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Abstract

An analysis is made for the transient response behavior of the
both, outer and inner, thermal boundary layers of a fluid sphere
moving at constant acceleration with internal circulation in an-
other viscous fluid of large extent initially at rest under the
condition of large Reynolds and Peclet numbers. The distur-
bance is initiated by a step change in temperature of either the
continuous or disperse region fluids. The approximate solutions
of the governing energy equations are found by using the invis-
cid approximations for the flow fields.
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Nomenclature 1

T temperature
R droplet radius
z̈ droplet translatory acceleration
t time
τ dimensionless time
r spherical radial coordinate
θ spherical polar angle measured from front stagnation
q heat flux
Nu Nusselt number
a thermal diffusivity
λ thermal conductivity
µ viscosity
ν kinematic viscosity
ρ density

Subscripts

0 refers to initial condition
e refers to outer region
i refers to inner region
∞ refers to large distance from the droplet

1 Introduction

A knowledge of the heat transfer associated with a moving droplet is
of importance to a variety of industrial processes. So, in a number
of direct contact exchangers, for instance, one fluid is dispersed in the
form of droplets moving in another fluid. The monograph by Levich [1]
gave an account of the methods of analysis and the problems related
to the prediction of diffusional flux to a moving drop.

Boussinesque [2] was the first to obtain a solution for the heat trans-
fer rate from a fluid sphere of constant surface temperature, moving at

1All quantities with an overscore denote averages over the droplet surface.
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a constant speed in another fluid of infinite extent. Major assumptions
used in the analysis were: constant properties, irrotational flow field,
and thin thermal layer. A number of theoretical analyses of the steady
motion of a gas bubble in liquids at large Reynolds numbers have been
published since 1949. The first solutions were due to Levich [3] who
assumed the bubble caused a small perturbation in the basic invis-
cid flow. Levich’s solution has been improved by Chao [4] and Moore
[5] through the reexamination of the linearized steady-state boundary
layer equations. The linearizing theory has also been extended to the
steady motion of a liquid drop in another liquid of comparable density
and viscosity by Harper and Moore [6] and by Parlange [7].

The process of unsteady boundary-layer formation was examined
especially past a body impulsively started, much more rarely for the
accelerated motions. So, the boundary-layer formation in flow past a
fluid sphere, assuming that the internal motion of the enclosed gas has
a negligible effect on the external liquid motion, was studied by Chen
[8], describing the boundary-layer growth on a spherical bubble due to
an initial discontinuity in tangential stress at the bubble surface. The
both outer and inner flows of a spherical gas bubble started impulsively
from rest in a viscous liquid of infinite extent was examined in [12]. Fi-
nally, the transient heat and mass transfer to a fluid sphere moving at
constant velocity in another fluid was studied by Chao [9]. The govern-
ing energy or mass concentration equations are solved using similarity
transformations in the case of the inviscid external and internal flow
fields. This paper deals with the both outer and inner thermal bound-
ary layers due to a spherical droplet put into the accelerated motion
from rest.

2 Analysis

Let us consider a fluid sphere of radius R put into the motion with
constant acceleration z̈ in another fluid of infinite extent. We imagine
that at time t=0 the temperature of the continuous phase fluid under-
goes a step change from an initial uniform and constant temperature
T0 to T∞. It is desired to examine the transient response behaviour of
the thermal boundary layers both inside and outside of the droplet.
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We assume a fully developed internal circulation. Winnikov and
Chao [11] have experimentally demonstrated that, in highly purified
systems, moving droplets invariably exhibit internal circulation. On
the other hand, since only large droplet Reynolds number is of inter-
est, we are going to use the inviscid approximations for the flow fields.
This is particularly true if the internal circulation is vigorous. Accord-
ingly, the external flow is irrotational and the internal field is that of
Hill’s spherical vortex. Generally speaking, the viscous effect is small
when the Reynolds number exceeds two or three hundred. It may be
of interest to note that if the hydrodynamic boundary layers are de-
veloping simultaneously with the thermal boundary layer, the inviscid
approximation is even better[10]. Under the condition of large Peclet
number, the thermal boundary layers are thin except the region close
to the rear stagnation. Finally, we accept also two usual assumptions
of constant fluid properties and negligible dissipation.

The coordinate system and velocity components are shown in Fig.1.
All quantities with subscript “e” refer to the continuous region fluid
while subscript “i” refers to the disperse region. We note that y is
positive in the external flow and negative in the internal flow.

