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Hydrodynamic forces on two
moving discs
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Abstract

We give a detailed presentation of a flexible method for con-
structing explicit expressions of irrotational and incompress-
ible fluid flows around two rigid circular moving discs. We
also discuss how such expressions can be used to compute the
fluid-induced forces and torques on the discs in terms of Killing
drives. Conformal mapping techniques are used to identify a
meromorphic function on an annular region in C with a flow
around two circular discs by a Md&bius transformation. First
order poles in the annular region correspond to vortices out-
side of the two discs. Inflows are incorporated by putting a
second order pole at the point in the annulus that corresponds
to infinity.
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1 Introduction

The ability to model the hydrodynamical interaction between rigid
bodies immersed in a fluid is important in many engineering and
physics problems. The most direct method of attack is to solve the
coupled Navier-Stokes and rigid body system of equations for the in-
stantaneous configurations of the fluid and bodies. This is, in general,
a highly non-trivial exercise and often impossible without recourse to
intensive computational fluid dynamics. If the characteristic Reynolds
number associated with the fluid and body system is sufficiently high
then, depending on the physical scenario, it may be reasonable to
neglect fluid viscosity and adopt potential theory. Engineering prob-
lems that involve interacting rigid objects whose separation wakes can
be neglected [20] and, for example, the astrophysical interaction of
magnetic flux tubes in stars [5] are all amenable to potential theory.
If vorticity is an important ingredient in the physical picture, e.g.
consider a set of interacting marine risers undergoing vortex-induced
vibration in the subcritical Reynolds number range, then irrotational
(instead of potential) flows are more applicable. In such situations
there is no single-valued velocity potential on the entire flow region.
Irrotational flow theory is the basis of discrete vortex models (see, for
example, [16, 7] and [15] for a review) of vortex-induced vibration of
a circular disc in unbounded 2-dimensional flow. In such methods the
wake behind the disc is represented by a dynamical set of point sin-
gularities (so-called point vortices [2, 12]) in the fluid velocity. The
instantaneous flow velocity field is determined by the position and
strength of each vortex and the position and velocity of the circular
disc using Milne-Thomson’s circle theorem [12]. The fluid velocity
is used to calculate the fluid pressure and leads to the fluid-induced
force on the disc. The vorticies are convected with the flow, and so
are influenced by the positions and strengths of the other vorticies
and the position and velocity of the disc. The crucial consequences of
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non-zero viscosity, i.e. the generation and dissipation of vorticity, are
put into the model using boundary-layer methods [17, 21] and heuris-
tics [16, 7]. Although such models are quite crude in comparison with
detailed numerical simulations involving the Navier-Stokes equations
their predictions are acceptable [16, 14, 7] if the heuristics are carefully
tuned.

The model discussed in [16, 7] can be generalized to discs of non-
circular cross-section using conformal mapping techniques. The non-
circularity of the disc means that a non-trivial fluid torque, as well as
a force, will be applied to it. An application to the coupled motion
of a cable and an adhered rain rivulet induced by light wind and
rain conditions on a cable-stayed bridge is given in [6]. To apply the
discrete vortex method to the vortex-induced vibration of more than
one object in an unbounded region, e.g. a set of interacting marine
risers, is a more complicated venture. As a prototype model of this
problem we consider in this article arbitrary irrotational flows outside
two circular moving discs. In principle the method can be adapted
to accommodate discs with more general cross-sections by using a
different conformal map from the Mobius map used here.

The earliest discussions of potential flows around two discs are
due to Hicks [10], Greenhill [8] and Bassett [3]. Hicks’ motivation
was to analyse the motion of a cylindrical pendulum inside another
cylinder filled with fluid. Yamamoto [20] used Milne-Thomson’s circle
theorem in an iterative scheme that yields potential flow due to an
inflow around any number of discs but did not discuss the effects
of point vorticies. Probably the most common method of analysing
potential flow around two discs is via bipolar coordinates [13] as used
in, for example, [3, 5, 9]. Once the fluid velocity has been constructed
the force and torque on a body is obtained by pressure integrals [2,
11, 7] and an appeal to the Euler equations. An alternative method
of obtaining the force and torque, where again an explicit expression
for the fluid velocity is required, is Thomson and Tait’s variational



156 D.A. Burton, J. Gratus, R.W. Tucker

approach [11] used in, for example, [5, 18]. This method relies on
the fluid kinetic energy being bounded, which is not true if the flow
contains point vorticies.

