the element ae, (e ∈ 1, m), is an arbitrary

one in GF , it appears a typical matrix,

[
1 −1
−1 1

]

, one and the same for all

the m elements of E. On the other hand, when we effectively write any one
of the matrices Ke,(e ∈ 1, m), it is necessary only to multiply this constant
matrix by re, of the form given before; in the case here exposed this factor
is re = D

L
, being the value of the field k on the structural element ae. As

we already seen, sometimes, the number L do not differ from an element to
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another being a (nonzero) constant with respect to E, thus it can be reduced
even to the value 1. At the same time, D is a constant characteristic for each
element of the structure, which also can have a common value for a lot of
elements. In the case of complex structures, with elements of different types,
or made of different materials, D can be even a square matrix of constants;
this is the case of structures consisting in beams, rods, for which D is the
so-called ‘matrix of elastic constants’, of size 6 × 6, etc.(see [12]).

In order to realize the stipulated synthesis the following Kirckhoff’s law,
known from the theory of electric circuits (see [15]):

”The sum of currents traversing a cutset of the network equals zero”, to
the network under force will be extended. In our case this is expressed by the
formula

Fi =
∑

j∈J

Fij , (7)

where J ⊂ {1, 2, .., n} is a family of indices chosen such that the following
condition {[xi, xj ] | j ∈ J} = Star [i] holds. This expresses the fact that:

“ The sum of internal forces incident at a node is equal to the nodal force

which load that node”.

So, if Fi is an external force applied to the network at a node ‘i’, Fij

appears as ‘a part’ of Fi that acts along to the isolated element [xi, xj ] = ae,
at the node ‘i’.

Thus, the well known (in FEM) condition of element equilibrium

Ke · u = q,

where u(= ue) is the matrix of unknowns (with entries: nodal parameters),
Ke · u is the vector of a system of ‘elastic forces’ that has to equilibrate the
system of forces applied to the nodes represented by the vector q(= qe), in
this case becomes

[
ke

αβ

]
·

[
ui

uj

]

=

[
Fij

Fji

]

, (α, β ∈ {i, j}). (8)

In such a manner to every element ae of GF one can associate a symmetric,
but singular matrix, of type 2×2,

[
ke

αβ

]
= re ·

[
1 −1
−1 1

]

, (9)



Basic general concepts in the network analysis 247

called elemental stiffness matrix, which can be adapted for entire class of
one-parameter networks by choosing appropriate values for re.

We remark that the previous matrix equation cannot be solved with re-
spect to the unknowns (ui, uj); more exactly, the linear system of the specified
unknowns is not uniquely determined, according to the condition (b*) in (II).

Extending the stiffness matrix to the set of all nodes (or of whole network)
but having in attention only the considered above element ‘e’, we locate the
nodal connection (i, j) into the n× n matrix Ke

ij corresponding to a network
GF with n nodes. So, we first define the location matrix of an element ‘e’ by

Ke
ij =

[
k̄e

αβ

]
, (10)

where

k̄e
αβ =

{
ke

αβ , {αβ} ⊂ {i, j}

0, otherwise
, (10’)

that is the matrix that locates in the structure the element ae has the form

Ke
ij =












0
... 0

... 0
· · · ke

ii · · · ke
ij · · ·

0
... 0

... 0
· · · ke

ji · · · ke
jj · · ·

0
... 0

... 0












, (ke
ij = ke

ji). (11)

It results that for each e ∈ 1, m the diagonal of the elemental stiffness matrix
is a part of the diagonal of this location matrix corresponding to the chosen
element.

To construct the aggregate rigidity matrix, K, associated to the given
network means to arrange the corresponding stiffness matrices of the elements
in the position of the global array and to add these matrices. Thus we have

K =
m∑

e=1

Ke
ij , (i, j) ∈ {1, ..., n} × {1, ..., n}, (12)

and summation is made for those pairs (i, j) for which in the matrix of inci-
dence, I(G), for a chosen e ∈ {1, ..., m}, δe

i = δe
j = 1 appear.
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The aggregate rigidity matrix K is symmetric. Sometimes it is also a
banded matrix (the nonzero entries form a band along the main diagonal),
but this fact is not true in general. In this sense we can formulate the following
result:

The aggregate rigidity matrix of a network under force is a simple banded

matrix if and only if the network graph is a simple elementary chain.

