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Abstract

In the paper the universal governing equations of incompressible

laminar temperature boundary layer on the sphere are obtained

using the improved method of general similarity for the case of

adiabatic boundary conditions. Universal solutions in one para-

metric approximation for Pr = 1 and Pr = 0.72 are obtained by

numerical integration. Calculated universal functions for temper-

ature boundary layer are presented graphically. As an example

eigen-temperature of the sphere are calculated and discussed.

Nomenclature

a0, b0 constants
A dimensionless displacement thickness
B dimensionless momentum thickness
c coefficient of thermal conductivity
ET eigen-temperature
f1 first form parameter
fk set of form parameters
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F characteristic function
H displacement/momentum thickness ratio
F characteristic boundary layer function
K dimensionless temperature
Pr Prandtl number
T temperature
T∞ temperature of the outer flow (constant)
u, v velocity components
U∞ velocity of the outer potential flow
U0 velocity far afore the body (constant)
x, y coordinates
δ∗ displacement thickness
δ∗∗ momentum thickness
ζ dimensionless friction factor
η dimensionless transversal coordinate
θk recurrent function
ν kinematics viscosity
ψ stream function
Φ universal dimensionless stream function

1 Introduction

Flow around bodies of revolution is very often and important in engi-
neering practice. Defined in meridian plane of a cylindrical coordinate
system it is reliable model of fluid flow around drops and bubbles, mis-
siles and planes, as well as flow in pipes and turbo machines. The
concept of boundary layer can be applied for the flow around the body
of revolution, taking into consideration curvature of the body in circum-
ferential direction.

The case of the dynamic boundary layer on a body of revolution is
well known in literature, due to its significance for engineering practice.
Using Karman-Pohlhausen [1] method procedure for solving dynamic
boundary layer equations on the body of revolution was developed by
Schlichting [2], Truckenbrodt [3] and Parr [4]. It is interesting to mention
that Saljnikov [5] used Goertler’s approach to model treated problem.
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The concept of universalisation of the laminar boundary layer equa-
tions, introduced by Loitskianskii [6], was applied by Bogdanova [7], for
the case of flow around the body of revolution. Complete unversalisa-
tion of the equations, proposed by Saljnikov [8], of treated problem was
done by Kukic [9], and Bachrun et all [10].

Temperature boundary layer on the axis symmetrical bodies is also
interesting for engineering practice, firstly due to the problem of aero-
dynamic heating of the missiles. Since this problem was treated mainly
experimentally, presented paper is attempted to treat it theoretically.

2 Universal equations of dynamic and ther-

mal boundary layer

Starting from the equations for spacious boundary layer and considering
posed geometry of the treated problem, presented on the Fig.1, Bog-
danova [7] obtained governing equations (continuity and momentum) in
the form:

∂u

∂x
+

∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= U∞

dU∞

dx
+ ν

∂2u

∂y2
.

(1)

Temperature can be involved using energy equation in the form:

u
∂T

∂x
+ v

∂T

∂y
=

ν

Pr

∂2T

∂y2
+

ν

c

(

∂u

∂y

)2

. (2)

Boundary conditions of the treated problem, considering Fig.1 are:

y = 0 , u = v = 0,
∂T

∂y
= 0

y → ∞ , u = U∞ (x) , T = T∞

. (3)
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Figure 1: Boundary layer on a body of revolution

For the posed system of governing equations (1-3) it is interesting to
find universal form so that such equations can be solved once for ever.
The solutions of universal equations then can be applied to any par-
ticular case. Such approach is of certain theoretical interest, even that
posed system can be solved directly for certain particular case. In order
to obtain universal form of the governing equations (1-3) Bogdanova’s
[7] treatment, improved by more appropriate Saljnikov’s [8] variables.

Namely, first at all, stream function for incompressible flow is intro-
duced:

u =
∂ψ

∂y
, v = −

∂ψ

∂x
. (4)
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Transversal coordinate y can be transformed in dimensionless form:

η (x, y) =
U∞ (x)

bo

2 y
√

a0ν
x
∫

0

U∞ (x)b0−1 dx

, (5)

so that dimensionless stream function Φ(x,η) could be introduced, in the
form:

ψ (x, y) = U∞ (x)1− bo

2 Φ (x, η)

√

√

√

√

√a0ν

x
∫

0

U∞ (x)b0−1 dx. (6)

According to the results of Saljnikov [8], values of the constants in
(5) and (6) are a0=0.4408 and b0=5.714.

