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M. Sekulović ∗ M. Nefovska–Danilović †
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Abstract

The effects of connection flexibility and material yielding on the be-
havior of plane steel frames subjected to static (monotonic) loads are
presented in this paper. Two types of material nonlinearities are con-
sidered: flexible nodal connections and material yielding, as well as
geometric nonlinearity of the structure. To account for material yield-
ing, a plastic hinge concept is adopted. A flexible connection is ide-
alized by nonlinear rotational spring. Plastic hinge is also idealized
by nonlinear rotational spring attached in series with the rotational
spring that accounts for connection flexibility. The stiffness matrix
for the beam with flexible connections and plastic hinges at its ends
is obtained. To illustrate the validity and accuracy of the proposed
numerical model, several examples have been conducted.
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Nomenclature

B, T, t, D Section’s dimensions: flange width, flange thickness,
web thickness, depth of section

E Young’s modulus of elasticity
F External force vector
F Cross–sectional area
G Correction matrix
I Section’s moment of inertia
kII Stiffness matrix of beam element with rigid connections

according to the second order theory
K System stiffness matrix
kci Stiffness of rotational spring that accounts for flexible

nodal connections
ksi Stiffness of rotational spring that accounts for material

yielding
ki Stiffness of resulting rotational spring
kco Initial connection stiffness
l Length of beam element
M Moment
My Yielding moment
Mp Plastic moment capacity of cross–section
Mpr Reduced plastic moment of cross–section due to

presence of axial force
Mu Ultimate moment of nonlinear flexible connection
N Axial force
q Displacement vector
U Potential energy of beam element
v(x) Lateral displacement of beam element
Wy Elastic modulus
σr Maximal residual stress
σy Yielding stress
φ
′
i, φ

∗
i End rotations of internal nodes of beam element

φi End rotations of structural nodes of the frame
θci Additional rotation due to connection flexibility
θsi Additional rotation due to plastic hinge
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1 Introduction

In the analysis and design of steel frame structures the assumptions of
totally rigid or ideally pinned nodal connections are commonly used, as
well as the assumption of linear elastic behavior of the material. Numer-
ous experimental investigations on beam-to-column connections due to
static (monotonic) loads have shown that nodal connections exhibit non-
linear behavior in the whole load domain for all types of connections [1].
When the structure is subjected to loads that exceed the proportional
limit of the material, the material starts to yield, thus the above men-
tioned assumptions become inadequate and cannot represent the real
behavior of the structure. In this case plastic analysis is required. Con-
nection flexibility, material yielding and the effects of geometrical non-
linearities are major parameters that control the load-carrying capacity
of the structure, and have become a part of many national Standards
and Codes (Eurocode3, AISC, British Standards, etc). Moreover, fast-
speed personal computers developed in the last 20 years made the use
of nonlinear analysis procedures more available for practical purposes.

Plastic analysis methods can be classified in two groups: distributed
plasticity methods that account for spreading of plastic zones within the
whole volume of the structure (Plastic zone methods) and lumped plas-
ticity methods that assume plastic zones to be formed within small areas
at the ends of frame members called plastic hinges, while frame members
exhibit elastic behavior between plastic hinges (Plastic hinge methods).
Plastic designs based on the plastic zone methods require discretization
of structure into many members as well as subdivision of cross-sections
into longitudinal and transverse fibers in order to control formation of
plastic zones. The effects of residual stresses and material strain hard-
ening can be taken into account in the plastic zone method. Plastic zone
methods are more general and require definition of stress-strain relation-
ship for internal forces computations. They are also more accurate than
the Plastic hinge methods, but require huge computational effort.

