
On the lateral vibrations of an
elastic rod with varying

compressive force
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Abstract

We study lateral vibration of a simply supported axially com-
pressed elastic rod with rotary inertia. The axial force is assumed
to be a function of time. Stability of the solution is examined.
The conditions are examined under which the temporal evolu-
tion of the system is a slowly varying and regularly slowly vary-
ing function. Also some properties of the generalized solution
to the problem are examined. Our results on stability boundary
obtained by dynamic, method agree with the results obtained by
static (Euler) method.
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1 Formulation of the problem

Consider a rod BC of length l simply supported at both ends. The
support at the end B is unmovable while at the end C the rod has
movable joint. The axis of the rod is initially straight. At the end C the
rod is loaded by a compressive force F that is a function of time t and
whose action line coincides with the rod axis in the undeformed (initial
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state). Let x̄−B− ȳ be a rectangular Cartesian coordinate system with
axis x̄ oriented along the rod axis in the initial state (see figure 1).

In what follows we consider only the plane motion (in the plane
x̄−B− ȳ) so that (see [1]) the use D’Alembert’s principle for an element
of length dS leads to

∂H

∂S
= −qx,

∂V

∂S
= −qy,

∂M

∂S
= −V

∂x

∂S
+ H

∂y

∂S
−m, (1.1)

where S ∈ [0, l] is the arc–length of the rod axis, x and y are coordinates
of an arbitrary point on the rod axis in the deformed state along the x̄
and ȳ axis, respectively, H and V are components of the contact force
(representing the influence of the part of the rod [0, S) on the part [S, l])
along the x̄ and ȳ axis respectively, and qx, qy and m are the intensities
of the distributed forces per unit length of the rod axis along the x̄ and
ȳ axis and the intensity of the distributed couple, respectively.

Figure 1: Coordinate system and load configuration

In figure 1 we showed positive directions of cross–sectional quantities.
Also in our case the only distributed loads are inertial loads, so that

qx = −ρ
∂2x

∂t2
; qy = −ρ

∂2y

∂t2
; m = −J

∂2θ

∂t2
, (1.2)

where ρ is the (line) density of the rod, J is its moment of inertia of a
part of the rod of unith length and t is the time. In what follows we

shall retain the term J
∂2θ

∂t2
representing the rotary inertia of the rod
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cross–section. By using (1.1) and (1.2) we obtain

∂H

∂S
= ρ

∂2x

∂t2
,

∂V

∂S
= ρ

∂2y

∂t2
,

∂M

∂S
= −V cos θ + H sin θ + J

∂2θ

∂t2
,

∂x

∂S
= cos θ,

∂y

∂S
= sin θ,

1

r
=

dθ

dS
, (1.3)

where θ is the angle between the tangent to the rod axis and x̄ axis and
r is the radius of curvature of the rod axis.

To the system (1.3) we adjoin the constitutive equation connecting
the curvature of the rod axis (1/r) with the bending moment M . We
take the classical Bernoulli–Euler rod theory for which

M = EI
1

r
, (1.4)

where EI = const. is the bending rigidity of the rod. The boundary
conditions corresponding to the rod shown in figure 1, are

H(l, t) = −F (t), M(0, t) = 0, M(l, t) = 0,

x(0, t) = 0; y(0, t) = 0; y(l, t) = 0. (1.5)

The trivial solution to system (1.3), (1.5) in which the axis of the rod
remains straight, reads

H0 = −F, V 0 = 0, M0 = 0,

x0(S, t) = S, y0(S, t) = 0, θ0(S, t) = 0. (1.6)

Let H = H0 + ∆H, ...θ = θ0 + ∆θ. By substituting this in (1.3),
(1.5) neglecting the higher order terms in the perturbations ∆H, ...∆θ,
we obtain

EI
∂4∆y

∂S4
= −ρ

∂2∆y

∂t2
− F (t)

∂2∆y

∂S2
+ J

∂4∆y

∂2t∂2S
. (1.7)
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where we used
∂2∆θ

∂t2
=

∂2

∂t2

(
∂∆y

∂S

)
and

1

∆r
=

∂2∆y

∂S2
(see (1.3)5).