For the adiabatic case dimensionless temperature K(x,η,Pr) could
be introduced in the form:

T (x, y, Pr) = T∞ +
U∞ (x)2

2c
K (x, η, Pr) . (7)

Second important transformation according to the Loitskianskii’s
method of general similarity [6] is in longitudinal direction. Instead
of longitudinal coordinate x a set of form parameters fk of Loitskianskii
can be introduced:

fk = U∞ (x)k−1 dkU∞ (x)

dxk

(

f1
dU∞(x)

dx

)k

, k = 1, 2, ...∞. (8)

According to (5,6) the first form parameter of the Loitskianskii’s set
(8) is:
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f1 =
a0B

2U ′

∞
(x)

U∞ (x)b0

∞
∫

0

U∞ (x)b0−1dx. (9)

If the velocities of the potential outer flow U∞(x) is arbitrary contin-
ual function that can be derived k-times, fk is set of mutually indepen-
dent functions, dependant on x. Derivatives on x can be replaced using
operator:

∂

∂x
=

∞
∑

1

∂fk

∂x

∂

∂fk

=
U ′

∞

U∞f1

∞
∑

1

Θk

∂

∂fk

, (10)

and recurrent function:

Θk = [k (f1 + F ) − f1]fk + fk+1. (11)

In (10) and (11) certain new functions are introduced:

• B - dimensionless momentum thickness:

B =

∞
∫

0

∂Φ

∂η

(

1 −
∂Φ

∂η

)

dη; (12)

• A - dimensionless displacement thickness:

A =

∞
∫

0

(

1 −
∂Φ

∂η

)

dη; (13)

• H - displacement/momentum thickness ratio:

H =
δ∗

δ∗∗
=

∞
∫

0

(

1 −
vx

U∞

)

dx

∞
∫

0

vx

U∞

(

1 −
vx

U∞

)

dx

=
A

B
; (14)
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• ζ - dimensionless friction factor:

ζ =

[

∂ (u/U∞)

∂ (y/δ∗∗)

]

y=0

= B[Φηη (x, η)]
η=0; (15)

• F - characteristic function:

F = 2[ζ − (2 + H) f1]. (16)

Introducing all above mentioned transformations governing set of the
equations for dimensionless stream function Φ(f k,η) and temperature
K(fk,η) could be obtained in the universal form:

Φηηη +
f1

B2

(

1 − Φ2
η

)

+
a0B

2 + (2 − b0) f1

2B2
ΦΦηη =

=
1

B2

∞
∑

k=1

Θk (ΦηΦηfk
− ΦηηΦfk

)

, (17)

Kηη + Pr
a0B

2 + (2 − b0) f1

2B2
ΦKη − Pr

2f1

B2
ΦηK + 2 Pr Φ2

ηη =

=
Pr

B2

∞
∑

k=1

Θ
k
(ΦηKfk

− Φfk
Kη)

. (18)

Corresponding boundary conditions are:

η = 0 : Φ = Φη = 0 , Kη = 0

η → ∞ : Φη = 1 , K = 0
. (19)

As it shown by Saljnikov [7] one-parametric approximation can be
used. Namely, instead of the set of parameters (8), which generates the
set of equations for each fk, only the first one f1 (9) can be used, gen-
erating only one set of two universal governing equations. Numerical
experiments with second and higher order approximations have shown
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negligible progress in accuracy in comparison with one-parametric ap-
proximation. In this way system of universal equation (17-18) could
be written in one-parametric approximation. Namely, introducing in
(17-18):

f1 6= 0, f2 = f3 = ... = 0 ; Θ1 = f1F, Θ2 = Θ3 = ... = 0, (20)

universal set of the equations for dimensionless stream function Φ(f 1,η)
and temperature K(f1,η) could be transformed in the form:

Φηηη +
f1

B2

(

1 − Φ2
η

)

+
a0B

2 + (2 − b0) f1

2B2
ΦΦηη =

=
f1F

B2
(ΦηΦηf1

− ΦηηΦf1
)

, (21)

Kηη + Pr
a0B

2 + (2 − b0) f1

2B2
ΦKη − Pr

2f1

B2
ΦηK+

+2 Pr Φ2
ηη =

Pr f1F

B2
(ΦηKf1

− Φf1
Kη)

. (22)

Boundary conditions (19) are not affected with this transformation
in longitudinal direction.

