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Abstract

In this paper, we interpret the development of material inho-
mogeneities in continuum, hyperelastic bodies in the presence of
reversible growth in terms of broken symmetries [1]. By applying
Noether’s Theorem [1,2,3,4], we find a set of equations yielding
the fields necessary to compensate for the broken symmetry. As
growth occurs, these fields provide for an instantaneously updated

reference configuration of the body, and are responsible for the
dynamical restoring of the body symmetries. In addition, we
propose to use these compensating fields in order to generalize
the definition of the transplant operator given in [5,6]. This work
has been motivated by the current theoretical investigations on
the biomechanical aspects of growth in articular cartilage.
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Corresponding Author: E-mail: agrillo@dmfci.unict.it

†Dipartimento di Ingegneria Industriale e Meccanica, Università di Catania,
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Italy

§Istituto Nazionale di Fisica della Materia (INFM ), Unità di Catania, Italy
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Italy

311



312 A.Grillo, S.Federico, G.Giaquinta, W.Herzog, G.La Rosa

1 Introduction

The starting-point of this paper is the article by Epstein and Maugin
reported in [5]. In this work, we tackle the case of reversible growth
in hyperelastic, uniform and inhomogeneous continuum bodies, because
we aim at interpreting the development of material inhomogeneities in
terms of broken symmetries. Symmetries are here meant as transforma-
tions, performed on fields and independent variables, corresponding to
the invariance of a suitable defined Action functional [1].

We describe the growing body as a macroscopic open system in which
new material is smoothly added [5,7]. Volumetric growth is modeled by
means of a smooth field, the mass source, representing the rate of change
of the volumetric mass density [5,7,8]. Even though the growing body is
assumed to be uniform [5], this field acts as a source of inhomogeneities.
The development of material inhomogeneities is interpreted as a contin-
uous breaking of the body symmetries.

As far as growth is disregarded, the evolution of the body can be
described by a Lagrangian density function. In this case, dynamic equa-
tions are found via Hamilton’s Principle [9,10,11], and conservation laws
are obtained by Noether’s Theorem [1,2,3,4]. When growth occurs, the
mass source brings about some polygenic momentum sources, that can-
not be taken into account by a suitable Lagrangian density function [9].
In this case, Hamilton’s Principle no longer applies, and Noether’s Theo-
rem ceases to be valid. This is because dynamics must take into account
the polygenic momentum sources, and conservation laws are modified by
the presence of additional source terms, which cause the non-vanishing
of the four-divergence of the Noether’s four-current. The transforma-
tions performed on independent coordinates and fields, which provide
for the steadiness of the Action functional when there is no growth (these
transformations are named symmetries), do not apply when additional
sources act within the body. In this sense, we speak about broken sym-

metries. New classes of transformations are therefore required in order
to restore the broken symmetries. In the following, we demonstrate
that, by imposing some proper conditions on the transformations ap-
plied on fields and independent coordinates, we are able to obtain an
effective source term which reduces to the virtual work density exerted
by the polygenic momentum source. Under these conditions, we can
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state that the virtual work density exerted by the momentum source
(which corrects the dynamics of the system as growth takes place) is
balanced by the effective source term yielding the non-vanishing of the
four-divergence of the Noether’s four-current. This sets the condition for
the variation of Action to vanish, and thus, the symmetries of the system
to be restored. We believe that the fields necessary to compensate for
the symmetry breaking allow for the generalization of the transplant op-

erator defined in [5,6]. With respect to the work by Epstein and Maugin,
the hypotheses of hyperelastic material and reversible growth simplify
the description of the process of growth, because, assuming the body to
be hyperelastic gives a constitutive framework in which mass-diffusive
aspects of growth are neglected [5,12].

2 The continuity equation and the dynamic

equation of a hyperelastic body with re-

versible growth

As new material is locally inserted into the body, the increment of in-
homogeneities is ”measured” by the variation of the volumetric mass
density, which is related to the volumetric mass source through the con-
tinuity equation. This physical situation is usually described by defining
the volumetric mass density as a function of time and referential coordi-
nates (in the following we denote the Lagrangian form of fields by using
”ˆ”). The continuity equation must take into account the mass source
and the mass flux vector [5]. The latter represents the mass-diffusive ef-
fects within the body and describes some morphogenetic events related
to growth [5,8]. In order to investigate these aspects, the mass flux is
determined as a dependent variable within a second-order constitutive
framework [5,12,13]. In the hypothesis of hyperelastic body, the mass
flux vector must vanish identically and the continuity equation reads:

∂tρ̂R = Π̂ (2.1)

where ρ̂R = ρ̂Ĵ and Π̂ = π̂Ĵ are the Piola-transformed volumetric mass
density and mass source, respectively, Ĵ being the determinant of the
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deformation gradient tensor, F̂ . If there were no growth, the mass of
the system would be constant and Eq.(2.1) would reduce to ∂tρ̂R = 0
for any (t,X0) ∈ I × C0, I being an interval of time and C0 a subset
of B0, i.e. the reference configuration of the body at time t = 0. The
field Π̂ is the smooth field describing growth. Its values can be positive
or negative, depending on whether the mass of the whole system is
increased or decreased by the process of growth [5,8]. If the mass source
is a given function of time and reference coordinates, the mass density
of the body can be determined by integrating Eq.(2.1) with respect to
time [7]. By introducing the notation ρ̂R(0, X0) = ρ̂0(X0) and Ĝ(t,X0) =
∫ t

0
Π̂(s,X0)ds, we obtain:

ρ̂R(t,X0) = ρ̂0(X0) + Ĝ(t,X0), ∀t ∈ I. (2.2)

The dynamics of a growing uniform body takes into account re-
versible and irreversible momentum sources and fluxes [5]. In the hy-
potheses of reversible growth and hyperelastic material, the dynamic
equation is given by:

∂t(ρ̂Rv̂i) = ρ̂Rf̂i + ∂kT̂ik + Π̂v̂i (2.3)

where v̂ is the velocity of the material point, f̂ : I × C0 → R3 rep-
resents the body forces per unit mass, T̂ : I × C0 → R3,3 is the first
Piola-Kirchhoff stress-tensor, and Π̂v̂ : I × C0 → R3 is the reversible
momentum source. By invoking Eq.(2.1), the polygenic term, Π̂v̂, can
be entirely taken into account by the time variation of the volumetric
mass density. Therefore, the dynamic equation can be rearranged as:

ρ̂R(∂tv̂i) = ρ̂0f̂i + ∂kT̂ik, or ρ̂0(∂tv̂i) + Ĝ(∂tv̂i) = ρ̂0f̂i + ∂kT̂ik. (2.4)

If we were able to switch off the mass source at t = 0, the system
would evolve according to the dynamic equation:

ρ̂0(∂tv̂i) = ρ̂0f̂i + ∂kT̂ik. (2.5)

Such a dynamic equation can be derived by defining a suitable La-
grangian density function and requiring the Action functional of the
body to be stationary [5,10]. This is known as the ”weak formulation”
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of Hamilton’s Variational Principle. However, even in the presence of
growth, the body can be assigned a Lagrangian density function, L,
which takes into account the kinetic energy density, a generalized work-
function, −V : I×Ω → R, and the Helmholtz free energy per unit mass,
ψ : I × Ω → R. In case of thermoelastic material, ψ depends on space
coordinates, on the temperature field and the deformation gradient ten-
sor [12,13]. The existence of V , which depends on the configuration field
only, is assumed in order to model the interaction between the system
and the environment. Thus, with respect to the Eulerian forms of the
fields, L is given by:

L(t, y, v(t, y), Θ(t, y), F (t, y)) =

1

2
ρ(t, y)[v(t, y)]2 − ρ(t, y)V(y) − ρ(t, y)ψ(t, y)

(2.6)

where (t, y) ∈ (I, Ω) (Ω ⊂ C(t) being an open set), and Θ : I × Ω → R.
In the reference configuration of the body, the Lagrangian form of the
Helmholtz free energy density, ψ̂, is defined by a functional Fψ such
that:

Fψ(X0, Θ̂(t,X0), F̂ (t,X0)) = ψ̂(t,X0) (2.7)

The first Piola-Kirchhoff stress tensor, T̂ , and the entropy density
are determined as constitutive dependent variables [5,14]. The Action
functional is obtained by integrating the Lagrangian density function,
given in Eq.(2.6), over the time-space domain I ×C(t). By applying the
Piola-transformation, LR = ĴL, Action can be written with respect to
the reference configuration of the body [5,15,16], i.e.:

A(x̂, Θ̂) =

∫

I

{
∫

C0

LR(t,X0, x̂(t,X0), v̂(t,X0), Θ̂(t,X0), F̂ (t,X0))dτ}dt,

LR(t,X0, x̂(t,X0), v̂(t,X0), Θ̂(t,X0), F̂ (t,X0)) =

1

2
ρ̂R(t,X0)[v̂(t,X0)]

2 − ρ̂R(t,X0)[V(x̂(t,X0))]−

ρ̂RF
ψ(X0, Θ̂(t,X0), F̂ (t,X0)).

(2.8)
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3 Thermoelastic body with reversible

growth

The thermodynamic description of a growing body must take into ac-
count the sources of internal and kinetic energies due to the incoming
material. In reference [5], the local form of the energy balance law and
the Clausius-Duhem inequality are investigated in detail for the general
case. By assuming reversible growth and thermoelastic material, the
energy balance law and the Clausius-Duhem inequality are given by:

ρ̂R(∂tÛ) = r̂R + tr[T̂ (gradv̂)T ] and ρ̂RΘ̂(∂tŜ) ≥ r̂R, (3.1)

where Û is the internal energy density and r̂R is the bulk heat supply.
In the absence of r̂R, the Clausius-Duhem inequality is satisfied as an
equality, which states that the entropy density does not vary in time.
According to this further assumption, the time-variation of the inter-
nal energy density depends on mechanical factors only. This enables
us to drop the dependence of the Lagrangian density function on the
temperature field.