The boundary conditions corresponding to (1.7) are

∂2∆y

∂S2
(0, t) = 0,

∂2∆y

∂S2
(l, t) = 0,

∆y(0, t) = 0, ∆y(l, t) = 0. (1.8)

To system (1.7), (1.8) certain initial conditions must be prescribed and
we shall do it later. By introducing the dimensionless quantities

u =
∆y

l
, m =

Ml

E0I
, τ = t

√
EI

ρl4
,

λ =
Fl2

EI
, ξ =

S

l
, α =

J

ρl2
,

(1.9)

from (1.7), (1.8) we obtain

∂4u

∂ξ4
+ λ

∂2u

∂ξ2
− α

∂4u

∂ξ2∂τ 2
+

∂2u

∂τ 2
= 0, 0 < ξ < 1, τ > 0, (1.10)

and

∂2u

∂ξ2
(0, t) = 0,

∂2u

∂ξ2
(1, t) = 0, u(0, t) = 0, u(1, t) = 0. (1.11)

2 Solutions to equations (1.10) & (1.11)

2.1 Some mathematical tools

2.1.1 Karamata’s class of functions

In studying equation (1) we use Karamata’s class (cf. [5], [7]) of regularly
varying functions and a natural extension of them, the class of rapidly
varying functions (cf. [6]). We cite theirs definitions.



On the lateral vibrations of an elastic... 139

Definition 1 A positive measurable function ρ defined on some neigh-
bourhood [a,∞) of infinity is called regularly varying at infinity of
index α if for each λ > 0 and some α ∈ R

lim
x→∞

ρ(λx)/ρ(x) = λα.

If α = 0, then ρ is called slowly varying. We denote it by an L.

It is well-known that the function L is slowly varying at infinity if
and only if it may be written in the form

L(x) = c(x) exp{
x∫

a

(ε(t)/t)dt, x ≥ a

for some a > 0, where ε and c are measurable and for x →∞, ε(x) → 0
and c(x) → c ∈ (0,∞). If c(x) ≡ c, L is called normalized. A regularly
varying function ρ is of the form ρ(x) = xαL(x), α ∈ R.

Definition 2 A positive measurable function ρ defined on [a,∞) is
called rapidly varying at infinity of index ∞ if for x →∞

ρ(λx)/ρ(x) =

{
∞, for λ > 1

0, for 0 < λ < 1

and is called rapidly varying at infinity of index −∞ if for
x →∞

ρ(λx)/ρ(x) =

{
0, for λ > 1

∞, for 0 < λ < 1.

Together they are called rapidly varying at infinity.

2.1.2 The space of distributions

Let Ω denote an open subset of R2. The support of a function ϕ defined
on Ω is the closure in Ω of the set {x ∈ Ω; ϕ(x) 6= 0}. The space D(Ω)
is the space {ϕ ∈ C∞(R2); suppϕ ⊂ Ω}. A sequence {ϕj} ⊂ D(Ω)
converges in D(Ω) to zero if and only if there exists the compact set
K ⊂ Ω :
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1. suppϕj ⊂ K, j ∈ N;

2. for every α ∈ (N ∪ {0})2 ≡ N2
0, ϕα

j → 0 uniformly on K.

D′(Ω) is the space of all continuous linear functionals on D(Ω). It is
called the space of distributions on Ω. Every locally integrable function
f on Ω defines the regular distribution denoted by [f ].

Every distribution has all derivatives and DαDβ = DβDα. If a func-
tion f has f (α) ∈ Lloc(Ω), then Dα[f ] = [f (α)]. A locally integrable
function on Ω has g ∈ D′(Ω) as α-derivative in the sense of distri-
butions means that the regular distribution [f ] has derivative equal
g, Dα[f ] = g.

The differentiation of distributions is a linear and continuous map-
ping D′(Ω) → D′(Ω). If {fj} ⊂ D′(Ω) is a sequence of solutions to
a partial differential equation and if this sequence converges in D′(Ω),
then the limit of this sequence is also a solution to this equation.