Examples to illustrate this assertion can be seen bellow.

5 Energy functional. The equilibrium equa-

tion and associated subspaces.

The energy functional of an isolated element [xi, xj ] = ae (the index ‘e’ will
be omitted) by the following expression is defined

E(ae) =
1

2
uT · K · u − uT · q, (13)

where u(= ue) and q(=qe) are column matrices with 2p entries which are
the coordinates of the vectors u i, uj and Fi, Fj , respectively, corresponding
to the extremities xi, xj of the structural element ae, and K(= Ke) is the
stiffness matrix of the same element.

The well known condition of the minimum energy, that is δE(ae) = 0,
leads to

K · u = q, (14)

the equilibrium equation of an element (or of the structure, when K is the
aggregate rigidity matrix). The vector q contains the nodal forces due both
to the external actions (loads) and to the internal ones (stresses, etc.). This
vector can be associated to each element ae by the values of the field F on
the nodes xi and xj , or to a network by the values of F on S.

About the sizes of the matrices in the equilibrium equation we have to
say that when K is the aggregate rigidity matrix this is of type n ′×n ′, where
n ′ = n · p, (n = |S|, p is the number of parameters per node), while u and q
are both of type n ′ × 1.
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If the equilibrium equation is referred to the whole network or to a chain
of it, the previous vectors will belong to some direct sums of subspaces, that
is

u ∈ ⊕n
i=1Ui=̇U, q ∈ ⊕n

i=1Vi=̇V, (15)

where U and V are n · p - dimensional real vector spaces of nodal param-
eters and of nodal forces, respectively, while Ui and Vi, (i ∈ {1, ..., n}), are
subspaces of |n.p isomorphic with the real vector space |p:

Ui, Vi 6 |n.p, dim|Ui = dim|Vi = p. (16)

In these relations n denotes the number of nodes of the network or of the
chain.

So, the considered above vectors can be obtained with the help of relations

u =
∑n

i=1
ui, q =

∑n

i=1
Fi (17)

where the terms in the sums are the images of the n nodes of S1 ⊆ S by one
of the vector fields

X : S1 → |p, X(xi) = ui, (i ∈ {1, 2, ..., n}),

and
F : S1 → |p, F(xi) = Fi, (i ∈ {1, 2, ..., n}),

respectively, where S1 denotes the set of nodes of the chain or of the network.
For instance, a typical term for a component vector of u is of the form

ui = [0, .., 0
︸ ︷︷ ︸

(i−1)p

, u1
i , ..., u

p
i , 0, ..., 0

︸ ︷︷ ︸

(n−i)p

]T ,

for i=1,2,. . . ,n, (n = |S1|). Similar expressions can have the terms of q.
For the one-dimensional problems it is enough to take p = 1 everywhere

above. The aggregate rigidity matrix K can be computed as was shown
before, in the Section 4.

In the sequel the previous concepts on the network theory will be illus-
trated.
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6 Structural networks

This type of networks, of which structural elements are beams or rods, is not
only well known and used in the civil engineering but it is typical for the
general case above mentioned and, so, it is easy to be adapted to the scheme
given before. However, some correspondences will be put in evidence, but
for a structural network consisting in a discretized cable Ω, transformed in a
chain of piecewise smooth arcs interconnected at nodes and structured as a
network under force GF .

Let then Ω = AB be an elastic (extensible) cable of length L, in equilib-
rium state under gravitational forces, with ends A and B, of which supports
at the same level are placed. The Young’s modulus E and the cross section
area A complete the physical and geometrical properties of the cable.