3 Results

Partial differential equations (21) and (22) for universal dimensionless
stream function Φ(f 1,η) and dimensionless temperature K(f1,η), with
corresponding boundary conditions (19) are nonlinear partial differen-
tial equations without analytic solution, so that numerical treatment
of this system is considered necessary. It is evident that equation (21)
for universal dimensionless stream function Φ(f 1,η) does not depend
on dimensionless temperature K(f1,η), so that it can be solved firstly.
Then, taking into consideration obtained results for Φ(f 1,η), equation
for K(f1,η) could be solved.
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It is important to mention that for f1=0 both equations (21-22) are
reduced to ordinary differential equations:

Φηηη +
a0

2
ΦΦηη = 0, (23)

Kηη + Pr
a0

2
ΦKη + 2 Pr Φ2

ηη = 0. (24)

On the arbitrary body of revolution this section, f1=0, corresponds
to the point of minimal pressure/maximal velocity in meridian plane.
It evidently solution for flat plate and could be easily obtained. Thus,
integration domain of the treated system (21-22) is divided in two parts
– first one from f1=0 towards stagnation point (f1¿0), and second one
from f1=0 towards separation point (f1¡0).

Numerical integration of the presented system of equation (21-22)
was done using finite difference method. For universal dimensionless
stream function Φ(f 1,η) at first, order of the equation (21) was reduced
introducing φ(f 1,η) = Φη(f1,η). Discretisation of the equation (22) was
done applying implicit scheme, central for η, backward for f1. As a
result of such procedure, tridiagonal system of algebraic equations was
obtained. It was solved using iterative Gaussian elimination procedure.
Integration was done in semi-domains (–0.82≤ f1 ≤0 ; 0≤η≤12) and
(0≤ f1 ≤+0.82 ; 0≤η≤12) with steps in longitudinal ∆f1 =0.001and
transversal ∆η =0.01 direction. Results for dynamic boundary layer
achieved in presented research are with good agreement with previously
ones obtained by Kukic [9] and Bachrun et all [10].

It is important to mention that K(f1,η) is not completely universal,
since it depends on Prandtl number Pr. In the case for Pr=1 for di-
mensionless temperature function K(f1,η) well known theoretical result
could be obtained in the form:

K = 1 − Φ2
η. (25)

These results are presented graphically. On the Fig.2 profiles of
dimensionless temperature K(f1,η) are presented for different sections
of the boundary layer, from stagnation point (f1=+0.08) via point of
minimal pressure/maximal velocity (f1=0) and towards separation point
(f1=-0.08). Distribution of the dimensionless temperature K(f1,η) along
boundary layer is given on the Fig.3. Dimensionless temperature K(f1, η)
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Figure 2: Dimensionless temperature profiles across boundary layer for
Pr = 1

for Pr6=1 could be obtained in the same way as Φ(f 1,η). It is interesting
to mention that complete procedure was accomplished using MS-Excel.
Integration was done in the same semi-domains (−− 0.82 ≤ f1 ≤ 0; 0 ≤

η ≤ 12) and (0 ≤ f1 ≤ +0.82; 0 ≤ η ≤ 12) with coarser steps in lon-
gitudinal ∆f1 =0.01and transversal ∆η =0.1 direction. On the Fig.
4 profiles of dimensionless temperature K(f1,η) are given for different
sections of the boundary layer, from stagnation point (f1=+0.08) to-
wards separation point (f1=-0.08), and the Fig.5 presents distribution
of the dimensionless temperature K(f1,η) along boundary layer. From
the Figs.4 and 5 is obvious that function K(f1,η) has greatest values on
the surface of the body (η=0) and that its values decrease approaching
outer border of the boundary layer. Complete numerical results for dy-
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namic and temperature boundary layer, for Pr= 1 and for air, Pr=0.72
are given in [11].

Figure 3: Dimensionless temperature distribution along boundary layer
for Pr = 1

4 Example

Obtained universal numerical results can be applied to calculate thermal
boundary layer on particular body of revolution. As it is shown by
Saljnikov [8] for further application of universal function most important
is the function f1/(B

2):

f1

B2
=

a0U
′

∞
(x)

U∞ (x)b0

∞
∫

0

U∞ (x)b0−1dx (26)



258 M.Mirić-Milosavljevic, M.D. Pavlović

Figure 4: Dimensionless temperature profiles across boundary layer for
Pr = 0.72

Let us take a sphere as particular example. In this case velocity
distribution, according to [12], is given as:

U∞ (x) = U0
3
2
sin ϕ. (27)

where U0 is velocity of the undisturbed uniform stream far afore the
body.