The inviscid flow fields are well known: the radial and circumfer-
ential velocity components are:

vre = −U∞(1−R3
/
r3) cos θ,

vθe = U∞(1 +
1

2
R3

/
r3) sin θ

for the external flow, and

vri =
3

2
U∞(1− r2

/
R2) cos θ,

vθi = −3

2
U∞(1− 2r2

/
R2) sin θ

for the internal flow. The latter was first given by Hill. We now replace
the radial coordinate r by y which has its origin at the drop surface.
Thus

y = r −R and |y|/R << 1.
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Figure 1: Coordinate system and velocity components

Within the context of thin boundary layers, the following approxima-
tions for the velocity components are valid:

vθe = vθi =
3

2
z̈t sin θ, (1)

vre = −vri = −3z̈t
|y|
R

cos θ, (2)

since
R3/r3 = (1 + y/R)−3 = 1− 3

y

R

r2/R2 = (1 + y/R)2 = 1 + 2
y

R





when
y

R
<< 1

and for the case of uniform acceleration of the droplet:

z̈ =
dż

dt
= const whence ż ≡ U∞ = z̈t.
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Following the usual procedure of making order of magnitude esti-
mates of the various terms in the governing conservation equations, we
establish that the energy equations for the thermal boundary layers
are:

∂Te

∂t
− 3z̈t cos θ

y

R

∂Te

∂y
+

3

2
z̈t sin θ

1

R

∂Te

∂θ
= ae

∂2Te

∂y2
, y > 0 (3)

∂Ti

∂t
− 3z̈t cos θ.

y

R

∂Ti

∂y
+

3

2
z̈t sin θ

1

R

∂Ti

∂θ
= ai

∂2Ti

∂y2
, y < 0. (4)

The initial and boundary conditions are:

(y > 0)

Te(y, θ, 0) = T∞ (5e)

Te(∞, θ, t) = T∞ (6e)

∂Te

∂θ
(y, 0, t) =

∂Ti

∂θ
(y, π, t) = 0 (7e)

(y < 0)

Ti(y, θ, 0) = T0 (5i)

Ti(−∞, θ, t) = T0 (6i)

∂Ti

∂θ
(y, 0, t) =

∂Ti

∂θ
(y, π, t) = 0 (7i)

and, at the interface:

Te(0, θ, t) = Ti(0, θ, t) (8)

λe

∂Te

∂y
(0, θ, t) = λi

∂Ti

∂y
(0, θ, t). (9)

Conditions (7e) and (7i) follow from the requirement of symmetry at
θ = 0 and θ = π, and condition (6i) should strictly be written as

Ti(−δth, θ, t) = T0,
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where δth is the thermal boundary-layer thickness. However, due to
the parabolic nature of the governing equations, it is permissible to
use (6i).

The integration of the unsteady thermal boundary layer equations
(3) and (4) can be carried out in most cases by a process of succes-
sive approximations, the method being based on the following physical
reasoning: In the first instant, after the motion had started from rest,
the thermal boundary layers are very thin and the terms ae∂

2Te/∂y2

and ai∂
2Ti/∂y2 in equations (3) and (4) are very large, whereas the

convective terms retain their normal values. These two terms are then
balanced by the unsteady temperature variations ∂Te/∂t and ∂Ti/∂t.
Selecting a system of coordinates, as it is shown in Fig.1, which is at
rest with respect to the body, we consider a stationary fluid sphere sit-
uated in an upflowing unbound fluid (instead of a falling droplet) and
we can make the assumption that the both temperatures are composed
of two terms as follows:

Te = Te1 + Te2, (10e)

Ti = Ti1 + Ti2. (10i)

Under these conditions the first approximations (Te1, Ti1) satisfy the
following differential equations:

∂Te1

∂t
− ae

∂2Te1

∂y2
= 0 (11e)

∂Ti1

∂t
− ai

∂2Ti1

∂y2
= 0, (11i)

with the boundary conditions (5) to (9). The equations for the second
approximations (Te2, Ti2) are obtained with reference to equations (3)
and (4) in which the convective terms are calculated from Te1 and Ti1

previously found. Hence we have

∂Te2

∂t
− ae

∂2Te2

∂y2
= 3z̈t cos θ

y

R

∂Te1

∂y
− 3

2
z̈t sin θ

1

R

∂Te1

∂θ
, (12e)

∂Ti2

∂t
− ai

∂2Ti2

∂y2
= 3z̈t cos θ

y

R

∂Ti1

∂y
− 3

2
z̈t sin θ

1

R

∂Ti1

∂θ
. (12i)
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The solutions of (11e) and (11i), satisfying all the conditions (5) to (9),
can be obtained in the form:

Te1 = T∞ +
T0 − T∞
1 + β

erfcηe, (13e)

Ti1 = T0 − β

1 + β
(T0 − T∞)erfcηi, (13i)

where
β = (ae/ai)(λi/λe)

1/2 (14)

and
ηe =

y

2(aet)1/2

ηi =
|y|

2(ait)1/2
.