Analysis and designs based on Plastic hinge methods assume the
member cross–section is ideally elastic until the full plastic capacity of
the cross–section is reached, when the cross–section becomes perfectly
plastic, i.e. plastic hinge is formed. In this case the effects of resid-
ual stresses and material hardening cannot be accountered for in the
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analysis. Al-Mashary and Chen [2], Yau and Chan [3], Chen and Chan
[4] and Chan and Chui [5] improved the elastic–perfectly plastic hinge
model in order to account for the gradual plastificitation of cross–section
by modeling the plastic hinges at elements ends with zero-length rota-
tional springs. Moreover, Chan and Chui [5] analyzed combined effect
of connection flexibility and material yielding on the response of steel
frames using springs in-series at elements ends. Plastic hinge methods
are based on the force-deformation relationships derived from the cor-
responding stress-strain relationships in order to monitor cross-section
plastification, i.e. formation of plastic hinges at elements ends. They
require less input data and less computational time comparing with the
Plastic zone methods, which make them convenient for practical design
of frame structures.

Beside these computer based plastic hinge methods of inelastic struc-
tural analysis, a method of limit load capacity exists. It has been widely
used 50 years ago in order to analyze structures without computer cal-
culations. Since this paper deals with computer based plastic hinge
methods, this method will not be analyzed and described herein.

This paper presents an extension of previous author’s work [6]–[12]
regarding static and dynamic analysis of flexible connected steel frames,
on elastic-plastic analysis based on plastic hinge concept. Beside nonlin-
ear behavior of nodal connections, a material yielding is also considered
through formation of plastic hinges at elements ends. So, all material
nonlinearities are lumped at elements ends, while the regions between
plastic hinges are assumed to behave elastically. These two types of
material nonlinearities are interactive with the geometrical nonlinearity
of the structure.

Flexible nodal connections and material yielding are modeled by us-
ing rotational springs at element ends attached in series, [3], [5]. To
describe a nonlinear behavior of flexible nodal connections, a three pa-
rameter model proposed by Richard and Abbot [13] is used. A section
assemblage concept [14] is used for determination of moment–axial force
full yield interaction diagrams for a cross-section. Two types of plastic
models are analyzed: elastic–perfectly plastic model, and elastic–plastic
model that accounts for gradual plastification of cross–section.

The stiffness matrix is obtained based on the governing differential
equations of second–order theory, so each beam represents one frame
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element. Nodal displacements and rotations are chosen as the primary
unknowns, while displacements and rotations at the element ends are
eliminated. Thus, the numbers of degrees of freedom are the same as
for the system with rigid connections.

Based on the above mentioned theoretical considerations, previously
developed computer program is modified and extended to elastic–plastic
analysis of plane steel frames with flexible connections. A parametric
study is carried out to show the influence of joint flexibility and material
yielding on load–carrying capacity of the structure.

2 Cross–Section Strength

When the structure is subjected to load that exceeds the proportional
limit of the material, a yielding occurs in the most loaded cross–section
of the structure. Material yielding significantly reduces moment capacity
of the cross-section, as well as the load carrying capacity of the whole
structure.

Analysis procedures based on plastic hinge concept use a moment–
curvature relationship based on stress–strain relationship, to control the
plastification of the cross–sections at elements ends. Schematic repre-
sentation of moment–curvature relationship depending on type of cross–
section is shown in Figure 1a. Moment–curvature relationship also de-
pends on the presence of axial force in the cross–section, which can
significantly reduce plastic moment capacity of the cross–section, Fig-
ure 1b. Yielding of the cross–section subjected to bending moment and
axial force starts when stress in the outermost fiber reaches the yielding
stress σy. Corresponding yielding moment My is:

My =

(
σy − N

F

)
Wy , (1)

where N , F and Wy represent the axial force, cross–sectional area and
elastic section modulus, respectively. The presence of residual stresses in
a frame member will cause an early yielding of the cross–section, Figure
2a. Distribution of residual stresses in a hot–rolled I–section according to
the ECCS (European Convention for Construction Steelwork) is shown
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Figure 1: Schematic moment–curvature relationship: a) depending on
type of cross–section, b) depending on the magnitude of axial force

in Figure 2b. In this case, yielding moment My is:

My =

(
σy − σr − N

F

)
Wy , (2)

where σr is residual stress.