4 A Noether-like approach to the dynam-

ical restoring of the broken symmetries

in a growing hyperelastic body

The polygenic reversible momentum source, Π̂v̂, entails the increase in
material inhomogeneities [5]. The mass density ρ̂R, which, in the absence
of growth, was just a function of space coordinates, now depends on time
as well [5,7]. The addition of new material is accompanied by a continu-
ous rearrangement of the inhomogeneities in the reference configuration
of the body. If there was no growth the material inhomogeneities would
be fixed in the reference configuration of the body and would not vary
in time. In the situation just depicted, the symmetries of the system are
broken in the reference configuration of the body, i.e., in the configura-
tion in which the system appears to be inhomogeneous. Nevertheless,
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we can determine a suitable reference configuration of the body in which
the system appears homogeneous. This can be accomplished by apply-
ing Noether’s Theorem. If we require Action to be stationary the equa-
tions of motion and conservation laws can be determined simultaneously
[1,2,3]. The latter are expressed by the vanishing of the four-divergence
of the Noether’s four-current [1,2]. This generalized continuity equation
does not necessarily reduce to the vanishing of the four-divergence of the
energy-momentum tensor [1,17]. Rather, it imposes a set of conditions
on the transformations performed on the independent variables. These
transformations are called external symmetries [1], and, in this case, do
not depend on time. It is worthwhile to remark that, throughout this
section, we deal with the “weak formulation” of the variational princi-
ple. When growth is considered, symmetries are continuously broken
and a new class of transformations on time-space coordinates must be
found in order to be restored. However, in this case, Noether’s Theo-
rem cannot be applied directly [9,18]. Action is not stationary because
Π̂v̂ entails the presence of non-trivial terms that modify the dynamics
and introduce additional sources to the Noether’s four-current. In or-
der to restore the continuously broken symmetries, the sources must be
reduced to an effective source term, which turns out to be equal to the
virtual work density exerted by Π̂v̂. If there exists a class of fields which
are able to eliminate the non-effective sources, these fields must be such
that the divergence of the Noether’s current is just equal to the effective
source term. Then, the result of the topological integral provided by
Noether’s Theorem is the virtual work exerted by Π̂v̂. But, this work is
also the negative of the term missing in order to retrieve the dynamic
equation. Hence, there is a class of transformations for which dynamics
and conservation laws compensate. As Action is stationary under these
transformations, we say that they restore the broken symmetries of the
system [1]. These fields belong to the class of external symmetries [1],
which, in this case, are parameterized by time. By fixing a field be-
longing to this class, the original reference configuration of the body is
smoothly transformed into a new admissible reference configuration in
which the system appears to be homogeneous [2,3].
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4.1 The admissible reference configuration set

Every physical quantity dealing with the body, whether or not growth
is considered, is conceived as a map which, in the Lagrangian frame-
work of Continuum Mechanics, is defined on I × C0 and valued in some
normed space. Following some suggestions taken from the literature (cf.
e.g.[2,3,4]), the most general transformation that can be performed on
the independent coordinates is given by:

γ̂ : I × C0 → I∗ × C∗

0 (4.1)

where I∗ and C∗

0 are the transformed sets. The vector field γ̂ is a dif-
feomorphism, and its components are expressed by γ̂α, α = 0, ..., 3 (the
0-th component represents the time-component of the vector field). If
we fix an instant in time, t, and consider only the space-components of
γ̂, we obtain γ̂i(t, ·) : C0 → C∗

0 . This transforms each reference position,
X0 ∈ C0 ⊂ B0, into X∗

0 ∈ C∗

0 . The set C∗

0 = (γ̂i(t, C0))
3
i=1 is parameter-

ized by t and is a subset of the new reference configuration B∗

0. The map
γ̂i(t, ·) belongs to a class of transformations, the external symmetries,
spanning a family of sets which we call admissible reference configura-

tion set of the body, B0. Each element of B0 represents a possible global
reference configuration of the body.