Our proposed method for the calculation of arbitrary irrotational
flows around two circular discs is more flexible than those given before.
The approach is to construct the complex velocity due to an inflow and
a set of point vortices using doubly-periodic (elliptic) functions repre-
sented in terms of the first Jacobi theta function 8; and its derivatives.
The power of the method is in the freedom to choose the representation
of #, and thus optimize the calculation for either numerical or analyt-
ical purposes. We begin by constructing flows around two stationary
discs and then generalize the results to the moving scenario.

2 Background

Many tensors and maps in this article are to be regarded implicitly as
one-parameter families with universal time ¢ as the parameter. The
coordinate components, with respect to any chart, of such objects are
smooth with respect to t. We denote the partial ¢-derivative of such a
tensor 1" by 0,T. For example, if a is a such a differential 1-form

a = aq(z;t)dz?, (1)
Oag , "
Oy = By (x;t)dx (2)

with respect to a chart {x*}. The semicolon is a reminder that ¢ has
a special status and is not to be regarded as a coordinate. Let ¢ be a
t-dependent p-chain on a differential manifold M,

c:[0,1F - M

(61) — 0" = (), @
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where £ = (€, €%,...,£P). The velocity of ¢, denoted by ¢, is the vector
field (attached to c) 5 5

. Ca

c=— (&t (4)
If a differential manifold M possesses a metric ¢ € TIM then the
metric dual X of a vector field X € T'TM is the differential 1-form
X = g(X,—-) € TT*M. Similarly, the metric dual @ € I'TM of a
differential 1-form o€ I'T* M is the vector field Y € I'T'M such that
Y = a. Note that Y = Y. The symbol F(M) denotes the space of
scalar functions on M and A, M denotes the bundle of differential p-
forms on M. The Lie derivative of the tensor 7" € I'T) M with respect
to the vector field X is denoted by LxT.

2.1 Killing drive on a lamina

Let M be a 2-dimensional flat Riemannian manifold with metric g,
Hodge map » and Levi-Civita connection V. Let V € I'T'’M be the
Eulerian velocity vector field of an inviscid, incompressible and irrota-
tional Newtonian fluid flow on M. Thus V is a solution of the Euler
equations

oV + VvV = —dp, (5)
d+xV =0, (6)

where p € F(M) is the fluid pressure and
dV = 0. (7)

The topology of M is non-trivial in order to accommodate the presence
of rigid bodies and point vorticies (point singularities in the fluid flow).
We require that the topology of M is such that there exists a global
chart {z,y} on M with respect to which the metric has the form

g=dr®dr+dy dy. (8)
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Such a chart will be called cartesian.
The Poincaré lemma [1] allows us to solve (7) on some open set
N C M in terms of a velocity potential o € F(N),

V = dep. (9)

The circulation T'y[y] of V around a closed curve v on M is

Iy = / 7 (10)

If there exists a potential for V on all of M, ie. T'y[y] = 0 for all
v, then the fluid flow is called potential. 2-dimensional fluid flows
with immersed rigid bodies may, and with point vorticies certainly,
possess circulation. For such V' there exists a closed curve v such that
I'v[y] # 0.

Let C : XA € [0,1] — M be a closed 1-chain representing the
boundary of a compact body (a lamina) in R? at time ¢. Let C be the
velocity of C, i.e. the vector field

C = atca(A;t)ai (11)
xa

attached to C' on M. The functions % = C*(\;t) are the components
of C' (at time t) with respect to a chart on M with coordinates {z}.
The FEulerian velocity of C' is a vector field Uz € I'T'’M such that

Uc | = C. (12)

The choice of Ug is clearly non-unique. However, it can be shown that
for any solution to (12)

9,(C*a) = C* (O + Ly, ) (13)
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for any differential form o on M. If the lamina boundary C' is rigid
then
C*(Lugg) = 0. (14)

Equations (6) and (7) are solved subject to the no-through-flow bound-
ary condition on C,

9(V,Ne) = g(Uc, Nc), (15)

where N¢ is normal to C' or, equivalently,
C*x(V—-Ug) =0. (16)
The fluid pressure p is used to construct the Killing drive Fi[C] of K

on C,
FelC) =~ [ p+E. (17)
c
where K is a Killing vector of g

Equation (17) is a unified expression for the fluid force and torque on
C' (see [7] for further discussion). The topology of M is such that
globally

*K = dCx (19)

where the scalar (x € F(M) is called a Killing potential of K. This
follows by noting that with respect to a cartesian chart {z,y} (see
equation (8)) any K on M can be written