2.1 Section assemblage method

Chan and Chui [14] developed an efficient method for determination of
plastic moment capacity of cross–section in the presence of axial force,
called section assemblage method, which is convenient to be used for I–
shaped cross–sections. In this method it is assumed that the web of the
section takes the axial force, while the remaining portion of the section
resists the bending moment, Figure 3.

When the neutral axis is in the web (zo ≤ d/2), the half–depth of
plastic zone in the section and section moment resistance by the re-
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Figure 2: a)Moment–curvature relationship in the presence of residual
stresses, b) Distribution of residual stresses according to the ECCS

maining unyielding zone can be calculated as:

zo =
N

2 σy t
,

Mpr =

[
B T (D − T ) +

((
d

2

)2

+ z2
o

)
t

]
σy . (3)

When the neutral axis is in the section flange (d/2 ≤ zo ≤ d/2 + T ),
plastic zone depth and corresponding resistance moment are:

zo =
N − σy t d

2 B σy

+
d

2
,

Mpr =

[(
D

2

)2

− z2
o

]
B σy . (4)

Graphical normalized representation of expressions (3) and (4) is given
in Figure 4.
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Figure 3: Assemblage of the cross–section

Full yield function obtained by section assemblage concept is simple
and depends on geometrical parameters of the cross–section in contrast
to other empirically obtained yield functions (AISC–LRFD [15], Li and
Lui [16], Duan and Chen [17]), which require curve–fitting for each new
sectional type. Comparation of these yield functions is presented in
Figure 5.

3 Formulation of the beam element

3.1 Shape functions

In order to account for material yielding (plastic hinges at element ends)
and flexible nodal connections, the prismatic beam with nonlinear rota-
tional springs of zero length is developed, Figure 6. Rotational springs
that simulate plastic hinges (ksi) at element ends are attached in series
with rotational springs that simulate flexible nodal connections kci.

Relations between end rotations at internal nodes i
′
and i∗ (i = 1, 2)

and rotations of structural nodes i can be expressed as:

ϕ
′
i = ϕ∗i + θsi (5)
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Figure 4: Initial yield function and full yield function based on the
section assemblage method
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Figure 5: Comparation of different full yield functions
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Figure 6: A frame element with flexible connections and plastic hinges

ϕi = ϕ
′
i + θci , i = 1,2 , (6)

where θci are additional rotations due to joint flexibility and θsi are
additional rotations due to plastic hinges. Rotations θci and θsi depend
on spring stiffnesses kci and ksi respectively:

θc =




0
θc1

0
θc2


 =




0
M∗

1

kc1

0
M∗

2

kc2


 , θs =




0
θs1

0
θs2


 =




0
M∗

1

ks1

0
M∗

2

ks2


 , (7)

where M∗
1 and M∗

2 are bending moments at ends of the beam.

Force–displacement relation according to the second–order theory
can be written as [7]:




T ∗
1

M∗
1

T ∗
2

M∗
2


 =

EI

l3




12 φ1 6 l φ2 −12 φ1 6 l φ2

4 l2 φ3 −6 l φ2 2 l2 φ4

12 φ1 −6 l φ2

simetr. 4 l2 φ3







v∗1
ϕ∗1
v∗2
ϕ∗2




= KII q∗ , (8)
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where φi, i = 1, 2, 3, 4 are correction trigonometric or hyperbolic func-
tions depending on the axial force in the frame element (compressive or
tensile). These correction functions can be find in Reference [18].