An orthonormal frame Ro = {O; i, j, k} of the Euclidean affine space E3

is chosen such that O ≡ A, v =
−−→
AB is a vector collinear with i, the plane of

the cable is (Oxz), and the orientation of the (Oz) axis is indicated by the
sense of gravitational force.

Now we consider a discretization of Ω consisting in a system {Ωe}n of
arcs Ωe = Mi−1Mi, (e = i ∈ 1, n , M0 ≡ A, Mn ≡ B), as structural elements,
and in a set Γ = {A, Mi}n+1 of nodes. Thus we can associate to Ω a graph
G = (S, E) of which vertex set S consists in the network nodes, that is
φ|Γ (Mi) = Mi, and the edge set E is the collection {Mi−1Mi}n of straight
line segments, the images of the arcs by the transfer mapping φ, i.e. φ(Ωe) =
Mi−1Mi. Let us denote by M

′

i = pr(Ox)Mi, (i ∈ 1, n), the projections of nodes

on the (Ox) axis, and let be di = |prv
−−→
OM i − prv

−−→
OM i−1|, (prv

−−→
OM i > 0). If

the coordinates of the nodes are Mi(xi, 0, zi), then di = xi − xi−1 and the
cable span is given by d =

∑n
i=1 di = ‖ v ‖.

Assume, initially, the cable is in equilibrium under the only one dis-
tributed force on it, g , that is under its weight as a permanent load.

Now we transform Ω in a network under force, GF , by attaching of a
variable load p consisting in snow weight, or/and in the weight of a pipe line;
suppose this last one is bound to the cable at nodes Mi 7→ Pi, where Pi are the
positions of Mi in the new equilibrium state after applying of p, such that the
projections on (Ox) to be conserved, (see Figure 1). So, GF =

⋃n
i=1 Pi−1Pi.

The network GF , in the loaded cable case, by the following pencil of fields
(F, k) on the associated graph Ĝ = (Ŝ, Ê), Ŝ = {Pi}, Ê = {Pi−1Pi}n, can
be defined:

(i). F : Ŝ → |p is a vector field on the vertex set of which values, the
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Figure 1: Discretized cable with additional load

nodal forces F(Pi) = (gi + pi)di, (i ∈ 1, n), by the concentrated loads are
given, and

(ii). k : Ê → |∗+ is a scalar field on the edge set of which values, the
perviousness k(Pi−1Pi) = re, (e = i ∈ 1, n, re > 0), by the material and
geometrical nature of the cable are determined, such as the stretching rigidity
and the length of projections of the structural elements on the level line (AB).
These are constants of the form re = re(D, 1/L) and, when p acts vertically,
we may consider D = EA and we replace the element length Le = si − si−1

by the length di of its projection on (Ox) axis, such that we can take

re =
EA

di
, (e = i = 1, ..., n). (18)

Here also must be mentioned that p = 2, when p acts vertically, and p = 3,
otherwise.

The answer of GF , as a consequence of the (F, k) presence, consists in:

(I). a vector field X : Ŝ → |p, of which values at nodes, the nodal vectors
X(Pi) = z(xi) + w(xi), by the sum of deflections before and after applying of
the load p is defined, and

(II). a bipartite scalar field F̃ : E → | × |, of which values on the edges
F̃ (Pi−1P i) = (N+

i−1, N−
i ), by the axial tensile forces is given.

In (II) we used the notations N−
i = −

∥
∥ N−

q (xi)
∥
∥ and N+

i = +
∥
∥N+

q (xi)
∥
∥,

where q = g+p is the total load, Nq(x) = N−
q (x) + N+

q (x) is the axial
tensile force acting tangentially to the smooth arc of GF at a point P, of
abscise x, decomposed at each point Pi,(i ∈ 1, n, where the curve is not
necessarily differentiable), in the two components N−

q (xi) ∈ lim
P→Pi

TP (Pi−1Pi)

and N+
q (xi) ∈ lim

P→Pi

TP (PiPi+1). Moreover, |N−
i | = |N+

i | always when q is a
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vertical load.