0 0 0 0
K—a%%—ba—y—kc(xa—y—y%), (20)

da=db=dc=0 (21)
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where a,b,c € F(M) are t-dependent constants. Any associated po-
tential (i is then of the form
L oo 5
G = ay = b — 5 (% +4P) + . (22)
df =0 (23)

where f € F(M) is a t-dependent constant. Therefore, equation (17)
can be written

since 0C' = 0. Using (5), (6), ( ( 6), 0C =0 and

LV =Tt %d[gw, V)l (25)

to manipulate (24) one obtains

/gKv+/athv+/< gV, V)% K — (V,K)*f/)

(26)
in terms of the Killing potential (5 and V. Once V has been de-
termined and (i chosen the Killing drive F[C] on each C' can be
calculated using (26). An example is given in reference [7] where the
force on an isolated circular disc due to a set of point vortices is dis-
cussed. Useful Killing potentials adapted to C' are shown in table 1.

2.2 Complexification of R?

As before, let {x,y} be the components of a cartesian chart on M, i.e.

g=dr®dr+dy ® dy. (27)
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Table 1: Useful Killing potentials adapted to C' and their associated Killing
drives on C. The point (x9,y0) € R? is fixed in the lamina bounded by C
and is t-dependent.

Killing potential (x Killing drive F[C]
—y+ Yo x-component of fluid force on C'
T — X y-component of fluid force on C
—[(z — 20)* + (y — y0)?]/2 | fluid torque about (zg,yy) on C

globally, and introduce the complexification of R? given by z = x +1y.
The complex conjugate of an expression f containing z is denoted f.
We define the complex conjugate fT of a function f: C — C to be

fl(z) = f(2) (28)

The Hodge map x is a linear automorphism on the vector space of
1-forms on 2-dimensional manifolds. The operator P

P= %(1 — %) (29)

satisfies P2 = P on sections of A; M. It follows that

Pdz = dz, (30)
Pdz =0. (31)

For simplicity, we will use the same symbol for real manifolds and
their complexifications.



162 D.A. Burton, J. Gratus, R.W. Tucker

2.3 Fluid velocities and potentials

Using equations (6), (7) and (29) we see that

dPV =0 (32)
and since .
V = (vdz + vdz) (33)
where
v=dz(V) (34)
it follows from (32) that
dv =0 (35)

where v = vdz is called the complex velocity 1-form.

Equation (35) indicates that the component v (called the complex
velocity) of v with respect to z does not contain Z.

Using the Poincaré lemma [1] to solve (35) we obtain the local
expression

v=dW (36)

on some open subset N of M. The scalar W € F(N) is a holomorphic
function known as a complex potential (for ). The velocity vector field
Vis

V =R(v). (37)

2.4 No-through-flow boundary condition on a sta-
tionary boundary

Let C be a closed curve on M that represents a physical solid bound-
ary. The no-through-flow boundary condition on V' for a stationary C
is

C* %V =0 (38)
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which can also be written
I(C*PV) =0 (39)
or

S(C7v) = S(Craw)
= d[C"S(W)] (40)
0

Thus, another way of expressing the no-through-flow condition on a
stationary boundary is that (W) is constant on the image of C'.

2.5 Construction of flows by conformal techniques

Let Wy, € F(V), V C C be a complex potential that satisfies the no-
through-flow boundary condition on a stationary B C V. Then, given
a diffeomorphism (a conformal map) ¢ : Y C C — V one obtains a
complex potential Wy, = ¢*Wy, on U that satisfies the no-through-flow
boundary condition on ¢~!(B). For a traditional introduction to the
application of conformal techniques to fluid dynamics see [12].

2.6 Elliptic functions
A holomorphic function f that satisfies

fz+2w) = f(2), (41)
f(z + 2wy) = f(2) (42)

where wy,wy € C, wi/wy ¢ R, for each z at which f(z) exists is
called doubly-periodic [19]. A doubly-periodic function that is analytic
except at isolated singularities is said to be elliptic [19]. A cell of an
elliptic function f is a parallelogram C, = {z + 2w A + 2wop; 0 < X <
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1,0 < p < 1} in C where z is chosen such that no poles of f lie
on the boundary of C,. From the Liouville theorem [19], any elliptic
function is completely specified (up to a constant) by the locations
and coefficients of its poles within any cell. Let f have n poles located
at {f1,..., 0.} with orders {my,...,m,} respectively. If the principle
part f. of fat 5., re€{l,...,n},is

Z Ar m r (43>

and S(wy/w;) > 0 then f can be represented!