If {Fj} is a sequence of continuous functions on Ω and if it converges
uniform on every compact set K ⊂ Ω to zero, then {[Fj]} converges to
zero in D′(Ω), as well.

2.2 The existence and the character of found solu-
tions

We consider the equation

( ∂4

∂ξ4
+ λ(t)

∂2

∂ξ2
− α

∂4

∂ξ2∂t2
+

∂2

∂t2

)
u(ξ, t) = 0, 0 < ξ < 1, t > 0, (2.1)

with the boundary conditions:

u(0, t) = u(1, t) = u
(2)
ξ (0, t) = u

(2)
ξ (1, t) = 0, t > 0, (2.2)

and with α > 0.

Let us suppose that uk(ξ, t) = Ak sin kπξ · Tk(t), k ∈ N, where Ak

are arbitrary constants, Ak 6= 0, k ∈ N. Then uk(ξ, y) satisfies boundary
conditions (2.2) for any Tk and every k ∈ N. Moreover, in order that
u (ξ, t) satisfies (2.1) Tk, k ∈ N, has to satisfy the equation:

T
(2)
k (t)(α(kπ)2 + 1) + (kπ)2((kπ)2 − λ(t))Tk(t) = 0, t > 0. (2.3)
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Since α > 0, equation (2.3) can be written in the form

T
(2)
k (t)− qk(t)Tk(t) = 0, t > 0, (2.4)

where

qk(t) =
(kπ)2

α(kπ)2 + 1
(λ(t)− (kπ)2), t > 0. (2.5)

Equation (2.4) is of particular importance for applied mathematics
and this accounts for the vast amount of research connected with it. We
cite only three books, we use in this paper. These are [2], [3] and [4].

Definition 3 A nontrivial solution T to (2.4) is said to be oscillatory
if there exists a sequence {tn} , tn → ∞, such that T (tn) = 0 for each
n ∈ N.

Theorem 1. Suppose that λ ∈ C((0,∞)) and moreover for a k =
k0 ∈ N

{
λ(t) ≥ (k0π)2, t ≥ t1 > 0,

λ(t)− (k0π)2 6= 0 t ≥ t2 > 0.
(2.6)

Then equation (2.3) has for all 1 ≤ k ≤ k0 a positive, convex and
decreasing solution T1k(t) on (t0,∞) for some t0 ≥ t1 (which depends
on k). This solution is:

1) Slowly varying at ∞, T1k = L1k(t), if and only if for each µ > 1

x

µx∫

x

qk (t) dt → 0, x →∞.

2) Regularly varying at ∞ of index αk, T1k = tα1kL1k (t) if and only
if for each µ > 1

x

µx∫

x

qk (t) dt → ck (µ− 1)

µ
> 0, x →∞.

where α1k = 1
2

(
1−√1 + 4ck

)
.
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3) Rapidly varying at ∞ of index −∞ if and only if for each µ > 1

x

µx∫

x

qk (t) dt →∞, x →∞.

A corresponding linearly independent solution T2k is:
In case 1),T2k (t) = tL2k (t) ; L1k and L2k are normalized and such

that
L2k (t) ∼ (L1k (t))−1 , t →∞.

In case 2), T2k (t) is an increasing and regularly varying at ∞, T2k (t) =
tα2kL2k (t) , where α2k = 1

2

(
1 +

√
1 + 4ck

)
. The functions Lik, i = 1, 2,

are normalized and

L2k (t) ∼ {(1− 2α1k) L1k (t)}−1 , t →∞.

In case 3), T2k (t) is an increasing and regularly varying.
It can be given a shorter version of Theorem 1 with the same sup-

position on λ(t) and with 1 ≤ k ≤ k0 :
Corollary 1. All solutions T (t) = K1T1(t) + K2T2(t), where K1

and K2 are constants, to equation (2.3) are:

1) In case x
µx∫
x

qk(t)dt → 0, x → ∞ for each µ > 1, either slowly

varying or regularly varying of index 1.

2) In case x
µx∫
x

qk(t)dt → ck(µ− 1)

µ
> 0, x → ∞ for each µ > 1,

regularly varying of index α1k or α2k (αik, i = 1, 2, are given in Theorem
1).