It follows that both the conditions (a) and (b) of F̃ are satisfied.

The meaning of these assertions can be found in our paper [8].

Thus the algorithm to obtain the aggregate stiffness matrix for the whole
structure GF can be applied as was described in 4.

Using (6) and (18) we have the following elemental stiffness matrix

Ke = EA ·

[
d−1

i −d−1
i

−d−1
i d−1

i

]

=
[
ke

αβ

]
, (α, β = i − 1, i).

If we denote d−1
i =̇ai, (i ∈ 1, n), one obtains the aggregate rigidity matrix

K = EA ·












a1 −a1 0 · · · 0 0
−a1 a1 + a2 −a2 · · · 0 0
0 −a2 a2 + a3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · an−1 + an −an

0 0 0 · · · −an an












.

We observe K is a band matrix because the graph GF is a chain. It can be
used to compute the vertical displacements w(xi) after applying the load p.

Numerical example

A practical example for such a cable both with a numerical approach
and an analytical solution was studied in our paper [8]. Let us consider an
elastic cable of length L = 100 m, with supports placed at the same level, and
endowed with a supplementary load p of 60 daN/m2; the Young’s modulus
of the cable is E= 1.2*104 and the cross section area is A = 31.462cm2.
Using a C program, called “Cable 1”, for a discretization containing then
arcs of equal length, the aggregate stiffness matrix K and the vector of nodal
displacements were computed. For instance, by solving (14), this last one was
obtained as

X(Pi) = [0 0.14 1.12 2.60 4.17 7.03 3.98 2.47 1.12 0.12 0.01]T .
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7 Electric circuits as networks under force

We consider an electric circuit consisting of a voltage source, some operational
voltage amplifiers, linear resistors, and linear capacitors. Thus, it appears as
a network with structural elements: resistors and capacitors, and so we shall
associate to it two kinds of stiffness matrices. The model which we propose
in this case is the following:

As nodal forces loading some nodes of the circuit we consider the currents
applied at those nodes due the voltage source or the amplifiers, in accordance
with the mathematical modelling made in the case of modified nodal voltage
analysis, and as internal forces appearing in the structural elements, the cur-
rents traversing the branches. The scalar field of perviousness either by the
conductivity or by capacity of the structural elements will be represented.
Finally, the nodal vectors (here with only one component) will be the volt-
ages at nodes, which represent just the nodal parameters. So, this model
corresponds to a network under force GF with only one parameter per node,
(p = 1).

In such a manner we defined the four considered above functions:

F : S → |p, F(xi) = Ii(≥ 0), (i ∈ 1, n; p = 1),

k : E → |∗+, (k1)k(ae) = Ge(= 1/Re), or

(k2)k(ae) = Ce, (e ∈ 1, m),

X : S → |p, X(xi) = Ui, (i ∈ 1, n; p = 1), and

F̃ : E → | × |, F̃ (ae) = (Iij , Iji), (ae = [xi, xj ]),

where Ge, Re, C
e denote the conductance, the resistance, and the capacitance,

respectively, of the structural element ae, (e ∈ 1, m), the nodal values Ui are
the voltages at the nodes xi, (i ∈ 1, n), and Ii, Iij are the currents loading the
nodes xi, or traversing the structural elements [xi, xj ], respectively.

In order to separate the set E of structural elements (resistors and capaci-
tors) one by one we choose the vertex set S of the graph G = (S, E) associated
to GF such that to comprise each of them quite between two nodes of S. Thus
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the values (k1) and (k2) in the list given above are exclusively one another.
The voltage source and the operational amplifiers do not be placed at nodes.
However, these define the field F of external forces loading some nodes, k is
given by network nature, X and F̃ are induced fields on the working network
GF .