. m 1Arm d Z_ﬂ-ﬁ’r
A0+ZZ m— 1) dz mlOgel(—le

r=1 m=1

=)

w1

where 0, (z|7) = 01(z,€"™),

o0

= Z )rgnty)’ sm[(2n +1)z]  with |q] <1, (45)

n=0

is the first Jacobi theta function. Its properties are discussed compre-
hensively in chapter 21 of [19]. It can be shown that the residues of
any elliptic function within the boundary of any cell must sum to zero
[19]. Thus, the coefficients {A, 1} cannot be chosen arbitrarily and
must satisfy

i Ar,l - O (46)
r=1

!Theta functions are not the only way to represent elliptic functions. See ref-
erence [19] for other choices.
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3 Irrotational fluid flow on an annulus

3.1 Doubly-periodic flows

Let f: C — C be an elliptic function where

f(z+2mi) = f(z2), (47)
f(z=2w) = f(2) (48)
and w € R, w > 0 i.e. choose w; = 27mi and wy = —w in (41) and (42).

The choice of sign of wy ensures that $(wy/wy) > 0. Let v: C — C be
the complex velocity on C given by

v =0'(2) = f(2) = f(~2). (49)

Theorem 1. The function v' satisfies the no-through-flow condition
on {nw+iy;n € Z,y € R}.

Proof. We express the no-through-flow condition as R[vf(z)] = 0 V
29 € {nw+iy;n € Z,y € R}. The cases of even and odd n are handled
separately.

Even n :

ol (iy) = f(iy) — fH(~iy)
= 2iS[f ()],
using (49), and hence R[v'(iy)] = 0. Appealing to (48) we find that

R[vT (nw + iy)] = 0.
Odd n :

(50)

viw+iy) = flw+iy) — f1(—w —iy)
= flw+iy) — fT(w—iy) (51)
= 23[f(w + i),

using (49) and (48).Thus R[v'(w + iy)] = 0 and appealing to (48) we
conclude that R[v'(nw + iy)] = 0. O
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A complex potential W for vg (v restricted to the cell C = Cy =
{—2wA +2mp; 0 <A< 1,0< u<1}) is

We(z) = F(2) + F'(=2) (52)

where the first derivative of F',

m) dzm 24 2

n mpy—1
" (— D)™ Ay d™ — 8,
Pz = A+ 30 3 D A 1ogel(z B

i—“’), (53)

r=1 m=0

with respect to z is the elliptic function f in (44) with w; = 27 and
Wy = —W.

3.2 Construction of lows on an annulus

Let exp be the exponential map

exp:C—ACC

R (54

z—Z=e

restricted to the cell C. Half of the image of exp is the annulus A =

{re?;e™ <r < 1,0 <60 < 27i} (see figure 1). Using We one can form

the complex potential W4 = log™ We on A where log is the inverse of
exp.

4 Irrotational fluid flow around two discs

4.1 Mobius transformation

Let D; be the open unit disc in C centred at 0 € C. Let Dy be another
open disc in C where D; N Dy = &. Let £ denote the region outside
of the discs, i.e. £ =C\ (D1 UDy).
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Figure 1: The annulus A is the exponential of half of the cell C (the
shaded region), which itself is mapped by ® into the region £ outside
of two open discs D; and D,. The jagged lines at the top and bottom
of C are identified to give the jagged line in A. The arrows show how
the boundary bA of A, the boundary b€ of £ and the other two edges
of C are identified. The left-hand (dotted) edge of C is mapped to a
circle inside the inner edge of A and then to a circle in Dj.
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Theorem 2. The Mdbius map ®

b A= €&
ZooZ — 1 (55)

where zo € A, R(200) > 0, $(200) = 0, takes the outer edge of A (a
unit disc) to the boundary of Dy. The orientation of a closed curve C
on the outer edge of A is opposite to that of ® o C.

Proof. The unit disc in A is mapped to the unit disc in &:
Introduce ¢ = 1/z4. Since

zZ—C z—¢C

|@(2)]* =

cz—1lcz—1
_zZ—c(z+2)+
222 —c(z+2)+1

(56)

we see that |®(e")|=1 where 6 € R.

The outer edge of A and the boundary of D; have opposite orien-
tations :

Their relative orientations are opposite if

T log @ (e”) < 0. (57)

()= —— (58)

and so

= (59)
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from which it follows

f@log¢(eze) — 629 (I)(e,e)
7 2
(e ) (60)
1= ~0
|ce?? — 1)
since ¢ = 1/2z5 > 1. O

The boundary bD, of the second disc Ds is the image of the inner
edge of A.

