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Abstract

As a rule in the studies of a rigid rotor in the elastic bearings the
authors consider the linear system corresponding to the plane-
parallel motion and the effect of self-centring under unlimited
growth of the rotation frequency. In the present paper rotor is
considered as a mechanical system with four degrees of freedom.
Different motions of a statically and dynamically unbalanced
vertical rotor supported in the non-linear bearings are studied.

Keywords: unbalanced rotor, precession motion, self-induced
vibrations.

1 Introduction

The absolute rigid rotor of mass M and length L is supported vertically
in two immovable non-linear bearings in such a way that the center of
mass of the rotor is placed symmetrically with respect to the bearings
(Fig. 1). The rotor is dynamically symmetric; A is the moment of
inertia about the axis of symmetry and B is the equatorial moment of
inertia. The distance between the center of mass of the rotor and the
axis of revolution (static eccentricity) is equal to e, the angle between
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the axis of dynamical symmetry and the axis of revolution (dynamical
eccentricity) is equal to δ. The angle between the plane containing the
axis of revolution and the mass center and the plane containing the
angle δ is denoted by ǫ.

Figure 1: Unbalanced rotor in elastic bearings

It is assumed that the elastic bearings are centrally symmetric and
the reactions in the bearings have only radial components. We only
consider the case of the hard characteristic of the restoring forces with
cubic non-linearity:

P j = −Sj

(

a0 + a1|Sj|2
)

, j = 1, 2. (1)

Here Sj is the vector describing the displacement of the center of a
bearing from the equilibrium position, a0 and a1 are the positive real
constants, characterising the elasticity of the bearings.

The rotor rotates with an ideal engine (an engine with unlimited
power), so that the angular velocity ω is supposed to be constant. The
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rotor is under external friction forces R
e
j , which are proportional to the

absolute velocity of the bearing centers:

R
e
j = −µ̃e Ṡj, j = 1, 2. (2)

If one neglects the displacement along the axis of rotation, then the
position of the rotor is determined by the co-ordinates of the center of
bearings and the rotor is a system with four degrees of freedom. The
equations of the motion can be derived by using the theorem of the
motion of the center of mass and the theorem of the moments.

We consider vibrations near the equilibrium (vertical) position,
when the co-ordinates of the bearings and their velocities and eccen-
tricities e and δ are considered to be small. The system of differential
equations in complex variables S1 and S2 is the following:

M

2
(S̈1 + S̈2) + µ̃e(Ṡ1 + Ṡ2) + a0(S1 + S2)+

a1(|S1|2 S1 + |S2|2 S2) = M eω2 exp(I ω t),

B(S̈2 − S̈1) − I ω A(Ṡ2 − Ṡ1) + µ̃e
L2

2
(Ṡ2 − Ṡ1)+

L2a0

2
(S2 − S1 +

a1

a0

(|S2|2 S2 − |S1|2 S1)) =

(B − A)ω2Lδ exp(I(ωt − ε)). (3)

This is the linear system, but with the non-linear cubic terms in the
restoring forces.

Forced vibrations due to either static or dynamical eccentricity or
both of them have the form of the direct synchronous precession:

Sj = R̃j exp(I ω t) exp(I ϕj), j = 1, 2, (4)

where R̃j and ϕj are the real constants characterizing the amplitudes
and phases of the bearings displacements. Depending on a type of the
surface traced by the axis of a rotor, the rotor motion could be either
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cylindrical, or conical or hyperboloidal precession. The characteristic
feature for a cylindrical precession is the equality of the amplitudes and
phases. For a conical precession the phases are either equal or differed
by π. In the first case the axis of the rotor traces the truncated cone
and in the second case the rotor axis traces the cone with the cone
apex between the bearings. In the case of a hyperboloidal precession
the amplitudes and phases relate arbitrarily. We call the precessions
as symmetric if both bearings in their plane motions make the circles
of equal radii.

2 Symmetric hyperboloidal precessions of

completely unbalanced rotor

Here we analyze hyperboloidal precessions for a rotor with two disbal-
ances (e 6= 0, δ 6= 0). Symmetric precessions of statically and dynam-
ically unbalanced rotor may only occur for a system without external
friction forces R

e and when ǫ = π/2. Otherwise non-symmetric hy-
perboloidal precessions take place. Consider symmetric hyperboloidal
precessions defined as

√
y =

x

2

(

1

(1 + cy − x)2
+

d2

(k(1 + cy) − x)2

)1/2

,

tan φ1 = d
1 + cy − x

k(1 + cy) − x
, φ1 = −φ2.