4.2 Dynamic equation

The dynamic equation for a growing body is obtained by taking into
account the Lagrangian density function given in Eq. (2.8), the vir-
tual work exerted by the reversible source of momentum, Π̂v̂, and the
surface forces, ϕ̂, acting on the boundary, ∂C0, of C0 [10]. In order to
treat the Lagrangian density function as dependent on time and space
coordinates, we define an auxiliary map, η̂α : I ×C0 → I ×C0|(t,X0) 7→
η̂α(t,X0) = (t,X0k) and consider the composed map LR ◦ (η̂α, x̂i, ∂βx̂i).
Nevertheless, in order to simplify the mathematical formalism, we re-
fer to LR ◦ (η̂α, x̂i, ∂βx̂i) as to LR. The four-gradient, ∂βx̂i, is ∂βx̂i =

(∂tx̂i, ∂kx̂i) = (v̂i, F̂ik). By performing the transformation, x̂i 7→ x̂∗

i =
x̂i + µξ̂i [1,10], on the configuration field, where µ is a real small-
ness parameter, and ξ̂ : I × C0 → R3 is a smooth map such that
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ξ̂(0, X0) = ξ̂(t̄, X0) = 0 ({0, t̄} = ∂I) for every X0 ∈ ∂C0, the dynamic
equation is found by requiring the vanishing of the integral [10]:

∫

I

{

∫

C0

(δLR)dτ +

∫

C0

Π̂v̂i(µξ̂i)dτ +

∫

∂C0

ϕ̂i(µξ̂i)da}dt = 0. (4.2)

This is the principle of virtual work in a disguise, and corresponds
to the weak formulation of the boundary value problem governing dy-
namics. Equation (4.2) can be rearranged as:

∫

I
{
∫

C0

[−∂t(ρ̂Rv̂i) + ρ̂Rf̂i + ∂kT̂ik + Π̂v̂i](µξ̂i)dτ+

∫

∂C0

[T̂ikn̂k − ϕ̂i](µξ̂i)da}dt = 0.

(4.3)

By virtue of Eq.(4.3), Eq.(2.3) is retrieved under the constraint condition
T̂ikn̂k − ϕ̂i = 0, on I × ∂C0.

4.3 Determination of the compensating fields for

restoring the broken symmetries of the system

The transformation γ̂ in Eq. (4.1) is defined by γ̂ = η̂+λΨ̂, where λ is a
real smallness parameter and Ψ̂ : I ×C0 → I∗ ×C∗

0 is a diffeomorphism.
The reference positions, X0 ∈ C0, are transformed into the new admis-
sible reference positions, X∗

0 ∈ C∗

0 , such that X∗

0k = X0k + λΨ̂k(t,X0).

The perturbations, µξ̂ and λΨ̂, allow for the definition of the Noether’s
four-current [1,2], i.e.:

Ĵα = −µξ̂i

∂LR

∂(∂αx̂i)
+ λΨ̂αLR. (4.4)

According to Noether’s Theorem, if a Classical Field Theory with a
certain energy-momentum tensor admits a one-parameter family of sym-
metry transformations, then Noether’s four-current Ĵα, is conserved [1].
If no source is considered, the conservation of Ĵα is expressed by the van-
ishing of its four-divergence [1]. Yet, in case of growth, this is not true.
Hence, the conservation laws are understood in a generalized meaning.
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These laws acquire a general form and are no longer expressed by homo-
geneous equations. The system is open, and the continuity equation of a
closed system cannot be re-established by suitably adjusting the source
terms [17]. In order to find out the explicit form of the source term that
appears in the energy-momentum continuity equation, we calculate the
four-divergence of Ĵα. In the most general case, we apply transforma-
tions on the configuration field and on independent time-space variables,
i.e.:

x̂i 7→ (x̂∗

i ◦ γ̂α) = x̂i + (δx̂i) ◦ γ̂α ⇒ (δx̂i) ◦ γ̂α = (x̂∗

i ◦ γ̂α) − x̂i (4.5)

where (x̂∗

i ◦ γ̂α), [(δx̂i) ◦ γ̂α] : I × C0 → R3 and x̂∗

i : I∗ × C∗

0 → R3. If we
seek for an expression involving only linear terms with respect to µ and
λ, the global variation in Eq.(4.5) becomes:

δx̂i = µξ̂i + λΨ̂α(∂αx̂i). (4.6)

Following the spirit of the local gauge transformation theory, we ex-
press δx̂i in terms of a coordinate-dependent rotation of the original con-
figuration field (cf. e.g.[19]). This is done by defining a skew-symmetric
second-order tensor, R̂il, such that δx̂i = R̂ilx̂l. The diffeomorphism λΨ̂
is expressed by the superposition of a coordinate translation and a coor-
dinate rotation. For this purpose, we define a skew-symmetric second-
order four-tensor rotation field, R̂αβ, and a four-vector translation field,

ŵα, such that λΨ̂α(t,X0) = R̂αβ(t,X0)η̂β(t,X0)+ŵα(t,X0). The compo-

nents R̂0k = −R̂k0 of R̂αβ are assumed to be zero, because we only admit
time to be translated. Consequently, the transformation performed on
time reduces to λΨ̂0(t,X0) = ŵ0(t,X0), while, setting R̂kl = R̂kl, space-
coordinates are transformed into λΨ̂k(t,X0) = R̂kl(t,X0)X0l+ŵk(t,X0),
where X0l = η̂l(t,X0). Noether’s four-current can now be written in the
form:

Ĵα = Êαβŵβ + Ξ̂αilR̂il + χ̂αβµR̂βµ (4.7)

where Êαβ is the energy-momentum tensor [1], Ξ̂αil and χ̂αβµ are, re-
spectively, the intrinsic and the orbital angular-momentum tensors [1].
These tensors are given by:
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Êαβ = −(∂βx̂i)
∂LR

∂(∂αx̂i)
+ δαβLR,

Ξ̂αil =
1

2

{

x̂l

∂LR

∂(∂αx̂i)
− x̂i

∂LR

∂(∂αx̂l)

}

,

χ̂αβµ =
1

2
[η̂µÊαβ − η̂βÊαµ]

(4.8)

The component Ê00 is the negative of the energy density of the system
without sources, i.e. Ê00 = −ĤR = −{1

2
ρ̂Rv̂2+ρ̂RV(x̂)+ρ̂Rψ̂}. The com-

ponents Êk0 and Ê0l represent the energy density flux Êk0 = v̂iT̂ik, and the
canonical-momentum density Ê0l = −ρ̂Rv̂iF̂il = P̂l, respectively [5,20].
The components Êkl give the negative of the Mandel stress tensor [5,21],
Êkl = T̂ T

kiF̂il + δklLR = −b̂′kl. This tensor generalizes the Eshelby stress
tensor when growth is taken into account, and represent the canonical-
momentum density flux. Similarly, the components Ξ̂0il and Ξ̂kil give the
direct-dynamics angular momentum, Ξ̂0il = 1

2
{x̂lρ̂Rv̂i − x̂iρ̂Rv̂l}, and the

angular momentum induced by the Piola-Kirchhoff stress tensor, Ξ̂kil =
1

2
{x̂lT̂ik − x̂iT̂lk}, while χ̂0il = 1

2
{P̂iη̂l − P̂lη̂i} and χ̂kil = 1

2
{−η̂lb̂

′

ik + η̂ib̂
′

lk}
provide the inverse-dynamics angular momentum and the angular mo-
mentum induced by the Mandel stress tensor, respectively. Noether’s
current, written in Eq.(4.7), is split into the superposition of two inde-
pendent contributions: the translational contribution is Ĵ tr

α = Êαβŵβ,

and the rotational contribution is Ĵ rot
α = (Ξ̂αilR̂il + χ̂αβµR̂βµ). There-

fore, rather than calculating the divergence ∂αĴα, we investigate the
contributions ∂αĴ

tr
α and ∂αĴ

rot
α separately.

The divergence ∂αĴ
tr
α yields:

∂αĴ
tr
α = ∂α(Êαβŵβ) = ∂α(Êα0ŵ0) + ∂α(Êαlŵl) (4.9)

where the term ∂α(Êα0ŵ0) is given by:

∂α(Êα0ŵ0) = [−(∂tĤR)+∂k(v̂iT̂ik)]ŵ0−ĤR(∂tŵ0)+(v̂iT̂ik)(∂kŵ0). (4.10)

The time-derivative of ĤR is ∂tĤR = Π̂Ĥ′

R + ρ̂R(∂tv̂i)v̂i − ρ̂Rf̂iv̂i +
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T̂ik(∂tF̂ik), where Ĥ′

R is given by Ĥ′

R = 1

2
v̂2 + V(x̂) + ψ̂. By substitut-

ing ∂tĤR into Eq.(4.10), and applying Schwartz’s Theorem, after some
manipulations, we achieve:

∂α(Êα0ŵ0) = −Π̂Ĥ′

Rŵ0 − ĤR(∂tŵ0) + (v̂iT̂ik)(∂kŵ0). (4.11)

By noticing that Π̂Ĥ′

R = Π̂v̂iv̂i − Π̂L′

R, where L′

R = 1

2
v̂iv̂i − V(x̂) − ψ̂,

Eq.(4.11) can be rearranged as:

∂α(Êα0ŵ0) = −Π̂v̂iv̂iŵ0 + Π̂L′

Rŵ0 − ĤR(∂tŵ0) + (v̂iT̂ik)(∂kŵ0). (4.12)

The term ∂α(Êαlŵl) in Eq.(4.9) is given by:

∂α(Êαlŵl) = (∂tP̂l − ∂kb̂
′

kl)ŵl + P̂l(∂tŵl) − b̂′kl(∂kŵl). (4.13)

The time-derivative of the canonical momentum density, and the diver-
gence of the generalized Mandel stress tensor, are such that:

(∂tP̂l − ∂kb̂
′

kl) = −(∂tρ̂R)v̂iF̂il − ρ̂R(∂tv̂i)F̂il − ρ̂Rv̂i(∂tF̂il)+

+(∂kT̂ik)F̂il + T̂ik(∂kF̂il) + δkl [(∂kLR)exp+

+ρ̂Rv̂i(∂kv̂i) + ρ̂Rf̂i(∂kx̂i) − T̂nm(∂kF̂nm)
]

(4.14)