3) In case x
µx∫
x

qk(t)dt →∞, x →∞ for each µ > 1, rapidly varying.

Proof of Theorem 1. We consider equation (2.3) in the form (2.4)
with qk given by (2.5). Since λ ∈ C((0,∞)), qk ∈ C((0,∞)),as well.
Consequently, (2.3) has a fundamental system of two solutions. To prove
that for a t0 > 0 there exists a positive decreasing solution to (2.3) we
use the following Lemma:

Lemma 1. ([4, p. 10]) Let for some a > 0, q ∈ C ((0,∞)) , q (x) ≥ 0
and q (x) 6= 0, x ≥ x0 > 0. Then the equation y(2) (x) − q (x) y (x) = 0
has positive decreasing solutions on (x0,∞) for some x0 > a.
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Suppose that λ(t) satisfies condition (2.6) for a k = k0,then qk(t)
given by (2.5) satisfies conditions for q in Lemma 1 for every 1 ≤ k ≤ k0.
Therefore (2.4) has a positive decreasing solution on (t0,∞) for some
t0 > 0 and 1 ≤ k ≤ k0.

The assertions of Theorem 1 denoted by 1), 2) and 3) follow from
Theorem 1, Theorem 2 and Theorem 3 in [4], respectively.

In the next theorem the conditions are easier to verify than in The-
orem 1. Consequently such theorem is more suitable for use.

Theorem 2. ([4]) Let the suppositions on λ (t) be the same as in
Theorem 1. If τ 2qk (t) → ck, t → ∞, 1 ≤ k ≤ k0, then all decreasing
solutions of (2.4) are slowly or rapidly or regularly varying functions
with index αk =

(
1−√1 + 4ck

)
in the later case, according as ck =

0, ck = ∞, ck ∈ (0,∞).

The proof is obvious and follows from the proof of Theorem 1.

If we omit condition (2.6), then the following theorem is valid:

Theorem 3. Let λ ∈ C ([t0,∞)) for some t0 > 0. If Lik, i = 1, 2,
denote two normalized slowly varying functions for k = k0 ∈ N, then
there exist two linearly independent solutions T1k0 , T2k0 to (2.3):

1) Of the form T1k0 (t) = L1k0 (t) , T2k0 = tL2k0 (t) if and only if
x

∫ x

0
qk0 (t) dt → 0, x →∞ for a k0 ∈ N. Moreover one has

L2k0 (t) ∼ (L1k0 (t))−1 , t →∞.

2) Of the form T1k0 (t) = tαik0L1k0 (t) , i = 1, 2, if and only if x
∫ x

0
(−qk0 (t)) dt

→ Ck0 , x → ∞,−∞ < Ck0 < 1
4
, Ck0 6= 0, where αik0 , i = 1, 2, are two

roots of the equation α2 − α + Ck0 = 0, α1k0 < α2k0 . Moreover

L2k0 (t) ∼ {(1− 2α1k0) L1k0 (t)}−1 , t →∞.

Proof. It follows from Theorem 1.10 and Theorem 1.11 in [4].

Remark. In case 2), when 0 < Ck0 < 1
4
,the both solutions are

always unbounded. If −∞ < Ck0 < 0, then α1k0 < 0 and α2k0 > 0.
Consequently T1k0(t) → 0, t →∞ and T2k0(t)is unbounded.

In case 1) at least one of the solutions is unbounded.

A natural question arises: What we can assert about the solutions to
(2.3) if in Theorem 3 the number Ck ∈ (1/4,∞). By Hille’s oscillation
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criterion (cf.[8]) we known that

lim
x→∞

sup x

∞∫

x

(−qk(t))dt >
1

4

is a sufficient condition for (2.3) to have the both linearly independent
oscillatory solutions.

Let us remark that in [9] one can find the behavior of zeros of oscil-
latory solutions to equation of the form (2.4).