According to expressions (5), (6), (7) and (8), end moments M∗
1 and

M∗
2 can be written as:

[
M∗

1

M∗
2

]
=

EI

l2

[
6 φ2 4l φ3 −6 φ2 2l φ4

6 φ2 2l φ4 −6 φ2 4l φ3

]



v1

ϕ1 − (θs1 + θc1)
v2

ϕ
′
2 − (θs2 + θc2)


 =

=
EI

l2

[
6 φ2 4l φ3 −6 φ2 2l φ4

6 φ2 2l φ4 −6 φ2 4l φ3

]
(q− θs − θc) (9)

Substituting expressions (7) into expression (9), leads to:

[
M∗

1

M∗
2

]
=

EI

∆l2

[
1 + 4 g2 φ3 −2 g2 φ4

−2 g1 φ4 1 + 4 g1 φ3

]
× (10)

×
[

6 φ2 4l φ3 −6 φ2 2l φ4

6 φ2 2l φ4 −6 φ2 4l φ3

]
q ,

where
∆ = (1 + 4 g1 φ3) (1 + 4 g2 φ3)− 4 g1 g2 φ4

2 ,

1

ks1

+
1

kc1

=
1

k1

,

1

ks2

+
1

kc2

=
1

k2

,

gi =
EI

ki

i = 1,2 .

ki is stiffness of the resulting spring obtained by attaching the springs kci

and ksi in series. Now, the vector of total additional rotations θ = θs+θc

can be written as:

θ =




0
θ1

0
θ2


 =




0
M∗

1

k1

0
M∗

2

k2


 = Gq , (11)
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where G is corrective matrix of the frame element that accounts for joint
flexibility and plastic hinges at element ends according to the second–
order theory:

G =
1

∆




0 0 0 0
g21 g22 g23 g24

0 0 0 0
g41 g42 g43 g44


 . (12)

The nonzero elements of the correction matrix are:

g21 = −g23 =
6

l
[g1 + 2 g1 g2 (2 φ3 − φ4)]

g22 = 4
[
g1 φ3 + g1 g2 (4 (φ3)

2 − (φ4)
2)

]

g24 = 2 g1 φ4

g41 = −g43 =
6

l
[g2 + 2 g1 g2 (2 φ3 − φ2)]

g42 = 2 g2 φ4

g44 = 4
[
g2 φ3 + g1 g2 (4 (φ3)

2 − (φ4)
2)

]
.

Lateral displacement v(x) of the beam with flexible nodal connections
and plastic hinges at element ends taking into account expression (11)
can be written as:

v(x) = N(x)q∗ = N(x)(q− (θs + θc)) = N(x)(q− θ) =

= N(x)(I−G)q = N̄(x)q , (13)

where N(x) is vector of interpolation functions of the prismatic beam
based on the analytical solutions of the second–order analysis [6], and
N̄(x) is vector of interpolation functions of the frame element with flex-
ible connections and plastic hinges.

3.2 Stiffness matrix

The flexural stiffness matrix of the proposed beam can be obtained from
the total potential energy of the element, which can be written as:

U =
EI

2

∫ l

0

[v
′′
(x)]2 dx +

1

2

(
2∑

i=1

ki θ
2
i

)
, (14)
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The first term in the above expression is the potential energy of the
frame element, and the second term represents the potential energy of
the resulting springs at element ends. After substituting expression (13)
into (14), the total potential energy can be written in the following form:

U =
1

2
qT

[
EI (I−G)T

(∫ l

0

[N(x)T ]
′′
[N(x)]

′′
dx

)
(I−G) + GT SG

]
q ,

(15)
where

S =




0 0 0 0
0 k1 0 0
0 0 0 0
0 0 0 k2


 , ki =

ksi kci

ksi + kci

, i = 1, 2 ,

θ = θs + θc .

Expression (15) can be written in the other form as:

U =
1

2
qT (kII + kef + ks)q , (16)

where matrices kII , kef and ks are defined as:

kII = EI

∫ l

0

[N(x)T ]
′′
[N(x)]

′′
dx , (17)

kef = −GT kII + kII G + GT kII G , (18)

ks = GT SG , (19)

denoting beam stiffness matrix with the rigid connections according to
the second–order theory and correction matrices that accounts for the
effects of joint flexibility and material yielding respectively.