It is straightforward to show that the inverse of ® is the Mobius
map

o1(z) = 221 (61)

Z— Zoo

4.2 Location of the second disc

Let the radius of the second disc be R, and its centre be at X € C.
Thus

| (2) — X|* = R? (62)
at zp € {pe??;0 < 0 < 27}, p = e™“. Motivated by the choice J(z4) =

0 made earlier we will assume that (X) = 0. Substituting (55) into
(62) and evaluating the result at zy = pe® we find that

(1—cX)*0*+2(X —c)(1—cX) cos O+ (X —c)? = R*(c*p* —2ccosO+1).
(63)
Since this must be true for all  we obtain

(1—cX)?p*+ (X — ) = R*(1+ *p?), (64)
(X —¢)(1 —cX) = —cR% (65)
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Equations (64) and (65) can be solved to yield p and ¢ as functions of
R and X,

c i[u + X2 - R)+/(1+X2— R?)2—4X?],  (66)

T 2X
R? — (X — ¢)?
P= \/(1 —cX)?2 - 2R* (67)

5 Construction of flows around two sta-
tionary discs

We now have all of the tools that we need to construct general ir-
rotational fluid flows around two stationary discs. The strategy is
straightforward : one chooses an F' from (53), constructs W and then
the complex /pgiﬁntial We = Weologo®~! on £. The associated fluid
velocity is R(dWe).

The only remaining issues concern the values of the constants
{Ao, Ay} in (44). The choice for the residue of v is easy because
the absolute value of circulation is preserved under conformal trans-
formations. Referring back to section 2.5, let 14, and 1, be the complex
velocity 1-forms associated with W, and Wy,

vy = de, (68)

Vy = qu (69)
Then

Oy = vy (70)
and so

/@ we /C ” (71)
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over any closed 1-chain C' on U. Therefore, if the orientations of po C
and C are the same then each point vortex in U corresponds to a
unique point vortex in U with the same strength. If the orientations
are opposite then the strengths are opposite. Although first order
poles in 7, on are in one-to-one correspondence to first order poles in
vy on V, terms of orders other than —1 do not correspond in general.

5.1 A simple example

Referring back to (53), a trivial example of W on the cell C follows
from the choice

F(z) = Apz (72)
and so, from (52),

We(z) = (Ag — Ag)z
r (73)

- 2mi

where I' = 2mi(Ay — Ag) € R. The corresponding complex potential
on the annulus A is

Wa(z) = log" We(z)
= We(log 2) (74)

— —logz.
omi 8”

Pulling back Wy to £ with the inverse Mobius map ®~ ! yields
Wg(z) = (I)_l*WA(Z)

= Wa(7'(2))
- g os( 2 (75)

= %[log(z —1/200) — log(z — 2s0)] + - . -
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where . .. indicates an irrelevant constant. The corresponding complex
velocity 1-form vg is

Vg = de

r 1 1 76
dz. (76)

T om z—l/zoo_z—zoo

The flow obtained in £ is the same as that due to two point vortices
of opposite strength at z = z,, and z = 1/z,,. We comment that the

velocity field V' = R(vg) satisfies the Navier-Stokes [2] equations and
the no-slip boundary condition at the boundaries of {D;, Dy} if both
discs are spinning with angular velocities

r

0 = ——

1 271'7 (77>
r

)y = 572 (78)

respectively, where again R is the radius of D,.

5.2 Vortices and inflows

The sort of F' that is most useful to us has the form F' = F} + F, + F3
where

F(z) =+l (79)

Bz = 15 D laz = 6) =

)
222 9mi By (L(2 1 Q) (80)

)
“) e

where (. = log zo,. The motivation behind the judicious choice of
the constants in (79), (80) and (81) will become apparent shortly.

Qe

= d 1
F3(z) = 2U sinh Coo% log 64 (2_2(2 — (o)
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The total circulation term Fj is has already been discussed. F5 is
due to a set of point vortices of strength {I';} at {¢;} in C. The
correspondence between the locations {¢;} of point vortices in £ and
Cis ¢ = (logo®1)(&;). Fs becomes the contribution due to an inflow
U in &€ after pulling back with logo®~!. To demonstrate this note
that Fy has the principle part (see (43) and (44))

1

Fy,(2) = 2U sinh (oo ————. (82)
&= Coo
It follows that near 2 = 2o in A
(F30log)(z) = 2U sinh ¢, __ +
ORI Tlog(z) — G
_ 1
= 2U sinh ((, ———— 83
sinh ¢ log(2/2) + (83)
= 20U sinh (5 Foc +...
where ... indicates terms that are regular as z — z,,. Thus
(F30logo®')(2) = 2U sinh Coo% +...
PR
— o sinh ¢, 2eE T L (8Y)
25 —1
=Uz+...

where z,, = €< has been used and ... indicates terms that are regular
as |z| — oo in €. Similarly

(FJ o —logo®™1)(z) = 2U sinh Coo% +...
~ Zooz—1 oo (85)
=Uzyo+...