There is an immense literature dealing with the question of oscilla-
tory solutions to equations of the form (2.4). Such an one, applied to
equation (2.3) is the following:

Theorem 4. Let λ (t) be a twice continuously differentiable function
and λ (t) < (kπ)2 , t ≥ t0, for a k ≥ k0. Moreover, suppose that

∞∫

t0

∣∣∣q−3/2
k0

(τ) q
(2)
k0

(τ)
∣∣∣ dτ < ∞. (2.7)

Then the equation (2.3) for k = k0 has a fundamental system of solu-
tions satisfying

T (t) ∼ [−qk (t)]−1/4 exp



±i

t∫

t0

[−qk (τ)]1/2 dτ



 ,

T (1) (t) ∼ ± [−qk (t)]−1/4 exp



±i

t∫

t0

[−qk (τ)]1/2 dτ



 , t →∞.

This is a consequence of Theorem 14 in [3, chapter IV ].

A more precise theorem is a consequence of Theorem 15 in [3, chapter
IV].

Theorem 5. Let λ (t) be a real continuous function for t ≥ t0 > 0,
and let the integrals
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∞∫
t

(1 + qk (τ)) dτ,

g1 (t) =
∞∫
t

(1 + qk (τ)) cos 2τdτ,

g2 (t) =
∞∫
t

(1 + qk (τ)) sin 2τdτ, for a k = k0 ∈ N,

exist and suppose

∞∫

t0

|1 + qk (τ)| |gj (τ)| dτ < ∞, j = 1, 2, k = k0.

Then equation (2.3) has a fundamental system of solutions T1, T2 satis-
fying:

T1 (t) = cos t + o (1) , T2 (t) = sin t + o (1) ,

T
(1)
1 (t) = − sin t + o (1) , T

(1)
2 (t) = cot s + o (1) ,

for t →∞.
Comments. It is an interesting question: How much the number

α > 0 influences on the asymptotic behavior of solutions to (2.3). It is
easily seen that the number α does not figure in (2.6) which is the basic
supposition on λ(t) of Theorem 1. The asymptotic behavior of solutions
depends in Theorem 1 only on

lim
x→∞

x

µx∫

x

qk(t)dt for each µ > 1.

The number α can have an influence on this limit only in the case 2)
when Ck 6= 0. This influence reflects on α1 and α2 but only on theirs
numerical values and can not change the sign.

The same conclusion is with Theorem 2 and Theorem 3 case 1). But
in Theorem 3 case 2) if for an α = α0, Ck0 is less than 1

4
, then the

both solutions are unbounded. If we can find 0 < α < α0 such that
α0(kπ)2 + 1

α(kπ)2 + 1
Ck >

1

4
, then the solutions to (2.3) with this value of α are
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oscillatory solutions. Similarly changing α we can obtain non–oscillatory
unbounded solutions instead of oscillatory solutions.

In theorems 4 and 5 the existence of the given solutions does not
depend on α > 0.

If in equation (2.3) λ is a constant, then it is easily to find solutions
of this equation.

An example for λ(t) which satisfies conditions of Theorem 4 is λ(t) =
t + 1

t + 2
= 1− 1

t + 2
. This function is twice continuously differentiable:

λ(1)(t) =
1

(t + 2)2
> λ(2)(t) = − 2

(t + 2)3
,

for t ≥ 0 it is monotone increasing because of λ(1)(t) > 0, t ≥ 0, and
lim
t→∞

λ(t) = 1. Consequently λ(t) < π2, t ≥ 0. Now,

−q1(t) =
π2

απ2 + 1
(π2 − λ(t)) = A(π2 − λ (t))).

Thus |q(2)
1 (t)| = A

2

(t + 2)3
and integral (2.7) exists. The assertion of

Theorem 4 for λ(t) =
t + 1

t + 2
is valid.

2.3 Generalized solutions

In Subsection 2.3 we found a sequence of solutions uk(ξ, y) = Ak sin kπξ
Tk(t), k ∈ N, to (2.1), (2.2), which are of a special form. The char-
acteristic of such solution is that the initial condition is uk(ξ, 0) =
AkTk(0) sin kπξ, which is a very narrow class of functions. It is eas-
ily seen that any finite sum Σuk(ξ, t) produce a new solution to (2.1),
(2.2). In the following we will construct generalized solutions to (2.1),
(2.2) by using some series, but preserving the basic properties of classical
solutions, natural for the mechanical applications.