If the element ae = [xi, xj ](∈ E) is a linear resistor, according to the
Ohm’s law, we have

Iij = Ge(Ui − Uj),

and, if it is a linear capacitor, also we have

Iij = Ce(U̇i − U̇j),

for i, j ∈ 1, n and e ∈ 1, m, where U̇ = dU/dt (t denotes time).
We now observe that in both cases the corresponding linear or differential

equations associated to these relations can be written as matrix equations of
the form (8) by using some specific stiffness matrices:

[
Iij

Iji

]

=
[
ke

αβ

]
·

[
Ui

Uj

]

,

[
Iij

Iji

]

=
[
he

αβ

]
·

[
U̇i

U̇j

]

, (α, β = i, j), (19)

where
[

ke
αβ

]

and
[

he
αβ

]

are the stiffness matrices of the form (9) with re = Ge

or re = Ce, as perviousness of the element ‘e’, with respect to the fact that
this one is a linear resistor or a linear capacitor, respectively.

Now we define the location matrix of each element ‘e’, separately for the
electric circuit elements: resistors or capacitors, according to (10), and we
obtain

Ke
ij =

[
k̄e

αβ

]
and He

ij =
[
h̄e

αβ

]
. (20)

The aggregate stiffness matrices of the network will be

K =
m∑

e=1

Ke
ij and H =

m∑

e=1

He
ij , (21)

where the sums contain nonzero terms only for those e ∈ 1, m which corre-
spond to the resistors and capacitors, respectively, as structural elements.
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The matrices K and H can be used to write the network equilibrium
equations, which in the case of electric circuits on the Kirchhoff’s laws are
based.

Writing out the Kirchhoff’s equations for all cut sets isolating the nodes
we obtain the following system of implicit ODEs that gives the equilibrium
of GF

H u̇ + K u = q, (22)

where K and H are the primary and secondary stiffness matrices, respectively,
u is the column-vector of nodal values of voltages, and q is the column-vector
of currents loading the nodes of the network.

If H is a regular matrix we can obtain the normal form of matrix equation
(22)

u̇ = A u + B, (23)

where A = −H−1 ·K, B = H−1 ·q, and the system can be solved in an usual
way.

But there are some cases when H is singular. Then the system of ODEs
is of index > 0. Such a system also can be solved by splitting it up in a semi-
implicit form containing both differential equations and algebraic equations.
The method was given by Kampowsky, Rentrop and Schmidt ([15, pp.32-39]).
They also made a very important index-classification of implicit ODEs.

Example.

In order to illustrate the previous stiffness method of circuit analysis and
to put in evidence the differences between this one and that given in [15] for
a modified nodal voltage analysis we choose to present the same circuit as
that in the mentioned above paper. It consists of an initial voltage source
with an initial voltage signal Uin, two linear resistors with resistances R1 and
R2, two linear capacitors with capacitances C1 and C2, and two operational
amplifiers generating the currents I1 and I2 that load two nodes of the circuit,
as in Figure 2.

In Figure 3 one illustrates the field of currents (as external forces) that
loads the node set S = {x1,. . . ,x5}, the scalar field of perviousness (capaci-
tances and conductances) on the edge set E = {a1,. . . , a4}, (a1 = [x1, x2],
a2 = [x1, x5], a3 = [x2, x3], a4 = [x3, x4]), the field of voltages (as nodal
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Figure 2: The network GF (Circuit with a double operational amplifier)
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Figure 3: The graph G associated to the network

parameters) on the node set, and the induced system of currents (as internal
forces) on the edge set of the graph. For example, if we have in view the
elements :

a1 = [x1, x2], then r(a1) = G1(= 1/R1) and the equilibrium equation is

G1

[
1 −1
−1 1

]

·

[
U1

U2

]

=

[
I12

I21

]

,

or

a2= [x1, x5], then r(a2) = C1 and the equilibrium equation is
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C1

[
1 −1
−1 1

]

·

[
U̇1

U̇in

]

=

[
I15

I51

]

, etc.