The elements of flexural matrix k are:

k11 = −k13 = k33 =
12EI

l3 ∆
(1 + g1 + g2)

k12 = −k23 =
6EI

l2 ∆
(1 + 2 g2)

k14 = −k34 =
6EI

l2 ∆
(1 + 2 g1)
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k22 =
4EI

l ∆
(1 + 3 g2)

k24 =
2EI

l ∆

k44 =
4EI

l ∆
(1 + 3 g1) .

In the case of the beam with flexible connections and without plastic
hinges at element ends (kci 6= 0, ksi → ∞), the stiffness matrix can be
obtained from the above expression where:

ki = kci , i = 1, 2 gi = gci =
EI

l kci

.

In the case of the beam with rigid connections and plastic hinges (ksi 6=
0, kci → ∞), the stiffness matrix can be obtained from the above ex-
pression where:

ki = ksi , i = 1, 2 gi = gsi =
EI

l ksi

.

The relative rotations θci due to flexible nodal connections and relative
rotations θsi due to plastic hinges must be calculated in order to define
rotational stiffnesses kci and ksi of end springs. Based on the following
relations:

q = q
′
+ θc ,

q
′
= q∗ + θs ,

and expression (11), relative rotations θci and θsi are:



0
θc1

0
θc2


 =

EI

l2 ∆




0 0 0 0
g
′
21 g

′
22 g

′
23 g

′
24

0 0 0 0
g
′
41 g

′
42 g

′
43) g

′
44







v1

φ1

v2

φ2




θc = G
′
q , (20)

θs = (G−G
′
)q = G

′′
q . (21)

The nonzero elements of matrix G
′
are:

g
′
21 = −g

′
23 =

6

kc1

(1 + 2g2)
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g
′
22 =

4l

kc1

(1 + 3g2)

g
′
24 =

2l

kc1

g
′
41 = −g

′
43 =

6

kc2

(1 + 2g1)

g
′
42 =

2l

kc2

g
′
44 =

4l

kc2

(1 + 3g1).

3.3 Plastic hinge modeling

3.3.1 Elastic–perfectly plastic model

This is the simplest model that accounts for material yielding, but it
cannot include residual stresses and material hardening, thus it cannot
represent real structural behavior. Two conditions of cross–section are
considered: ideally elastic, when the plastic moment capacity has not
been reached, and totally plastic, when the plastic moment capacity has
been reached. In the case when cross–section behaves as ideally elastic
the stiffness of end rotational spring that models material yielding is as-
signed to be infinity (high value in order to avoid numerical difficulties).
When the plastic moment is reached, plastic hinge is formed and the
stiffness of rotational spring is assigned to be zero (small value), i.e.:

ksi = 1010 , for |M | < |Mpr| , ksi = 10−10 , for |M | = |Mpr| .

This method overestimates the structural strength due to abrupt change
of section from the fully elastic to totally plastic state.

3.3.2 Model that accounts for gradual plastification of cross–
section

This model accounts for gradual plastification of cross–section. When
the yielding moment My is reached, cross–section starts to yield, and
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stiffness of rotational spring ksi needs to be modified. Chan and Chui
[5] proposed the following expression to define spring stiffness:

ks =
6EI

l

Mpr −M

M −My

, for My < M < Mpr , (22)

where EI is flexural stiffness of the section, l is member length and Mpr

reduced plastic moment due to presence of axial force.Thus, the spring
stiffness ksi in this case varies from zero (elastic state) to infinity (plastic
state). Between these two limit states spring stiffness is calculated using
expression (22).

