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Abstract

In this paper we shall consider a class of singularly perturbed
problems described by the ordinary differential equation of sec-
ond order with small parameter multiplying the highest deriva-
tive and the appropriate boundary conditions, which describes
certain flow problems in fluid mechanics.

The solution of such problems displays boundary layers where
the solution changes its values very rapidly.

The domain decomposition will be performed determining
layer subintervals which are adapted to the possibility of spec-
tral approximation. The division point for the boundary layer
is determined using appropriate resemblance function, so that
the length of the layer subinterval varies with the degree of the
truncated orthogonal series.

The solution out of boundary layer is aproximated by the so-
lution of the reduced problem, and the layer solutions is aprox-
imated by truncated orthogonal series giving a smooth approx-
imate solution upon the entire interval. The coefficients of the
truncated series are evaluated using collocation technique.

The order-of-magnitude of the error is estimated using the
principle of inverse monotonicity and the rate of convergence
for spectral approximations.
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1 Introduction

We shall consider a self-adjoint boundary layer problem described by

Lεy ≡ −ε2y′′(x) + g(x)y(x) = h(x), 0 ≤ x ≤ 1, (1)

y(0) = A, y(1) = B, (2)

where function g(x) satisfies the condition

g(x) ≥ K2 > 0, K ∈ R. (3)

It is known that under the assumption (3) the self-adjoint problem has
the unique solution y(x) ∈ C2[0, 1]. In general, the solution displays
two boundary layers of order O(ε). If we denote by z(x) the solution
of the reduced problem

g(x)z(x) = h(x), 0 ≤ x ≤ 1,

then, if z(0) 6= A, the boundary layer occurs at x = 0, and if z(1) 6= B,
we have the boundary layer at the endpoint x = 1.

The problem (1), (2) represents mathematical model of the large
number of phenomena in sciences such as conduction and diffusion
in fluid dynamics, theory of semiconductors and catalysis processes
in chemistry and biology. It is of the great interest to describe the
behavior of the exact solution of these problems, especially inside the
layers.

Standard numerical methods give very poor results, so lately various
special procedures, such as special grids, introduction of relaxation
parameters and special discretizations, were developed.

Standard spectral approximation also fails when applied to singu-
larly perturbed problems. In several papers (see e.g. [1]) the authors
have developed the modification of standard spectral approximation,
which assumes the division of the basic interval [0, 1] by the special pro-
cedure, in such a way that the length of the layer intervals is adapted to
the application of truncated orthogonal series which is used to approxi-
mate the exact solution inside the layers. Out of the layers the reduced
solution z(x) = h(x)

g(x)
was used to approximate the exact solution. This
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procedure has given very accurate results for small values of the pertur-
bation parameter, even when low degree orthogonal polynomials were
used.

The error of that approximation depends on the error at the division
point, which can be easily estimated, and the error inside the layer
which can’t be estimated exactly. In this paper the numerical rate
of convergence is used to enable us to estimate the accuracy of the
spectral approximation of the layer solution.

In Section 2 the problem (1), (2) will be transformed in such a way
that we can approximate layer solutions by the truncated Chebyshev
series.

In Section 3 the procedure for the appropriate domain decomposi-
tion will be described.

In Section 4 the spectral approximation for the layer solution and
the appropriate matrix equation will be constructed.

In Section 5 the error estimate for the layer solution will be dis-
cussed introducing the rate of exponential convergence for spectral ap-
proximation.

In Section 6 the rate of convergence for several well known numerical
examples will be evaluated and the proposed error estimate compared
to the exact error.

2 Transformation of the problem

Let us approximate the exact solution by

u(x) =





ul(x) 0 ≤ x < x0

z(x) x0 ≤ x ≤ 1− x1

ur(x) 1− x1 < x ≤ 1,
(4)

where ul(x) and ur(x) are the left and right layer solutions. They are
determined by the boundary value problems

Lεul ≡ −ε2u′′l (x) + g(x)ul(x) = h(x), 0 ≤ x ≤ x0, (5)

ul(0) = A, ul(x0) = z(x0) (6)

and

Lεur ≡ −ε2u′′r(x) + g(x)ur(x) = h(x), 1− x1 ≤ x ≤ 1, (7)
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ur(1− x1) = z(1− x1), ur(1) = B. (8)

Here x0, x1 ∈ (0, 1
2
) denote values that are going to be determined in

the next section in such a way that layer solutions can be approximated
in the best possible way by the truncated Chebyshev series.

3 Domain decomposition

The idea is to perform the domain decomposition, using the division
points x0 and 1 − x1, in such a way that it provides the possibility of
high accurate spectral approximation of the layer solutions ul(x) and
ur(x).