Naturally, the interesting solutions to (2.1), (2.2) are those which are
bounded. Therefore we chose to prove the following theorem:

Theorem 6. Let
1) λ (t) ∈ C∞ ((0,∞)) ,
2) lim

t→0+
λ (t) = 0,
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3) λ(1) ∈ L1 ([0,∞)) ,
4) there exists k0 ∈ N such that sup

t≥0
|λ (t)| = Λ < (k0π)2 .

Then for every k ≥ k0, k ∈ N, equation (2.4) has a unique solu-
tion Tk (t) satisfying the same initial conditions Tk (0) = T0, T

(1) (0) =
T 1

0 , k ≥ k0. The elements of the sequence {Tk (t)}k≥k0
are bounded on

[0,∞), uniformly in k ≥ k0. Moreover

u (ξ, t) =
∞∑

k=k0

Ak (sin kπξ) Tk (t) , (3.1)

where |Ak| ≤ N
kβ+γ , γ > 0, 1 ≤ β ≤ 5 represents function in ξ with values

in D′((0,∞)) which is a generalized solution to (2.1),(2.2).
Remark. We have first to explain the meaning of the sentence “...

which is a generalized solution to (2.1), (2.2).”
For every ξ ∈ (0, 1), u(ξ, t) defines a regular distribution; u(ξ, t) is

a function in ξ with values in D′((0,∞)) which has the β − 1 contin-
uous partial derivatives in ξ and other derivatives are in the sense of
distributions (cf. 2.1.2).

Proof. Because of suppositions 1) and 2) we can continuously extend
λ(t) to (−ε,∞), ε > 0 such that λ(t) = 0, t ∈ (−ε, 0]. Then for
every k ∈ N there exists a solution Tk to (2.4) with the initial condition

Tk(0) = T0 and T
(1)
k (0) = T 1

0 .
If in (2.4) we introduce qk given by (2.5) and multiply so obtained

equation by T
(1)
k (t), after integrtion between 0 and t, we obtain for every

k ∈ N, k ≥ k0, t ≥ 0 :

1

2
(T

(1)
k (t))2 +

(kπ)4

α(kπ)2 + 1

1

2
T 2

k (t)−

− (kπ)2

α(kπ)2 + 1

t∫

0

λ(τ)T
(1)
k (τ)Tk(τ)dτ = B,

(3.2)

where B is a constant.
From (3.2) it follows that

B =
1

2

(
T 1

0

)2

+
(kπ)4

α(kπ)2 + 1

1

2

(
T0

)2

. (3.3)
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Integrating by parts the integral in (3.2), this gives

1

2

(
T

(1)
k (t)

)2

+
(kπ)2

α(kπ)2 + 1

(kπ)2 − λ(t)

2
T 2

k (t)+

+
1

2

(kπ)2

α(kπ)2 + 1

t∫

0

λ(1)(τ)T 2
k (τ)dτ = B.

Whence

(kπ)2

α(kπ)2 + 1
((kπ)2 − Λ)

(Tk(t))
2

2
≤

≤ B +

t∫

0

|λ′(τ)|
(kπ)2 − Λ

(kπ)2

α(kπ)2 + 1

(kπ)2 − Λ

2
(Tk(τ))2dτ.

(3.4)

Now we can use
Lemma 2. (cf. Lemma 1 in [2, p. 107]). Let u, v ≥ 0, c1 > 0 and

u satisfy the inequality

u(t) ≤ c1

t∫

0

u (τ) v (τ) dτ, t ≥ 0.

Then

u (t) ≤ c1 exp




t∫

0

v (τ) dτ


 , t ≥ 0.

Applying this Lemma to (3.4) we have the inequality

1

2

(kπ)2

α(kπ)2 + 1
((kπ)2 − Λ)(Tk(t))

2 ≤ B exp
( 1

(k0π)2 − Λ

∞∫

0

|λ(1)(τ)|dτ
)
.