174 D.A. Burton, J. Gratus, R.W. Tucker

and so

We(2) = (Fy o logo®™!)(2) + (Fj o —log 0@~ !)(2)

- 86
=Uz+... (86)
leading to the far-field complex velocity 1-form
Vg = de
_ 87
=Udz+ ... (87)

in &.

6 Representations of 6,

The choice of representation of ; depends on the application one has
in mind. Probably the most computationally efficient representation
is [19]

01(z.q) =2 (—1)"q"™ sin[(2n + 1)2]. (88)

The sum in (88) converges very quickly because of the n? dependence
of the coefficients. An alternative representation, which leads to an
expression for a flow field on A that clearly exhibits its pole structure,
is [19]

o0

01(2,9) = 2¢"*sinz [ [(1 = ¢*")(1 — ¢"e**)(1 — ¢*"e 7). (89)

n=1

The former is probably more useful for numerically calculating the
complex velocity at a point, whilst the latter is probably more useful
if the forces on the discs are to be analytically calculated.
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In practice it is often simplest to work on the annulus A rather
than £. This is certainly true when calculating the forces on the discs.
Using (88) we note that

1 - n n(n n n
Bi(2) = 2 (A e
n=0 . (90)
- am(E | )
21 T

where p = 7 is the inner radius of A as before and A; is constant.

From (89) we also have

o= (- )67

n=1
1
A0, ( og 2

W
21 T

where A is constant. The complex potential W4 on A stemming from
(79) to (81) is

(91)

Wa(z) = G(2) + G(1/z) (92)
where G = G1 + G5 + G3,

Gi(z) = §%log z, (93)
Gofe) = 5 Y g e 2, (94
G3(2) = U200 — 1/zoo)zd%log U(z/200) (95)

and W is either W, or Ws.
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6.1 The vortex contribution

Examination of (91) reveals that
U(l/z) = —¥(z) (96)
and so, using (94) and (96),

Gl(1/2) = —gz%lg%

I~ D W) (97)

2 £ i S 0(z/2)

Thus, the contribution to the complex potential from the vortices sim-
plifies to

Ly, Y(z/2)
= —L log — 2. 98
Wae(z) ; omi o U(z,2) (%8)
If we use representation (90) for ¥ then the associated complex veloc-
ity is
~ U, (1Z2(z/z) _ Z(z2)
—of =N (= R e o 99
02 = Val?) Z 27i (zj E(z/z)) TE(z52) (99)
where
=(2) = 520:) (100)
=(z) = =
E(Z) _ Z(_l)npn(n-i-l) (Zn+1 . Z_n). (101)
n=0

For example, to lowest order in p

E(z)=2z—-14+0(p) (102)
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and so

T I e ey AL

which is the complex velocity due to a set of vortices inside the unit
circle.

6.2 The inflow contribution

A nice result for the inflow contribution to the complex velocity on
A follows when (91) is used to evaluate (95). It is straightforward to
show that

d
H(z) = i log Wy (2)

o lz+1 n f: z 1 (104)
221 — z—p7 1= pPnz
from which follows the remarkably simple expression
d
H(z)=—H
(:) = H(2)
- _nzzoo (z — p2n)?
Equation (105) can be used to show that
H'(1/z) = 2*H'(2). (106)
Using (95), (104) and (106) the complex velocity © 43, where
d
vl(2) = 7 Was(2), (107)
Was(z) = G3(2) + G{(1/2), (108)

has the form
Taz = vigg(2) = U(1 = 1/22)H'(2/200) + U(1 = 22 ) H'(2002).  (109)
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6.3 The complex velocity on £

Once a complex velocity v.4 on A has been established the correspond-
ing complex velocity vg on € is
dd—t

b = ul(2) = [0 (2)] <

(2) (110)

7 Incorporating relative disc motion

So far, the boundary conditions imposed on the fluid velocity V' are
suitable for discs {D;, Dy} that are fixed with respect to a non-rotating
frame of reference. Now let Dy be translating relative to Dy with veloc-
ity Uy and let {C.Cy} be 1-chains with images {bD;, bD, } respectively.
The instantaneous no-though-flow conditions at each disc are

Cr*V =0, (111)

Cix (V —U,) = 0. (112)

We have discussed how to construct flows that satisfy the no-through-
flow condition at each disc and tend to uniformity at spatial infinity.
To incorporate a non-trivial boundary condition on Dy we need an
additional contribution to the complex potential discussed above. We

will use standard methods to solve Laplace’s equation for a stream
function subject to the correct boundary conditions.