For treated adiabatic case it is most interesting to calculate eigen-
temperature of the adiabatic surface ET(x). Assuming equation (7) it
could be defined as:

ET (x) =
T (x, 0, Pr) − T∞

U2
0/2c

=
U∞ (x)2

U2
0

K (x, 0, Pr) . (28)

Since the obtained results for dimensionless temperature K(x,η,Pr)
are not completely universal one must assume particular value of Prandtl
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Figure 5: Dimensionless temperature distribution along boundary layer
for Pr = 0.72

number. For this example calculations would be done for air, Pr=0.72.
First step of the computing procedure is to calculate the function f1/(B

2)
(26) for sphere, using particular velocity distribution (27). These results
are presented graphically on the Fig.6. Second step is to compare ob-
tained values of the function f1/(B

2) with universal results and to find,
by interpolation, corresponding values of function f1 and universal func-
tions. In presented case it concerns universal function K for the surface
of the body, i.e. for η=0. When these values are found, the eigen-
temperature ET of the body is calculated (third step of the computing
procedure) using equation (28). Results are presented graphically on
the Fig.6. Cumulative effect of the viscous friction is manifested by
monotonously increase of the eigen-temperature ET. Stagnation tem-
perature on the body surface:

DT0 = T0 − T∞ =
U∞ (x)2

2c
, (29)
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Figure 6: Velocity U∞ (marked as U), function f1/B
2, eigen-temperature

ET , stagnation temperature difference DT0 = T0 − T∞, and surface
temperature difference DT = T − T∞ = T0 − T∞ + ET on the sphere
for Pr = .072

is calculated also and presented on the Fig.6 as temperature difference
DT0. Typical effect of aerodynamic heating is obvious from the graph
of DT0. Body surface temperature comprehending coupled effects of
stagnation and friction can be estimated as:

DT = T0 − T∞ + ET = DT0 + ET. (30)

From its graph, presented on the Fig.6, it is obvious that zone around
stagnation point is thermally loaded. Effects of friction are manifested
downwash the boundary layer.

It is evident, from the ET(x) diagram, that boundary layer is cal-
culated from rather high values of the angle φ (∼230). It seems that
in treated particular case of the sphere boundary layer theory fails in
relatively wide neighborhood of the stagnation point. This fact can be
explained since the sphere is a blunt body, with comparatively big sur-
face exposed normally to the outer stream. Stagnation point region of
the sphere with impulsive changes of velocity and pressure is big in com-
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parison with its total surface. For some other body of revolution, with
more stream like form, the stagnation point region would be compara-
tively smaller, and the universal solutions results could be applied closer
to the stagnation point. On the other side it seems that separation point
position (∼1020) is in good agreement with literature.

5 Conclusions

In the presented paper, the governing equations of the incompressible
laminar thermal boundary layer, for adiabatic boundary conditions, on
the body of revolution are obtained in the universal form, using the
general similarity Loitskianskii’s [6] method, with Saljnikov’s [7] modi-
fications of transversal coordinate. Results for universal dimensionless
stream function Φ(x,η) and temperature K(x,η,Pr) are achieved numer-
ically, using finite difference method. Universal solutions of the dimen-
sionless temperature K(x,η,Pr) for Pr=1 and Pr=0.72 are presented
graphically. They are very convenient for practical calculations of dy-
namic and temperature boundary layer. Correlation of the particular
case, with known velocity distribution of the outer flow U∞(x) along the
surface concerned, with universal solutions is done by means of the func-
tion f1/B

2. Calculations of eigen-temperature and surface temperature
on the sphere are performed for Pr=0.72, and presented graphically. In-
convenience of the sphere for laminar boundary layer calculation around
the stagnation point is discussed.
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Nestǐsljivi laminarni temparaturski na osno
simetričnom telu - adijabatski slučaj

UDK 532.526

U radu su dobijene univerzalne jednačine nestǐsljivog temperaturskog
sloja na sferi. U tom cilju se koristi pobolǰsani metod sličnosti za slučaj
adijabatskih granǐsnih uslova. Numeričkom integracijom u jednoparam-
etarskoj aproksimaciji su dobijena univerzalna rešenja za Pr = 1 i
Pr = 0.72. Univerzalne funkcije izračunate za temperaturski granični
sloj su prikazane grafički. U okviru jednog primera je izračunata i disku-
tovana sopstvena temperatura na sferi.