Numerical examples show that a very small change of values x0 and
x1 may cause that the error of the spectral approximation increases
hundred times or even more.

The authors have developed a special procedure which enables to
determine division points in terms of the degree of the truncated Cheby-
shev series which approximates layer solution. Here, we shall carry out
this procedure for the left layer solution.

As the layer length is of order O(ε), we shall represent the division
point x0 in the form x0 = cε. The procedure bases on the introduction
of the resemblance function for the layer solution ul(x).

Definition 1 The resemblance function for the left layer solution of
the problem (1),(2) upon the interval [0, x0] is the polynomial pn(x) of
degree n ≥ 2, such that

1. pn(0) = A and pn(x0) = z(0),

2. x0 is the stationary point for pn(x),

3. sgnpn(x) > 0 if A > z(0) and sgnpn(x) < 0 if A < z(0).

Items 1.–3. provide that the resemblance function pn(x) upon the
interval [0, x0] behaves very closely to the exact solution y(x).

Lemma 1 The polynomial

pn(x) = z(0) + (A− z(0))

(
1− x

x0

)n

, n ≥ 2, (9)



Approximate solution for SPP... 205

represents the resemblance function for the left layer solution of the
problem (1),(2) upon the interval [0, x0].

Proof: We have to verify the conditions from Definition 1.

1.

pn(0) = z(0) + (A− z(0))

(
1− 0

x0

)n

= A

and

pn(x0) = z(0) + (A− z(0))

(
1− x0

x0

)n

= z(0).

2.

p′n(x) = −n(A− z(0))

x0

(
1− x

x0

)n−1

.

When the left layer exists, A−z(0) 6= 0 and we have that p′n(x) =
0 only for x = x0, so x0 is the stationary point.

3.

p′′n(x) =
n(n− 1)(A− z(0))

x2
0

(
1− x

x0

)n−2

.

For x ∈ [0, x0] it is obvious that

sgnp′′n(x) = sgn(A− z(0)).

In order to determine the division point x0 we shall ask that the
resemblance function has to satisfy the differential equation (5) at the
layer point x = 0. This will give us

Lemma 2 The value c that determines the division point x0 = cε is
given by

c =

√
n(n− 1)

g(0)
. (10)

Proof: If we introduce (9) into the differential equation (5), at the
point x = 0 we obtain

−ε2n(n− 1)

c2ε2
(A− z(0)) + g(0)A = h(0).
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With respect to h(0) = g(0)z(0), the solution of the above equation for
c, c > 0, will give us (10).

The existence of the square root in (10) is provided by the assump-
tion (3).

4 Spectral approximation for the layer so-

lution

In this section we shall carry out the construction of the spectral ap-
proximation for the left layer solution. The procedure for the right one
is the same.

Once the division point x0 is determined, we introduce the stretch-
ing variable

t =
2x

x0

− 1,

which maps the layer subinterval [0, x0] into [−1, 1].
Thus, transforming (5),(6) we come to the problem

Llw ≡ −4w′′(t) + c2Gl(t)w(t) = c2Hl(t), −1 ≤ t ≤ 1, (11)

w(−1) = A, w(1) = z(x0), (12)

where we have used the notation

Gl(t) = g
(

x0(t+1)
2

)
, Hl(t) = h

(
x0(t+1)

2

)
.

Now, the obtained problem can be solved by the use of standard
spectral technique, approximating w(t) by the truncated Chebyshev
series

wn(t) =
n∑

k=0

′akTk(t). (13)

The sign ′ in
∑′, formula (13), means that we take a0

2
instead of a0 for

k = 0.
The most common technique for evaluating the coefficients ak, k =

0, . . . , n, is collocation. Applying this method we come to the following
theorem:
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Theorem 1 Let us define matrices

L = {`ik}(n+1)×(n+1), H = {hi}(n+1)×1

with
`0k = (−1)k, `nk = 1, k = 0, . . . , n ,

`ik = LlTk|t=ti , hi = c2Hl(ti), i = 1, . . . , n− 1,

where ti = − cos iπ
n

are Gauss-Lobatto nodes and

h0 = A, hn = z(x0),

then the matrix a = {ak}(n+1)×1, where ak are Chebyshev coeffients of
the truncated series (13), is the solution of the matrix equation

L · a = H. (14)

Proof: If we introduce the truncated Chebyshev series wn(t) defined
in (13) into the differential equation (11) and ask that it is satisfied at
Gauss-Lobatto nodes, we come to

n∑

k=0

′ (−4T ′′
k (ti) + c2Gl(ti)Tk(ti)