7.1 Conformal transformations and Laplace’s equa-
tion
Let ¢¢ be a smooth scalar on £ that is a stream function for V i.e.

xelV = die. (113)
d*g dwg = 0, (114)
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where ¢ is the Hodge map on £ associated with the metric ge. Ex-
pressed with respect to a cartesian chart {Z,y} on £ the metric g¢ has
the form

ge = dt @ dz + dy @ dy. (115)

Let g4 be the metric on A and {x,y} be a cartesian chart on A4,
ga = dr @ dxr + dy ® dy, (116)

with origin at the centre of A and let @, as introduced earlier, have
the action & + iy = ®(z + iy). For notational simplicity we will not
distinguish ® and the associated map taking {z,y} to {Z,9} i.e. we
write

(#,9) = ®(z,y)

(R[®(z +iy)], S[(x + iy)]) (117)

and so
(@ f)(z,y) = f(R[®(x + iy)], I[P (z +iy)]) (118)

for any scalar f on £. Let x4 be the Hodge map associated with ¢ 4.
That ® is a conformal map means that locally

D*ge = Aga (119)

where )\ is a scalar on A. Consequences of (119) are

D" xe 1 =A%y 1, (120)
1
gt = Xg;ll, (121)

from which it follows that for any 1-form « on &

Q" xe v = x4 D" (122)
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Pulling back (114) to A with & yields
d*_A diﬂA:O, (123)
ha = Dee (124)
where ®*d = d®* and (122) have been used. The boundary conditions

(111) and (112) written on A are

Cudipa =0, (125)
Clpdipa = Cligy x4 @0,y (126)
where Cy; = @' o Cg; and the images of {Cu1,Caz} and {Ce1, Cea}

are the edges of the annulus A and the boundaries of the discs {Dy, Dy}
respectively. The boundary conditions are satisfied by the choices

Clatba =0 (127)
Caoha = Clhyd + K (128)

where ¢ is a solution of )
dop = * 4 P*Us (129)

and k is an (instantaneous) constant that will be chosen later.

7.2 Solutions to Laplace’s equation on A

With respect to the chart {£, 8} on A, which is related to {z,y} by

z + iy = 5T (130)
equation (123) is

* %Y

o + 502 = 0 (131)

where, for simplicity, the subscript A has been dropped. That (131)
is Laplace’s equation written with respect to {, 0} follows from the
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previous section because the mapping (130) between {z,y} and {&, 60}
can be interpreted as a conformal map from a rectangle in C to A.
Solutions to (131) can be formed out of linear combinations of products
of {cosh(n&),sinh(n&)} and {cos(nh),sin(nh)} where n € Z, n > 0.

We choose

»(E,0) = Z sinh(ng) [a,, cos(nb) + b, sin(nd)] (132)

“— sinh(nw)
because it automatically satisfies the outer edge boundary condition
¥(0,6) = 0. (133)
Since .
Uy = R(udz), (134)

where 2 = & + iy and v = dz(Us) + idy(Us) is the relative complex

velocity of Dy with respect to Dy, it can be shown that
xeUy = 3(ud?

elz = S( ) (135)

= d[S(uz)].

The final expression in (135) follows because u is (instantaneously)
constant. If follows from (135) that, using (122), a particular solution
to (129) is

9(2) = S[ad(z)] (136)
and so the inner edge boundary condition (128) can be written
P(—w,0) = S[ad (e )] + k. (137)

To match (132) to the boundary condition (137) we insert a Laurent
series for ®(z) into (137) valid for |z/2,| < 1 and equate Fourier
components. Using