3.4 Semi–rigid connection modeling

In order to model nonlinear connection behavior a three parameter
power model proposed by Richard and Abbot [13] has been adopted.
Nonlinear moment–rotation relationship is defined as:

M =
kcoθc(

1 +
(

θc

θco

)n)1/n
, (23)

where kco is initial stiffness of the connection, θco = Mu/kco reference
connection plastic rotation, Mu ultimate moment capacity and n shape
parameter. Graphical representation of three parameter model is pre-
sented in Figure 7.

Values of these three parameters are usually determined from em-
pirical expressions that depend on the type of the connection, Kishi et
al.[19]. Spring stiffness kc that models nonlinear connection behavior is
defined as the tangent slope of the M − θc curve defined by expression
(23):

dM

dθc

= kc =
kco[

1 +
(

θc

θco

)n] 1
n

+1
. (24)

This value decreases as moment of the connection increases and varies
from kco to zero when M = Mu.
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Figure 7: Richard–Abbot’s three parameter model

4 Numerical procedures

Equilibrium equations of the frame subjected to static load can be writ-
ten as:

Kq = F , (25)

where K is the frame stiffness matrix, q vector of unknown displace-
ments and F is external force vector. System (25) is nonlinear, thus
some of nonlinear solution techniques must be used. In this paper a
Newton–Raphson’s incremental–iterative procedure is adopted for trac-
ing the equilibrium path. Iterative equation system can be written as:

K
(i)
n+1 ∆q(i) = ∆F

(i)
n+1 , (26)

where K
(i)
n+1 is tangent stiffness matrix of the i–th iteration of the (n+1)–

th increment, ∆q(i) incremental displacement vector of the i–th iteration
of the (n + 1)–th increment and ∆F

(i)
n+1 unbalanced force vector. Iter-

ative procedure within one load increment is stopped when the conver-
gence criteria are satisfied (when the unbalanced forces and unbalanced
displacements are less then a certain tolerance).
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At the beginning of incremental–iterative procedure it is assumed
that all members exhibit elastic behavior (spring stiffnesses ksi are set
to have a high value) and all connections behave linearly (spring stiff-
nesses kci equal to a initial connection stiffness kco). Spring stiffnesses
kc are updated in each iteration within a load increment and are cal-
culated from equation (24). Moreover, within each load increment a
yielding criterion is checked, and corresponding spring stiffness ks is re-
duced. This procedure is performed until the collapse of the system is
reached, which is detected by checking the positive definiteness of the
frame stiffness matrix.

In the case of second–order theory equation (25) must be modified
due to incremental formulation of numerical procedure. Equilibrium
equations for two states 1 and 2 can be written in the following form:

(Ko + K1
g)q1 = F1

(Ko + K2
g)q2 = F2 ,

where Ko is a part of frame stiffness matrix due to first order theory, Ki
g

(i = 1,2) a part of frame stiffness matrix due to second order theory, Fi,
(i = 1,2) nodal force vectors. After a subtraction of the above equations,
the following equation is obtained:

K∆q = ∆F
′
, (27)

where:

K = (Ko + K2
g) ,

∆F = F2 − F1 ,

∆q = q2 − q1 ,

∆F
′
= ∆F + (K1

g −K2
g)q1 .

Vector ∆F
′

contains additional part, which occurs due to change of
equilibrium configuration and setting the equilibrium conditions on the
deformed system configuration.
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5 Numerical examples

Based on the above theoretical considerations a computer program is
developed for nonlinear static analysis of plane steel frames. In order
to verify efficiency and accuracy of the developed computer program
several examples analyzed by other authors have been carried out. A
parametric study has also been carried out in order to show the influence
of certain parameters on the critical load and load carrying capacity of
the frame.

5.1 Fixed end beam

A fixed end beam subjected to concentrated vertical force in joint B,
analyzed by Liew [20] and Chan [5], is presented in Figure 8.