)
ak = c2Hl(ti), i = 1, . . . , n−1, (15)

which represents the central n−1 rows of the matrix equation (14). In-
troducing wn(t) into boundary conditions (12), according to Tk(±1) =
(±1)k, we obtain two more equations

n∑

k=0

′(−1)kak = A,

n∑

k=0

′ak = z(x0), (16)

which represent the first and the last row of the matrix equation (14).
After solving matrix equation (14) for the unknown spectral coeffi-

cients ak, k = 0, . . . , n, we can represent the spectral approximation of
the left layer solution upon subinterval [0, x0] as

vn(x) =
n∑

k=0

′akTk

(
2x
x0
− 1

)
. (17)
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5 The error estimate and the rate of con-

vergence

Using the proposed domain decomposition we can see that out of the
boundary layers, i.e. for x ∈ [x0, 1− x1], the exact solution is approxi-
mated by the reduced solution z(x). It is well known (see [5]) that the
error of this approximation is given by

|y(x)− z(x)| < C(ε2 + e−
Kx
ε + e−

K(1−x)
ε ), (18)

where C is a constant independent of K and ε, K > 0 is given by (3).
Inside the boundary layer, for x ∈ [0, x0], we have that

|y(x)− vn(x)| ≤ |y(x)− ul(x)|+ |ul(x)− vn(x)|.

The first term represents the error caused by the boundary condition
at the point x = x0 and it can be estimated by the use of the principle
of inverse monotonicity. As

Lε(±(y−ul)) = 0, y(0)−ul(0) = 0, ±(y(x0)−ul(x0)) ≤ |y(x0)−z(x0)|,

we easily come to the conclusion that for all x ∈ [0, x0]

±(y(x)− ul(x)) ≤ |y(x0)− z(x0)|.

According to (18), with respect to (10), this gives

|y(x)− ul(x)| < C(ε2 + e
−K

√
n(n−1)√
g(0) ), x ∈ [0, x0]. (19)

The second term

|ul(x)− vn(x)| = |w(t)− wn(t)|

represents the error of the spectral approximation for the solution ul(x)
of the problem (5),(6), i.e. (11),(12). This error is generated by

truncation error – defined as the error made by neglecting all spec-
tral coefficients ak, k > n, for the exact infinite Chebyshev series
which represents w(t),
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discretization error – which represents the difference between the
first n terms of the exact infinite Chebyshev series and corre-
sponding terms of the truncated Chebyshev series wn(t),

interpolation error – the error made by approximating w(t) by
truncated Chebyshev series whose coefficients are chosen to make
the approximate agree with the solution w(t) of the differential
equation (11) at each of n− 1 collocation points.

In order to estimate this error we shall apply two Rules-of-Thumb
stated by Boyd in [3]

Assumption of equal errors: The discretization and interpolation
errors are of the same order-of-magnitude as the truncation error.

Last coefficient error estimate: The truncation error is the same
order-of-magnitude as the last coefficient retained in the trunca-
tion for series with geometric convergence.

The rate of convergence is determined using the exponential index of
convergence

r = lim
n→∞

log | log(|an|)|
log n

. (20)

The convergence is said to be geometric if r = 1.

6 Numerical examples

Example 1

We shall consider the boundary layer problem given in [4]

−ε2y′′(x) + y(x) = − cos2 πx− 2(επ)2 cos 2πx, 0 ≤ x ≤ 1,

y(0) = 0, y(1) = 0.

The reduced solution is z(x) = − cos2 πx, so we have boundary layers
at both endpoints. The results are given only for the left layer, and for
the right layer they are identical.

The layer subinterval, according to (10), is [0, x0] = [0,
√

n(n− 1)ε].
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Table 1: The numerical rate of exponential convergence

log | log(|an|)|
log n

n = 8 n = 16 n = 32 n = 64

ε = 2−8 0.9958 0.7554 0.6044 0.5036

ε = 2−16 1.0561 0.9980 0.8526 0.7105

ε = 2−32 1.0561 0.9986 0.9763 0.8951

ε = 2−64 1.0561 0.9986 0.9763 0.9688

In Table 1 we give numerical rate of exponential convergence for
several values of ε with n up to n = 64, which shows almost geometric
convergence of spectral approximation for ε sufficiently small.

Figure 1 presents the exact error d(x) for ε = 2−16 and n = 8, d(x)

is defined by d(x) :=

{
y(x)− vn(x) x ∈ [0, x0)
y(x)− z(x) x ∈ [x0, 2x0] .