We notice that (13e) and (13i) are reconfirmed by the Chao’s [9] solu-
tions, adapted for the early times (τ << 1). As the conditions (5) to
(9) are complitely satisfied by the first approximations (13e) and (13i),
the boundary, initial and interfacial conditions for the equations (12e)
and (12i) are:

(y > 0)

Te2(y, θ, 0) = 0 (15e)

Te2(∞, θ, t) = 0 (16e)

∂Te2

∂θ
(y, 0, t) =

∂Te2

∂θ
(y, π, t) = 0 (17e)

(y < 0)

Ti2(y, θ, 0) = 0 (15i)

Ti2(−∞, θ, t) = 0 (16i)

∂Ti2

∂θ
(y, 0, t) =

∂Ti2

∂θ
(y, π, t) = 0 (17i)
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with
Te2(0, θ, t) = Ti2(0, θ, t) (18)

λe
∂Te2

∂y
(0, θ, t) = λi

∂Ti2

∂y
(0, θ, t). (19)

Analogously, the equations for the third approximations (Te3, Ti3)
are:

∂Te3

∂t
− ae

∂2Te3

∂y2
= 3z̈t cos θ

y

R

∂Te2

∂y
− 3

2
z̈t sin θ

1

R

∂Te2

∂θ
,

∂Ti3

∂t
− ai

∂2Ti3

∂y2
= 3z̈t cos θ

y

R

∂Ti2

∂y
− 3

2
z̈t sin θ

1

R

∂Ti2

∂θ
,

with the corresponding conditions. Of course, higher-order approxima-
tions Te4, Te5, ..., Ti4, Ti5, ...can be obtained in a similar manner. How-
ever, the complexity of the method of successive approximations in-
creases rapidly as higher approximations are considered.

Now, inserting (13e) and (13i) into (12e) and (12i), then supposing
the solutions as follows:

Te2 =
T0 − T∞
1 + β

z̈

R
t2 cos θ fe2(ηe), (20e)

Ti2 =
β

1 + β
(T0 − T∞)

z̈

R
t2 cos θ fi2(ηi), (20i)

we found for the unknown functions fe2 and fi2 the following differential
equations:

f
′′
e2 + 2ηef

′
e2 − 8fe2 =

24√
π

ηe exp(−η2
e), (21e)

f
′′
i2 + 2ηif

′
i2 − 8fi2 =

24√
π

ηi exp(−η2
i ), (21i)

with the conditions, issued from (18) and (19):

fe2(0) = βfi2(0), (22e)

f
′
e2(0) = −f

′
i2(0). (22i)
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The general solutions of (21e) and (21i) are:

fe2(ηe) = Ke2g2(ηe)− 2√
π

ηe exp(−η2
e), (23e)

fi2(ηi) = Ki2g2(ηi)− 2√
π

ηi exp(−η2
i ), (23i)

where g2 designates the integral of error function of order 2. Two
constants of integration will be calculated by using two conditions (22e)
and (22i):

Ke2 = − 24

1 + β
β, (24e)

Ki2 = − 24

1 + β
. (24i)

3 On The Growth Of Thermal Boundary

Layer

Now, inserting (24e) and (24i) into (23e) and (23i), then adding (20e)
and (20i) to (13e) and (13i), the temperature profiles will be determined
by (10e) and (10i) in the dimensionless form:

Te − T∞
T0 − T∞

=
1

1 + β
erfcηe− (25e)

1

1 + β

z̈R3

a2
e

τ 2 cos θ

[
24

1 + β
βg2(ηe) +

2√
π

ηe exp(−η2
e)

]
,

Ti − T∞
T0 − T∞

= 1− β

1 + β
erfcηi− (25i)

β

1 + β

z̈R3

a2
e

τ 2 cos θ

[
24

1 + β
g2(ηi) +

2√
π

ηi exp(−η2
i )

]
,

where:

ηe =
1

2
√

τ

y

R
,

ηi =
1

2
√

τ

√
ae

ai

|y|
R

,
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with the dimensionless time:

τ =
aet

R2
. (26)

We note also the physical interpretation of the factor:

z̈

R
t2 ≡ z̈R3

a2
e

τ 2 = 2
z

R
, (27)

where z designates the distance covered by the droplet in the time τ
from the beginning of the motion.