Now it is easily seen that there exists a constant M such that |Tk(t)| ≤
M, t ≥ 0, k ≥ k0.
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It remains only to prove that u(ξ, t), given by (3.1) is a generalized
solution to (2.1), (2.2). The finite sum

uK(ξ, t) =
K∑

k=k0

Ak sin kπξTk(t)

is also a solution to (2.1), (2.2), we have only to prove that uK(ξ, t)
converges in C((0, 1)× (0,∞)), when k →∞.

Since

|Ak sin kπξTk(t)| ≤ |Ak|M ≤ NM

kβ+γ
, (ξ, t) ∈ (0, 1)× (0,∞)), 1 ≤ β ≤ 5,

for every k ≥ k0, the sequence {uK(ξ, t)}K≥k0 converges in C((0,∞) ×
(0, 1)) and consequently in D′((0, 1)×(0,∞)). Thus [u(ξ, t)] is a solution
to ((2.1), (2.2) (cf. 2.1.2).

It is also

|(Ak sin kπξTk(t))
(i)
ξ | ≤ M |Ak|(kπ)i ≤ MN

kβ+γ−i
,

for i = 0, ..., β − 1. Thus u
(i)
ξ (ξ, t) exists and

u
(i)
ξ (ξ, t) =

∞∑

k=k0

Ak(sin kπξ)(i)Tk(t), i = 1, ..., β − 1,

and is a continuous function on [0, 1]×[0,∞). It is easily seen that u(ξ, t)
satisfy boundary condition (2.2).

This completes the proof.

Remark. The function u(ξ, t) satisfies also the initial condition

u(ξ, 0) = T0

∞∑

k=k0

Ak sin kπξ.

This is more extensive class of functions then the class uk(ξ, 0) = AkT (0) sin kπξ.
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3 Concluding remarks

In applications, the most important case corresponds to the first mode
vibration of the rod. Thus, we choose k = 1 in (2.3) and we compare
the results obtained here, with the results about stability of the same
rod, obtained by static (Euler) method.

1. Suppose that the dimensionless force λ (t) (see (1.9) is larger
than the Euler buckling force [1, p. 111], that is, λ (t) > π2. Theorem
1 in Section 2.2 specifies the properties of the solution, indicting the
instability of the rod, since T2k is an increasing function. The static
method (the method of adjacent equilibrium configuration) also predicts
instability for λ (t) = const. > π2, independently of α since rotary inertia
does not play any role in the static method.

2. If the axial force λ (t) is smaller than the Euler buckling force
λ (t) < π2 (assumption 4) in Theorem 1, Section 3) than the Theorem
1 in Section 2.3 predicts stability if the value of the axial force is in-
creased from zero (assumption 2) in Theorem 1, Section 2.3). This is in
agreement with the predictions of static method. We note that above
conclusion is independent of the value of the rotary inertia parameter
α. Thus this result is in agreement with the static method where there
is no influence of rotary inertia on stability boundary.

Our results show equivalence in prediction of stability boundary by
dynamic and static methods. Also our results show some of the prop-
erties of the dynamic solutions and their relation to regular varying
functions.
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[9] M. Hačik, E. Omey, On the zeros of oscillatory solutions of linear
second order differential equations, Publ. Inst. Math. (Beograd), 49,
(63), (1991), 189-200.

Submitted on July 2004

O poprečnim oscilacijama elastičnog štapa sa
promenljivom pritiskujućom silom

UDK 531.01

U radu se proučavaju poprečne oscilacije slobodno oslonjene, aksi-
jalno pritisnute elastične grede, bez zanemarivanje efekta rotacione in-
ercije. Usvojeno je da je aksijalna sila poznata funkcija vremena. Ispi-
tana je stabilnost grede u linearnoj aproksimaciji i odredjeni su uslovi
pod kojima je vremenska evolucija sistema opisana sporo promenljivim
i regularno sporo promenljivim funkcijama. Osim toga, analizirana su
i neka svojstva uopštenih rešenja problema. Dobijeni rezultati ovde
iznete dinamicke analize, u saglasnosti su sa rezultatima koji se dobi-
jaju statičkim (Ojlerovim) metodom.