(5)

Here for convenience we introduce the amplitude-frequency response
in the plane (x, y) (x = Ω2, y = R2), where the dimensionless variables
and parameters are:

R = R̃/(2e), Ω2 = ω2/(2a0/M),

c = 4e2
a1

a0

, k =
ML2

4B(1 − A/B)
, d =

Lδ

2e
.

(6)

For the limiting values R∞ and φ∞, when x is large enough we
obtain
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√
y∞ = R∞ = 1/2

√
1 + d2, tan φ1,∞ = d. (7)

If we introduce a minimal radius of the hyperboloid of rotation
r = R cos φ1 and the angle of the deflection of the rotor axis from the
vertical β = 2R sin φ1/L̃ (L̃ = L/(2e)), then the limiting values for
these quantities are r∞ = 1/2 and β∞ = δ respectively. The last result
means that the self-centring regime takes place. The rotor rotates in
such a way that the center of mass remains stationary and the axis of
dynamic symmetry takes the equilibrium position.

If the rotor is a dynamically prolate body (λ < 1 and k > 0) then
the resonance set consists of the lines 1+cy−x = 0 and k(1+cy)−x =
0, which are the skeleton lines for the modified amplitude-frequency
response curve (AFR) in the plane (x, y) (Fig. 2). The cylindrical
and conical precessions resonate near the first and the second lines,
respectively.
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Figure 2: AFR of symmetric hyperboloidal precession

One can see in Fig. 2 that for one frequency there can be either one,
three or five different regimes of symmetric hyperboloidal precessions.
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It can be shown that in the first approximation the segments AB and
CD of AFR for the values k < 1/3 and k > 3 correspond to the
unstable symmetric hyperboloidal precessions.

If rotor is dynamically oblate (λ > 1 and k < 0) then the resonance
set is a sole line 1 + cy − x = 0, near which the cylindrical precession
resonates. For that case the segment of AFR with the intermediate
value of amplitude corresponds to the unstable motions for any value
of the parameter k.

3 Precessions of rotor with one disbal-

ance

If the rotor has only dynamical disbalance (e = 0, δ 6= 0) among the
steady-state direct synchronous precession motions of the dynamically
unbalanced rotor there may be either symmetric or non-symmetric pre-
cessions of either conical or hyperboloidal type.

The symmetric conical precessions, i.e. the regime when the center
of mass of the rotor is motionless (s1 = −s2 = −s), are described by
the following equations

√
y
√

(k(1 + cy) − x)2 + µ2
ek

2x =
1

4
x, tan φ = − µek

√
x

k(1 + cy) − x
. (8)

AFR for the dynamically prolate rotor (λ < 1 and k > 0) in the
plane (x, y) has the skeleton line k(1 + cy) − x = 0 (Fig. 3). For suf-
ficiently large x the limiting value for the amplitude is R∞ = 1/4 and
the axis of dynamical symmetry of the rotor tends to take the equilib-
rium position. This motion corresponds to the self-centring regime of
the rotor.

Depending on the parameters of the system there may be one or
three regimes of symmetric conical precessions. To study stability of
these regimes in the linear approximation the characteristic equation
may be represented as a product of two fourth order polynomials in
characteristic number p (M N = 0). The stability conditions have been
reduced to the inequalities m4 > 0, n4 > 0, where m4 and n4 are the
absolute values of the polynomial M and N .
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Figure 3: AFR of symmetric conical precession

The sets m4 = 0 and n4 = 0 are the bifurcation sets determining the
bounds of the stability domains for the symmetric conical precessions,
which have the form of hyperbolas in the plane (x, y) (Fig. 3). In
the bifurcation points on the bound, where m4 = 0, the regime of the
symmetric conical precessions (when the center of mass of the rotor
is motionless) may appear or disappear. Instability of the segment,
where inequality m4 < 0 is satisfied is quite common for the theory of
non-linear vibrations. In the bifurcation points on the bound, where
n4 = 0, the regime of the nonsymmetric hyperboloidal precessions due
to the motion of the center of mass may appear or disappear. That
means that the symmetric conical precessions are unstable in 3D and
the domain of instability in 3D appears near the resonance set for
the cylindrical precessions of the rotor with two disbalances. Such
instability may exist only for the mechanical system with three and
more degrees of freedom. In domain n4 < 0 the symmetric conical
precessions may transform to the hyperboloidal precessions or some
other regimes (for example, strange attractor).

Among the steady-state motions of statically unbalanced rotor there
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may be cylindrical precessions, non-symmetric conical precessions and
symmetric and non-symmetric hyperboloidal precessions. For the cylin-
drical precession the effect of self-centring is typical; the dynamically
prolate rotor may be unstable in 3D and for the resulting regimes the
axis of rotation of the rotor swings.