The correspondent location matrices are

K1
12 =









G1 −G1 0 0 0
−G1 G1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









, and H2
15 =









C1 0 0 0 −C1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−C1 0 0 0 C1









.

respectively.
We observe we have two of a type of such nonzero location matrices and

using the formulas (20), (10’) and (21) we can obtain the two aggregate
stiffness matrices associated to the network

K =









G1 −G1 0 0 0
−G1 G1 0 0 0
0 0 G2 −G2 0
0 0 −G2 G2 0
0 0 0 0 0









, H =









C1 0 0 0 −C1

0 C2 −C2 0 0
0 −C2 C2 0 0
0 0 0 0 0
−C1 0 0 0 C1









.

Now the equilibrium equation of the whole network can be written under the
form (22), where the following vectors will be used: u = [U1 U2 U3 U4 Uin]T ,
u̇ = [U̇1 U̇2 U̇3 U̇4 U̇in]T , and q = [0 I1 0 I2 I3]

T with I3 = C1(U̇in − U̇1).

8 Pipe line networks for water supply

In their book [13] the authors suggested the possibility to make an analogy
between a water supply network and an electric circuit, by putting in corre-
spondence the currents traversing an RLC circuit with water flowing in a pipe
and the voltage drop with difference in pressure at the two ends of the pipe.
However, this analogy cannot be completely made even for some simple types
of circuits and water supply networks by using only the enumerated above
two pairs of correspondent terms and by writing out their equilibrium equa-
tions provided by Kirchhoff’s laws. In order to obtain a new improvement of
a mathematical model it is necessary to analyze more technical details.
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Let us consider a ring network of water supply, Ω, of which mathematical
models with the help either of a directed planar graph ~G = (S, A), or of an
undirected topological graph G = (S, E) can be introduced; S = {xi}n is
the set of vertices that corresponds to the network nodes and to the set of
structural elements (pipes){Ωe} it corresponds the set A = {~ae}m of arcs of
~G, (Figure 4), or the set E = {ae} of edges of G. Thus we can organize
Ω either as a network with flow GΦ, or as a network under force GF . To
apply FEM we consider only this last case, but the graph which will be used
is ~G for which the water yield senses give the orientation of the arcs. So, we
endow this graph with the fields indicated in the Section 3 for a network of
GF type, as follows.

x0 R

q(xi) q(xj)

xi · · xj

a
e

· ·

· xn

CR

Figure 4: The graph ~G associated to the ring network

In this section the notation ~ae = (xi, xj) means that there exist two nodes
xi and xj connected by the arc ~ae ∈ A.

For every pipe of the ring water network, represented in the graph ~G
by an arc ~ae, we denote by Qt(~a

e) the transitory yield and by Qc(~a
e) the

consumption yield. Then the mean flow rate ϕ on GF will be given by its
values on the arcs

ϕ(~ae) = Qt(~a
e) + q(~ae),

where q(~ae) = Qc(~a
e)/2 is the mean consumption yield on the pipe (because,

if there exists a lot of consumers along the considered above pipe one consider
the arithmetic average of the individual consummations). Also the following
condition is needed: Qt(~a

e)+Qc(~a
e) 6 c(~ae), where c(~ae) denotes the capacity

of ~ae; the case of equality means the arc is saturate.
Now we define the field F on S by
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F(xi) : =
∑

~ae∈ω−

x

Qt(~a
e) + σ(xi), (24) (24)

where ω−
x , (x = xi), denotes the subset of arcs of A incident towards interior

with the vertex x, and σ(xi) denotes the water surplus (excess) at the same
node provided occasionally by some reservoir; for a current node xi ∈ S we
have σ(xi) > 0. Finally, we observe that in this case we can take p = 1 and
the Kirchhoff’s ”currents law” (KCL) can be applied as:

F(xi) =
∑

−→a e∈ω+
x

ϕ(−→a e) + q(xi), (25)

where ω+
x , (x = xi), is the set of all arcs of A incident towards exterior with

the vertex x, and q(xi) denotes the water consumption at the same node
(Figure 5).

q(xi)

xi · · xj

s (xi)

Figure 5: Water consumption at an isolated node

The scalar field values on A, k(ae)=̇re, (e ∈ 1, m), in this case are given
by

re = ko ·
Dn

L
, (26)

where ko is a specific constant, L and D are the length and diameter of the
pipe represented by the arc ~ae, respectively, and n is a number in the closed
real interval [1.85, 2.0], (according to [11]).