The derivative (∂kLR)exp is named explicit gradient of the Lagrangian
density function [5]. By invoking Eq.(2.1) and Schwartz’s Theorem,
Eq.(4.14) can be rearranged as:

(∂tP̂l − ∂kb̂
′

kl) = −Π̂v̂iF̂il + (∂lLR)exp (4.15)

The equation (4.13) can be written as:
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∂α(Êαlŵl) = −Π̂v̂iF̂ilŵl + (∂lLR)expŵl + P̂l(∂tŵl) − b̂′kl(∂kŵl). (4.16)

Finally, the divergence of Ĵ tr
α = Êαβŵβ is equal to:

∂αĴ
tr
α = ∂α(Êα0ŵ0) + ∂α(Êαlŵl) = −Π̂v̂iv̂iŵ0 + Π̂L′

Rŵ0−

ĤR(∂tŵ0) + (v̂iT̂ik)(∂kŵ0) − Π̂v̂iF̂ilŵl+

(∂lLR)expŵl + P̂l(∂tŵl) − b̂′kl(∂kŵl).

(4.17)

The right-hand side of Eq.(4.17) can be manipulated by requiring the
fields ŵ0 and ŵl to solve the following equations:

Π̂L′

Rŵ0 − ĤR(∂tŵ0) + (v̂iT̂ik)(∂kŵ0) = 0 (4.18)

(∂lLR)expŵl + P̂l(∂tŵl) − b̂′kl(∂kŵl) = 0. (4.19)

If ŵ′

0 and ŵ′

l are the solutions to Eqs.(4.18) and (4.19), respectively,
Eq.(4.17) becomes:

∂αĴ
′tr
α = ∂α(Êα0ŵ

′

0) + ∂α(Êαlŵ
′

l) =

−Π̂v̂iv̂iŵ
′

0 − Π̂v̂iF̂ilŵ
′

l = −Π̂v̂i(∂βx̂i)ŵ
′

β.

(4.20)

The divergence of Ĵ rot
α = (Ξ̂αilR̂il + χ̂αβµR̂βµ) yields:

∂αĴ
rot
α = [∂tΞ̂0il + ∂tχ̂0il + ∂kΞ̂kil + ∂kχ̂kil]R̂il+

(Ξ̂0il + χ̂0il)(∂tR̂il) + (Ξ̂kil + χ̂kil)(∂kR̂il).

(4.21)

By substituting the explicit forms of Ξ̂αil and χ̂αβµ, Eq.(4.21) becomes:
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∂αĴ
rot
α =

1

2
{[ρ̂Rf̂ix̂l − ρ̂Rf̂lx̂i] + [(∂iLR)expη̂l − (∂lLR)expη̂i]+

[T̂lkF̂ik − T̂ikF̂lk] + [b̂′il − b̂′li]}R̂il +
1

2
[(ρ̂Rv̂ix̂l − ρ̂Rv̂lx̂i)+

(P̂iη̂l − P̂lη̂i)](∂tR̂il) +
1

2
[(T̂lkx̂i − T̂ikx̂l) + (b̂′klη̂i − b̂′kiη̂l)]

(∂kR̂il) +
1

2
[Π̂v̂ix̂l − Π̂v̂lx̂i]R̂il +

1

2
[−Π̂v̂jF̂jiη̂l + Π̂v̂jF̂jlη̂i]R̂il.

(4.22)

The right-hand side of Eq.(4.22) can be modified by requiring the
field R̂il to satisfy the equation:

1

2
{[ρ̂Rf̂ix̂l − ρ̂Rf̂lx̂i] + [(∂iLR)expη̂l − (∂lLR)expη̂i]+

+[T̂lkF̂ik − T̂ikF̂lk] + [b̂′il − b̂′li]}R̂il+

+
1

2
[(ρ̂Rv̂ix̂l − ρ̂Rv̂lx̂i) + (P̂iη̂l − P̂lη̂i)](∂tR̂il)+

+
1

2
[(T̂lkx̂i − T̂ikx̂l) + (b̂′klη̂i − b̂′kiη̂l)](∂kR̂il) = 0.

(4.23)

By indicating with R̂′

il the solution to Eq.(4.23) and applying Eq.(4.6),
Eq.(4.22) reduces to:

∂αĴ
′rot
α = 1

2
[Π̂v̂ix̂l − Π̂v̂lx̂i]R̂

′

il + 1

2
[−Π̂v̂jF̂jiη̂l + Π̂v̂jF̂jlη̂i]R̂

′

il =

Π̂v̂iR̂
′

ilx̂l − Π̂v̂jF̂jiR̂
′

ilη̂l = Π̂v̂i(µξ̂′i) + Π̂v̂j(∂βx̂j)ŵ
′

β.