4 Non-linear equations of the rotor

In the analysis of the rotor motion with the second order terms the
equations are nonsymmetric and can not be represented in the complex
variables as we did it in the previous sections. The coefficients at the
second derivatives of the co-ordinates of the bearings in their plane of
motion depend on the same co-ordinates.

If for a linear system the main motion is the symmetric preces-
sion, then for a nonlinear system the symmetric motions for the rotor
with either static or dynamic disbalance or both of them can only
be symmetric cylindrical precessions for a statically unbalanced rotor.
Symmetric cylindrical precessions are described by the same formulas
as in the linear approximation.

5 The influence of the internal friction

force on the rotor motion

Consider the motion of the rotor under external friction forces R
e
j and

internal friction forces R
i
j. Internal friction forces are proportional to

the relative velocity of motion of the center of bearings and may exist
in the bearings due to the oil film that is partly entrained by the rotor:

R
i
j = −µ̃i

(

Ṡj − IωSj

)

, j = 1, 2. (9)

The forces R
i do not affect the parameters of the direct synchronous

precessions of rotor, but make the domain of the stable regimes signifi-
cantly more narrow and prevent the self-centring effect. For symmetric
conical precession of the dynamically unbalanced rotor and cylindrical
precessions of statically unbalanced rotor the regimes induced are the
self-induced vibration which can be represented in the form
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sj = Rj exp(IΩτ) exp(Iϕj) + rj exp(IΩ1τ), (10)

where Rj and ϕj are the amplitudes and phases of forced vibrations
with the frequency Ω, rj and Ω1 are the amplitudes and the frequency
of self-induced vibrations [3].

For dynamically unbalanced rotor self-induced vibrations are asso-
ciated with the motion of the center of mass. When the mass cen-
ter outlines the circle the resulting motion can be represented as a
superposition of symmetric conical precessions (R1 = R2 = R and
exp(Iϕ2) = − exp(Iϕ1) = exp(Iϕ)) and symmetric self-induced vibra-
tions (r1 = r2 = r).

Using the harmonic balance method we obtain the following ap-
proximate equations for R, r, Ω1 and ϕ:

r(1 + c(r2 + R2) − Ω2

1
) = 0,

r(Ω1(µe + µi) − Ωµi) = 0,

R(1 − λ)((k(1 + c(R2 + 2r2)) − Ω2) sin ϕ + µekΩ cos ϕ) = 0,

(1 − λ)(R(k(1 + c(R2 + 2r2)) − Ω2) cos ϕ − µekΩR sin ϕ − 1

4
Ω2) = 0.

(11)

Equations (10) permit to find the amplitudes of self-induced vibra-
tions and forced vibrations as the functions of the rotation frequency
and the frequency bound of the soft inducing for the self-induced vi-
brations:

Ωs = (1 + µe/µi)
√

1 + 2cR2. (12)

In Fig. 4 AFR curves for the amplitudes squares (Y = R2, y =
r2) vs. frequency square (x = Ω2) are represented. The dotted line
corresponds to the self-induced vibrations. Note that if the angular
velocity Ω increases then the amplitude of the self-induced vibrations
also goes up. That is a cause of the bearings destruction and rotor
collapse.
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Figure 4: AFR of forced vibrations and self-induced vibrations

If the rotor has only two degrees of freedom then one should seek
the modes for self-induced vibrations in the form (9), where s1 = −s2 =
−s. Such regimes may exist only for a dynamically prolate rotor, when
λ < 1 and k > 0. Although such type of solutions satisfy formally the
system of differential equations of dynamically unbalanced rotor with
four degrees of freedom, numerical integration results in the modes
related to the motion of the mass center.

For a statically unbalanced rotor (e 6= 0, δ = 0) with four degrees of
freedom the developing self-induced vibrations form a planar motion.

The resistance force R
m = −µ̃m Ṡ S

S
proportional to the velocity

of the radial displacements of the centers of bearings, which appears in
a rigid rotor due to the deformation of the balls in the rolling bearing
[4], has the same destabilizing effect on the symmetric precessions and
generates the self-induced vibrations.
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Dinamika krutog rotora na elastičnim osloncima

UDK 534.16

Po pravilu se u proučavanju krutog rotora na elastičnim osloncima
autori služe linearnim sistemom koji odgovara ravanskom kretanju i
efektu samocentriranja pri neograničenom rastu obrtne učestanosti.
U ovom radu se rotor posmatra kao sistem sa četiri stepena slobode.
Pritom se proučavaju različita kretanja neuravnoteženog rotora oslon-
jenog na nelinearne oslonce.