Residual stresses reach 50% of yield stress σy, according to ECCS.
Results of the analysis are presented in Figure 8 and are in good agree-
ment with results obtained by Chan. The first plastic hinge has formed
in joint A, the second in joint B and the third in joint C, which caused
the collapse of the beam. In the case of elastic–perfectly plastic model
load–deflection relation is polygonal line with slope change where the
plastic hinge is formed, while in the case of the model with gradual
plastification of cross–section this relation is smooth curve.

5.2 Vogel’s six storey frame

Vogel’s six storey two bays frame belongs to European calibration frames
[21] and has also been analyzed by Chan and Chui [5]. Layout and geo-
metrical properties of the frame are presented in Figure 9a. The frame
is subjected to proportional gravity and horizontal load. Frame with
totally rigid beam–to–column connections and three types of nonlin-
ear nodal connections is analyzed according to the second–order theory.
Properties of the nonlinear nodal connections are given in Table 1, and
moment–rotation relations are presented in Figure 9b. Residual stresses
are taken into account according to ECCS. Only model with gradual
plastification of cross–section is employed. Results are presented in Fig-
ure 10. They show a good agreement with results obtained by Chan [5]
and Vogel [22].
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Figure 8: Fixed end beam: Load–lateral deflection relation
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Figure 9: a) Vogel’s six storey frame, b) Moment–rotation relations
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Figure 10: Load–displacement relation: a) Rigid jointed frame, b) Frame
with nonlinear nodal connections
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Table 1: Parameters of three–parameter model for nonlinear nodal con-
nections

Connection Ultimate Initial Shape
type moment, Mu(kNm) stiffness, ko(kNm/rad) parameter, n

A–Single Web 17.00 5425 0.75
Angle
B–Top and 58.00 10760 1.00
Seat Angle
C– Flush End 101.70 12430 1.50
Plate

5.3 Seven storey frame

In order to show influence of certain parameters on behavior of steel
frames subjected to static loads a parametric study has been carried out
on the example of seven storey steel frame presented in Figure 11a. Two
types of nonlinear joint connections are considered, whose parameters
are presented in Figure 11b. Ultimate moment capacity for connection
type B is much less than plastic moment capacity of the beams IPE400
(330 kNm), while moment capacity for connection type A is larger then
plastic moment capacity of the beams. Residual stresses are taken into
account according to ECCS. Only results based on the model with
gradual plastification of cross–section are presented herein. Besides that,
the influence of braces on critical load of the frame has been analyzed.

5.4 Buckling analysis

Investigated frame subjected to vertical concentrated forces P and hor-
izontal concentrated forces 0.001P , i.e. 0.002P in order to activate
second–order analysis effects is shown in Figure 12a. Critical loads for
the braced and unbraced frame in the case of elastic and elastic–plastic
analysis are given in Table 2. Force–horizontal displacement relations
are presented in Figures 13–14.
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Figure 11: a) Layout and geometrical properties of seven storey steel
frame, b) Moment–rotation relation
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Figure 12: Seven storey frame: a) Buckling analysis, b) Load–carrying
capacity analysis

In the case of elastic analysis, critical load decreases as flexibility
of nodal connections increase, which is specially expressed in the case
of unbraced frame. In the inelastic analysis, critical load is almost in-
dependent on the connection flexibility (specially in the case of braced
frame). This is because the critical load is dominated by the plastic
moment capacity of the columns in the first two floors, whose plastic
moments are much less than the elastic moment capacity. Moreover,
bracings significantly increase the critical load of the frame in both elas-
tic and inelastic analysis. Because of that, it is more economical to use
bracings in order to increase critical load of the frame, than to increase
geometrical properties of cross–sections.
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Figure 13: Force–displacement relation for unbraced frame: a) Elastic
analysis, b) inelastic analysis
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Figure 14: Force–displacement relation for braced frame: a) Elastic
analysis, b) inelastic analysis
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Table 2: Critical load for seven storey frame