(4.24)

Finally, by summing Eqs.(4.20) and (4.24) the divergence of Ĵ ′

α becomes:
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∂αĴ
′

α = Π̂v̂i(µξ̂′i) + Π̂v̂j(∂βx̂j)ŵ
′

β − Π̂v̂i(∂βx̂i)ŵ
′

β = Π̂v̂i(µξ̂′i). (4.25)

The quantity Π̂v̂i(µξ̂′i) is the effective source term to be considered
when stating the continuity equation for the whole Noether’s current.
By suitable coordinate-transformations, this physical quantity has been
reduced to the virtual work density exerted by the reversible source of
momentum.

We know from Noether’s Theorem that the variation of Action yields
[1]:

(δA)(x̂) =
∫

I

{
∫

C0

[
∂LR

∂x̂i

− ∂α

∂LR

∂(∂αx̂i)
]dτ}dt +

∫

I

{
∫

C0

∂αĴαdτ}dt =

=
∫

I

{
∫

C0

[−∂t(ρ̂Rv̂i) + ρ̂Rf̂i + ∂kT̂ik]µξ̂idτ}dt +
∫

I

{
∫

C0

∂αĴαdτ}dt.

(4.26)

Since the first integrand does not satisfy the dynamic equation, the
second integrand is equal to the sources, and these two terms do not
compensate, in general, the variation, (δA)(x̂), is not zero. In this sense
we say that the symmetries of the system are broken [1]. Yet, by invoking
the dynamic equation and Eq.(4.25), the variation of Action reduces to:

(δA)(x̂) =

∫

I

{

∫

C0

−Π̂v̂iµξ̂idτ}dt +

∫

I

{

∫

C0

Π̂v̂iµξ̂′idτ}dt. (4.27)

As the field µξ̂i is arbitrary, we can assume it to be equal to µξ̂′i.
Therefore, we obtain:

(δA)(x̂) =

∫

I

{

∫

C0

−Π̂v̂iµξ̂′idτ}dt +

∫

I

{

∫

C0

Π̂v̂iµξ̂′idτ}dt = 0. (4.28)

The vanishing of (δA)(x̂) occurs for those fields, ŵ′

0, ŵ′

l and R̂′

il, such
that Eqs. (4.18), (4.19), and (4.23) are satisfied. These equations must
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be respected in order to restore the broken symmetries of the system.
The transformations ŵ′

0, ŵ′

l and R̂′

il are the compensating fields.

4.4 Transversal time

The compensating field ŵ′

0 performs a translation on time (time, t, is
transformed into t∗ = t + ŵ′

0(t,X0)). We named the interval of time
ŵ′

0(t,X0) = t∗ − t transversal time. Transversal time distinguishes be-
tween the time that measures the process of growth, and the time that
measures the “true” dynamics of the system. As growth occurs, the
admissible reference configuration of the body C∗

0 , determined by the
field γ̂k(t, ·), is parameterized by t, but time is unaffected by this trans-
formation. On the other hand, the mass source acting within the body
provides an energy source. Therefore, the energy of the system is not
conserved, and time-symmetry is destroyed. This symmetry breaking is
reflected by the inhomogeneity of time, but the map ŵ′

0(t, ·) provides
an instant of time, t∗, in which the time-symmetry is restored. As time
is conjugated to energy so the quantity ŵ′

0(t,X0) can be regarded as a
“measure” of the amount of energy carried by the incoming mass. Since
in the Lagrangian view of Continuum Mechanics, the reference coor-
dinates, X0, are labels attached to the material evolving particles, the
explicit presence of space-coordinates in ŵ′

0(t,X0) means that the sym-
metry breaking must be compensated for on each curve. Thus, while
time t is associated with the dynamic evolution of the generic curve
labeled by X0, time ŵ′

0(t,X0) is a “measure” of growth.

4.5 A generalization of the transplant operator

The fields ŵ′

l and R̂′

il allow to fix a transformation, γ̂′

k(t, ·) : C0 → C∗

0 ,
which displaces the reference configuration of the body into an admis-
sible new one, in which the body symmetries are restored. This trans-
formation may be regarded as a deformation, but it is not accomplished
by the dynamical evolution of the system. Rather, it provides for an
instantaneously “updated” reference configuration set, which could be
assumed as referential for the dynamical evolution of the system. Note
that the evolution of C0 into C∗

0 , interpreted as dynamical restoring of
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broken symmetries, is formally consistent with the concept of an evolv-
ing stress-free configuration [5,22,23,24], although methodologically dis-
tinct. By considering the field x̂i(t, ·) : C∗

0 → R3|X∗

0 7→ yi = x̂i(t,X
∗

0 ),
and the composed map x̂i(t, ·) ◦ γ̂′

k(t, ·), we obtain yi = x̂i(t,X
∗

0k) =
x̂i(t, γ̂

′

k(t,X0)), where X∗

0k = γ̂′

k(t,X0). The calculation of the gradient
of [x̂i(t, ·) ◦ γ̂′

k(t, ·)] yields:

∂x̂i

∂X0j

(t, γ̂k(t,X0)) =

[

∂x̂i

∂X∗

0k

(t,X∗

l )

][

∂γ̂k

∂X0j

(t,X0)

]

. (4.29)

Denoting by F̂ij(t, γ̂k(t,X0)), Ĝik(t,X
∗

0 ) and K−1
kj (t,X0), the gradi-

ents

F̂ij(t, γ̂k(t,X0)) =
∂x̂i

∂X0j

(t, γ̂k(t,X0)),

Ĝik(t,X
∗

0 ) =
∂x̂i

∂X∗

0k

(t,X∗

0 ),

K−1
kj (t,X0) =

∂γ̂k

∂X0j

(t,X0)

(4.30)

we rearrange Eq.(4.29) in the form:

F̂ij(t, γ̂k(t,X0)) = Ĝik(t,X
∗

0 )K−1
kj (t,X0) ⇒

Ĝik(t,X
∗

0 ) = F̂ij(t, γ̂k(t,X0))Kjk(t,X0).
(4.31)

The tensor map K−1
kj (t,X0) is formally equivalent to the transplant oper-

ator found in the literature [5,6]. In the cited cases, the transplant oper-
ator was defined as a linear operator “connecting” the reference crystal
(i.e. a fixed undistorted stress-free configuration of a material point,
and not a reference configuration of a material body) with the reference
configuration of the body. We believe that, within this first-order the-
ory, a generalization of the concept of transplant operator can be given,
because the reference crystal is substituted by a time-varying reference
configuration in which the symmetries broken by growth are continu-
ously restored. Recalling that γ̂i(t,X0) = X0i+R̂ij(t,X0)X0j+ŵi(t,X0),
the proposed generalization of the transplant operator is given by:
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K−1
ik (t,X0) = (∂kγ̂i)(t,X0) =

δik + [(∂kR̂ij)(t,X0)]X0j+

R̂ik(t,X0) + (∂kŵi)(t,X0).

(4.32)

The last three terms on the right-hand side of Eq.(4.32) can be in-
terpreted as time-dependent first-order corrections to the unit tensor,
supplied by the fields R̂ij and ŵi which solve Eqs.(4.19) and (4.23).
The idea of writing the transplant operator as the gradient of a smooth
change of reference configuration was present in the work by Epstein and
Maugin [5]; note that in our work, the fields that allow for calculating
K−1

ik are found by restoring the symmetries broken by growth.

5 Conclusions

The equations (4.18), (4.19) and (4.23) are the conditions that the trans-
formations on time and reference coordinates must respect in order to
restore the symmetries broken by the development of material inho-
mogeneities due to growth. Although dynamics plays a central role in
these equations, they are not dynamic equations. They constitute a
set of linear and homogeneous equations whose solutions provide a field
transforming the original configuration of the body into a new admissi-
ble one. Such a configuration is an instantaneous reference configuration
in which the symmetries of the system are re-established. This result
“translates” the idea of describing growth as the evolution of the stress-
free configuration in the language of symmetries. The fields ŵ′

0, ŵ′

l and
R̂′

il are not uniquely determined by Eqs.(4.18), (4.19) and (4.23). Ac-
tually, while ŵ′

0 is a scalar field found via a scalar equation, ŵ′

l and R̂′

il

have three independent components that must be determined by solving
two independent scalar and homogeneous equations. Hence, each equa-
tion admits two undetermined variables which can be chosen arbitrarily,
regardless of the initial and boundary conditions that must be associ-
ated with each equation. Thus, Eqs.(4.18), (4.19) and (4.23) provide a
class of equivalence of transformations. Each coordinate-transformation
belonging to this class compensates for the broken symmetries, is such



Restoration Of The Symmetries Broken By Reversible... 329

that the variation of Action vanishes, and contains the class of trans-
formations that solve the variational problem. As a consequence to
this indetermination, we find a family of equivalent admissible reference
configurations. Since in each admissible reference configuration the sym-
metries of the system are continuously restored, we believe that ŵ′

l and
R̂′

il allow for a generalization of the concept of transplant operator [5,6].
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Uspostavljenje simetrije narušene reverzibilnim
rastom u hiperelastičnim telima

UDK 531.01

U ovom radu pomoću narušene simetrije interpretiramo razvoj ma-
terijalnih nehomogenosti u neprekidnim hiperelastičnim telima [1]. Pri-
menom teoreme Emi Neter [1,2,3,4] nalazimo skup jednačina iz kojih
slede polja potrebna za kompenzaciju narušene simetrije. Pri rastu ova
polja nam daju trenutnu promenljivu referentnu konfiguraciju tela, a
ona su odgovorna i za dinamičko ene uspostavljanje simetrije kompen-
zacionih polja u cilju uopštenja definicije operatora transplanta datog
u [5,6]. Ovaj rad je motivisan nedavnim teorijskim istraživanjima o
biomehaničkim aspektima rasta u zglobnoj hrskavici.