1 o
= E 2" |z <1 (138)
n=0

1—2z
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it can be shown that

ZooZ — 1
) =
(2) = —— =
1 o0 1 1 ) (139)
:; Z ol onl 2 z2/z] <1
=1 o o0
and we find
Y(—w,0) = — Z 2sinh (e ”(“’*C“)%(ﬂem@) +K+...
n=1
=— Z 2 sinh (e ") [R(u) sin(nf) — S(u) cos(nb)]
n=1
+ K+
(140)
where z,, = e** and ... indicates terms that are independent of 6

and can be eliminated by judiciously choosing x. Evaluating (132) at
§ = —w gives

o0

Y(—w,0) = — Z [, cos(nf) + by, sin(nd)] (141)

n=1

which on comparison with (140) yields

tp = —2sinh (oo Si(u)e W), (142)
b, = 2sinh (R (u)e M@ He) (143)

and so

(£,0) = 2sinh G, i %e—mwcm)%(ﬁeme) (144)
1

n=
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Written in terms of z and 2., where z = 7% the above expression
has the form

wam=@w4wwfiﬂﬁylf

Zoo

V2

~S(uz"+uz™") (145)

2
— P z=eftit

and so we introduce an additional contribution to the complex poten-

tial WA

Was(2) = (200 — 1/200) > (i)nl _pnp% (@" +uz™)  (146)

n=1

which, by inspection, is analytic on A. The corresponding complex
velocity is

Tas = 0y (2) = (2oo — 1/200) Z(i) - _pn n(az"" — uz""h).
(147)

n=1

8 Transformation to an inertial frame of
reference

So far we have discussed how to construct arbitrary irrotational and
incompressible fluid flows around two discs {D;, Dy} on C where Dy
has unit radius and is centred at the origin and D, has radius R and
is centred on the real axis. The complex velocity vg consists of four
contributions due to overall circulation, any number of vortices, an
inflow and the relative velocity of the discs,

Us = Ug1 + Uga + Vg3 + Vga, (148)

dd!
dz

e; = oy 071 () = — (), (149)
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where {ULQ,ULS,UL4} are given by (99), (109), (147) and
T
C2miz

Da1 = vy (2) (150)
Our calculation remains valid for an arbitrary configuration of two
moving rigid discs at an instant if we interpret vg as the complex
fluid velocity with respect to an appropriately scaled inertial frame
of reference that is centred at one of the discs. Let Zlﬁ, Zg € C be
the instantaneous centres of two circular discs of radii R, R, € R
with respect to an arbitrary inertial frame O. Let u},u} € C be
their instantaneous complex velocities with respect to @ and let 2f =
2f+iy* € C be the instantaneous position of any point in the fluid with
respect to @. The coordinate z* is related to the hatted coordinate
system {Z,y} by

s =2 Zl.-id (151)
where
¢ = Arg(Z5 — Z}) (152)

and so the locations {z;} of vortices in A are related to those with
respect to O by

Zj = (I)il<,§j), (153)
zg — Zf

3= o e . (154)

The complex (conjugate) fluid velocity o* with respect to O is
7 = oM(2F) = Rie @0l (2) + @, (155)

the relative disc complex (conjugate) velocity @ is

_t
T 156
u 7 e (156)
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" _ 1 (157)
Ry
The fluid velocity vector field with respect to O is
Vi = R(0hd2) (158)
where the metric dual is taken with respect to
¢ = do* @ da* + dyf @ dyf. (159)

9 Summary

We have presented a method for constructing arbitrary irrotational
fluid flows around two arbitrarily translating circular discs of arbi-
trary location and size. Once v¢ has been chosen the velocity field
V¥ can be calculated and (26) used to obtain the Killing drives on
the boundaries of the discs. The expression for v¢ contains the first
Jacobi theta function which can be represented in different ways de-
pending on whether or not its pole structure is to be exhibited. If the
explicit pole structure of v¢ is not necessary then a faster converging
representation can be used.
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Hidrodinamicke sile na dva pokretna diska
UDK 514.7, 532.59

U radu se daje detaljna prezentacija jednog prilagodljivog metoda
za konstrukciju eksplicitnih izraza za irotaciona i nestisljiva fluidna
tecenja oko dva kruta pokretna kruzna diska. Takodje se diskutuje
kako takvi izrazi mogu da se iskoriste za izracunavanje fluidom iza-
zvanih sila i spregova na diskove pomoc¢u Kilingovih diskova. Za-
tim se Mebijusovom transformacijom koriste¢i tehniku konformnog
preslikavanja izvodi identifikacija meromorfne funkcije na anularnoj
oblasti u C sa tecenjem oko dva kruzna diska. Ovde polovi prvog reda
odgovaraju vrtlozima van diskova. Tecenja ka unutrasnjosti se uzi-
maju u obzir postavljanjem pola drugog reda u anulus koji odgovara
beskonacnosti.