We can see that

ca= 7.48  n= 8  epsilon =2^(–16)

–0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

5e–05 0.0001 0.00015 0.0002x

Figure 1: The exact error upon the interval [0, 2x0] for ε = 2−16, n = 8

the maximal error is achieved at the division point x = x0, due to the
difference between the value of the exact solution y(x0) and the value
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of the reduced solution z(x0) which we use for the boundary condition
in the construction of the approximate solution.

In Table 2 we give maximal error d(x) inside the layer subinterval
(apart from the division point x = x0) and the value of the last retained
coefficient in the truncated Chebyshev series for several values of ε and
n. It is easily seen that the order of magnitude of the maximal error is

Table 2: The maximal error inside the layer and the last coefficient

ε n = 8 n = 16 n = 32 n = 64
|an| d(x) |an| d(x) |an| d(x) |an| d(x)

2−8 2.6e-04 3.6e-04 2.5e-07 3.0e-04 3.3e-13 3.0e-04 7.8e-25 3.0e-04
2−16 2.6e-04 1.2e-04 2.5e-07 1.2e-07 3.3e-13 4.6e-09 7.8e-25 4.6e-09
2−32 2.6e-04 1.2e-04 2.5e-07 1.2e-07 3.3e-13 1.6e-13 7.8e-25 1.1e-18
2−64 2.6e-04 1.2e-04 2.5e-07 1.2e-07 3.3e-13 1.6e-13 7.8e-25 3.8e-25

the same as that of the last coefficient in the series.

Example 2

We shall consider the boundary layer problem given in [2]

−ε2y′′(x)+
1− ε

(2− x)2
y(x) =

(1− ε)(x− 1)

(2− x)2
, 0 ≤ x ≤ 1, y(0) = 0, y(1) = 0.

The reduced solution is z(x) = x−1, so we have only the left boundary
layer. The layer subinterval is [0, x0] = [0, 2

√
n(n− 1)ε].

In Table 3 we give numerical rate of exponential convergence for
several values of ε with n up to n = 64, which shows geometric conver-
gence of spectral approximation. In Table 4 we give maximal errors
inside the layer subinterval (apart from the division point x = x0) and
the values of the last retained coefficient in the truncated Chebyshev
series for several values of ε and n.
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Table 3: The numerical rate of exponential convergence

log | log(|an|)|
log n

n = 8 n = 16 n = 32 n = 64

ε = 2−8 1.0587 1.0029 0.9839 0.9832

ε = 2−16 1.0561 0.9986 0.9763 0.9689

ε = 2−32 1.0561 0.9986 0.9763 0.9369

ε = 2−64 1.0561 0.9986 0.9763 0.9688

Table 4: The maximal error inside the layer and the value of the last
coefficient

ε n = 8 n = 16 n = 32 n = 64
|an| d(x) |an| d(x) |an| d(x) |an| d(x)

2−8 2.5e-04 1.2e-04 2.1e-07 9.9e-08 1.6e-13 7.2e-14 2.9e-26 1.2e-26
2−16 2.6e-04 1.2e-04 2.5e-07 1.2e-07 3.3e-13 1.6e-13 7.7e-25 3.8e-25
2−32 2.6e-04 1.2e-04 2.5e-07 1.2e-07 3.3e-13 1.6e-13 7.8e-25 4.2e-22
2−64 2.6e-04 1.2e-04 2.5e-07 1.2e-07 3.3e-13 1.6e-13 7.8e-25 3.8e-25
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Aproksimacija graničnih slojeva ortogonalnim
Čebisevljevim redom

UDK 517.955

Posmatra se jedna klasa singularno poremećenih problema opisanih
običnom diferencijalnom jednačinom drugog reda sa malim parametrom
uz drugi izvod i odgovarajućim konturnim uslovima, koji opisuju prob-
leme protoka u mehanici fluida. Reenja ovakvih problema ispoljavaju
granične slojeve u kojima rešenje naglo menja svoje vrednosti. Izvrena
je dekompozicija domena u kojoj se odredjuju slojni podintervali koji
su prilagodjeni primeni spektralne aproksimacije. Deobena tačka za
slojni interval odredjuje se pomoću funkcije sličnosti tako da dužina slo-
jnog intervala zavisi od stepena konačnog ortogonalnog reda. Rešenje
van sloja aproksimirano je rešenjem redukovanog problema, a rešenje
unutar sloja konačnim ortogonalnim redom što daje glatku aproksi-
maciju nad celim intervalom. Koeficijenti konačnog reda izračunati
su primenom kolokacione tehnike. Red veličine greške je ocenjen na
osnovu principa inverzne monotonije i reda konvergencije spektralne
aproksimacije.