The two assignments appearing in the network GF , as consequence of the
presence of the pencil (F, k), are the following:

The first is a vector field on S, X : S → |p, of which values, u i, the nodal
vectors, in the case of water supply network are defined by the pressures at
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nodes X(xi) := hi, (i ∈ {1, 2, ..., n}); the difference he = hi − hj is the head

loss along the arc ~ae = (xi, xj). Again we observe that p = 1, as well as for
electric circuits. We put u = [h1 h2 ... hn]T for the vector of nodal parameters.

The second is a bipartite scalar field on the arc set A, F̃ : A → |×|, given
by F̃ (~ae) = (Fij , Fji), (~ae = (xi, xj)),where the internal forces are defined
as

Fij := [ϕ(~ae)]2 if ~ae = (xi, xj) and ~ae ∈ ω+
x , (x = xi), and

Fji := −[ϕ(~ae)]2 if ~ae = (xi, xj) and ~ae ∈ ω−
x , (x = xi),

conventionally, for the opposite sense of the arc representing water flowing.
The equilibrium equation of each ring and, finally, of the whole network,

requires that the sum of all head losses vanishes. This is equivalent in the
electric circuit theory with the well known Kirchhoff’s ‘voltage law’ (KVL).
Symbolically, it can be written as ([11]):

∑
he = 0, with he = sQn, s being

the resistance modulus of a pipe ‘e’ and Q is the mean flow on it. Naturally,
this is true for an ideal water supply network. Usually, a correction of the
form (Q ± ∆q) on each pipe, when

∑
he = ∆h(> 0), is needed.

In accordance with the previous considerations on each arc ~ae ∈ ~G we
have

[ϕ(~ae)]2 = re(hi − hj), if ~ae = (xi, xj), (27)

where re denotes the perviousness, given here by the value (26).
In order to establish the equilibrium equation of the whole network first

will be written this equation for a current pipe ‘e’ under the matrix form

[
ke

αβ

]
·

[
hi

hj

]

=

[
(Qe)2

−(Qe)2

]

, (α, β ∈ {i, j}), (28)

where Qe = ϕ(~ae)is the flow rate of the corresponding arc ~ae and
[

ke
αβ

]

is its

stiffness matrix (of the form (9) with regiven by (26).
Now, using (10) and (10’), we define the location matrix Ke

αβ for the
structural element ‘e’, and, with the help of (12), we can obtain the aggregate
rigidity matrix K.

Finally, the asked equilibrium equation (14), K · u = q , can be written
by using the vector q = [q(xi) − σ(xi)]

T of nodal forces.
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Osnovni opšti koncepti analize mreža

UDK 517.9

Ovaj pregledni rad se bavi studijom onih tipova materijalnih mreža koje se
sreću u gradjevinarstvu, elektrotehnici, mehanici i hidrotehnici, a njihovo
ponašanje vodi linearnim problemima rešivim pomú metode konačnih eleme-
nata adekvatnim algoritmima.

Prikazana je unitarna teorija mreža koj se, zatim, ilustruje primerima
strukturnih mreža u gradjevinarstvu, elektičnim kolima, mrežama vodovod-
nim kao i ravanskim i prostornim mehanizmaima.

Pažnja se koncentrǐse na pokazivanje esencijalnih osobina i koncepata
analize mreža razdvajajúı mrežu pod dejstvom sile od ostalih vrsta ma-
terijalnih mreža. Takvoj mreži je pridružen ravanski, povezan, usmeren ili
meusmeren graf. Ona je opremljena takodje nekim vektorskim poljima na
skupu diskontinualnih tačaka.