Pcr (kN)
Without bracings With bracings

Connection Elastic Inelastic Elastic Inelastic
type analysis analysis analysis analysis
Rigid 2794 880 5278 1787
Semi–rigid 2515 876 5025 1787
linear–type A
Semi–rigid 1883 753 3732 1787
nonlinear–type A
Semi–rigid 1210 718 4000 1786
linear–type B
Semi–rigid 948 717 3527 1786
nonlinear–type B

5.5 Load–carrying capacity analysis

Seven storey frame subjected to proportional vertical and horizontal
loads is presented in Figure 12b. Load factor–horizontal displacement
relations in the case of elastic and inelastic analysis are given in Figure
15. Limit load factors λgr obtained in elastic analysis are greater then the
corresponding limit load factors obtained in inelastic analysis. Also, λgr

increases as connection flexibility decreases, which is specially expressed
in the case of elastic analysis. For a rigid jointed frame load factor is
completely influenced by the plastic moment of the beams and columns,
while behavior of the frame with nonlinear connection type B is mostly
influenced by connection flexibility since ultimate bending moment of
the beam–to–column connection is much less than the plastic moment
of the beam, Figure 16.

6 Conclusion

Method for nonlinear static analysis of steel plane frames is presented
in this paper. A numerical model that includes both material (flexible
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Figure 15: Load factor–displacement relation: a) Elastic analysis, b)
Inelastic analysis
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Figure 16: Comparation of elastic and inelastic analysis

nodal connections and material yielding) and geometrical nonlinearities
is developed. A stiffness matrix for the prismatic beam with rotational
springs attached in series at its ends that simulate flexible connections
and plastic hinges according to the second order theory is obtained in
explicit form, so that each beam represents one frame element and the
total number of unknown displacements is the same as in the conven-
tional design procedures of steel frames with ideal connections.

Based on the above theoretical considerations and numerical exam-
ples carried out by the developed computer program, it can be concluded
that flexible nodal connections and material yielding based on Plas-
tic hinge concept greatly influence frame’s behavior subjected to static
loads. Elastic–plastic model that accounts for gradual plastification of
cross–section is more accurate than elastic–perfectly plastic model, and
also can incorporate effects of residual stresses into analysis, and results
based on this model are close to the results obtained in Plastic zone
analysis.

Flexible nodal connections and plastic hinges at element ends are
coupled and significantly affect load–carrying capacity of the structure.
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The overall behavior of the structure is controlled by the larger value of
plastic moment capacity of the sections and ultimate moment capacity
of the flexible nodal connections. Because of that structural behavior
can be influenced by plastic moment/connection moment ratio, i.e. if
the ratio is much greater than 1, structural behavior is completely con-
trolled by the plastic moment capacity. If the ratio is close to 1, connec-
tion flexibility and material yielding simultaneously influence structural
behavior.
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Statička nelinearna analiza čeličnih ramova sa
fleksibilnim vezama

UDK 517.962

U ovom radu prikazan je uticaj fleksibilnosti čvornih veza čeličnih
ramova i pojava tečenja materijala na ponašanje čeličnih ramova pri
dejstvu statičkog (monotonog) opterećenja. Razmatrana su dva tipa
materijalne nelinearnosti: fleksibilnost čvornih veza i tečenje materijala,
kao i geometrijska nelinearnost strukture. Da bi se obuhvatio uticaj
tečenja materijala, usvojen je koncept plastičnih zglobova. Nelinearno
ponašanje čvornih veza modelirano je pomoću rotacione opruge na kra-
jevima grednog elementa. Plastični zglobovi na krajevima grednog el-
ementa modelirani su pomoću rotacionih opruga, koje su sa oprugama
za modeliranje nelinearnih čvornih veza vezane redno. Za konačni ele-
ment sa rotacionim oprugama na krajevima dobijena je matrica krutosti.
Prikazani su primeri na kojima je ilustrovano ponašanje čeličnih ramova
sa fleksibilnim vezama pri dejstvu statičkog opterećenja.