The growth of thermal boundary layers with time for θ = 300 is
shown in Fig.2 in the case of a benzol droplet (C6H6) moving in water
at 200C approximately, where:

ρe = 1000kg/m3, ρi = 878, 8kg/m3,

νe = 1, 01.10−6m2/s, νi = 0, 8172.10−6m2/s,

ae = 0, 1396.10−6m2/s, ai = 0, 0962.10−6m2/s,

λe = 0, 5876.10−3kW/0Cm, λi = 0, 153.10−3kW/0Cm.

Using these values, first from (14) we found β = 3, 2, then the tem-
perature profiles are calculated from (25e) and (25i), by arbitrarily
assigning z̈R3/a2

e = 20. Other values may be used but the main fea-
tures of the finding as described next would not be affected. So, we
tested also some other liquid drops (of different petroleum liquids, for
instance) moving in water.

4 Some Heat Transfer Results

By using (25e), we can determine the local heat flux at the droplet
surface:

q = −λe
∂Te

∂y
(0, θ, t)

=
1√
π

λe√
aet

T0 − T∞
1 + β

[
1 +

1− β

1 + β
(
z̈R3

a2
e

)τ 2 cos θ

]
,

(28)
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as well as the corresponding Nusselt number:

Nu =
2qR

(T0 − T∞)λe

=
2√
π

1

1 + β

R√
aet

[
1 +

1− β

1 + β
(
z̈R3

a2
e

)τ 2 cos θ

]
.

(29)

Then, the total rate of heat transfer from the droplet to the outside
fluid is:

Q = 2πR2

π∫

0

q sin θdθ

=
2πR2

√
π

λe√
aet

T0 − T∞
1 + β

[
I1 +

1− β

1 + β
(
z̈R3

a2
e

)τ 2I2

]
,

(30)

Figure 2: Transient radial temperature distributions

where

I1 =

π∫

0

sin θdθ = 2, I2 =

π∫

0

sin θ cos θdθ = 0,
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so:

Q =
4πR2

√
π

λe√
aet

T0 − T∞
1 + β

. (31)

Now, the average Nusselt number is:

N̄u =
2RQ

4πR2(T0 − T∞)λe

=
2√
π

R√
aet

1

1 + β
, (32)

which is shown in Fig.3 in the same case as in Fig.2.

Figure 3: Average Nusselt number over droplet surface

Finally, the ratio of the local instantaneous Nusselt number (29) to the
average one (32) becomes:

Nu

N̄u

= 1 +
1− β

1 + β
(
z̈R3

a2
e

)τ 2 cos θ, (33)

which, for a given θ, depends also only on τ.
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5 Concluding Remarks

At small times, say, τ = 0, 05, the boundary layers remain thin for all
cases examined. The growth of the boundary layers at early times is
governed by molecular diffusion; convective transport of heat has only
a minor contribution. However, as time elapses, the latter assumes a
more important role, giving rise to the expected result that, at a given
instant, the boundary layer thicknesses increase with increasing θ.

It is to be noticed that the solutions for the both outer and inner
thermal boundary layers, including the third approximations (Te3, Ti3)
which we also calculated, confirm all above predictions. But a precise
prediction of the thermal heat transfer in accelerated droplet motions
would require a more complete understanding of the mechanics of flow
separation and the physics and chemistry of the interfacial layers.
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O prenosu toplote pri ubrzanom kretanju sferne
kapi

UDK 532.526; 533.15

U radu se analiziraju oba tranziciona temperaturska granična sloja,
spoljašnji i unutrašnji, u slučaju translatornog jednako-ubrzanog kre-
tanja sferne kapljice iz stanja mirovanja kroz neku drugu viskoznu tec-
nost, pri velikim brojevima Reynolds-a i Peclet-a. Primenom neviskozne
aproksimacije strujnog polja, nadjeno je približno rešenje energijskih
jednacina oba strujanja, spoljašnjeg i unutrašnjeg, koje je potom te-
stirano na primeru kapljice benzola u kretanju kroz vodu, sa zadovol-
javajućim rezultatima.


