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Abstract

The dynamic stability problem of the thin-walled beams sub-
jected to end moments is studied. Each moment consists of
constant part and time-dependent stochastic non-white func-
tion. Closed form analytical solutions are obtained for simply
supported boundary conditions. By using the direct Liapunov
method almost sure asymptotic stability condition is obtained
as function of stochastic process variance, damping coefficient,
geometric and physical parameters of the beam.

The stability regions for I-cross section and narrow rectangu-
lar cross section are shown in variance - damping coefficient plane
when stochastic part of moment is Gaussian zero-mean process
with variance σ2 and harmonic process with amplitude A.
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1 Introduction

Many engineering structures like bridges, cranes and aircraft are made
up in some way or another of a number of thin-walled elements. Such
structures find wide applications because of the optimal strength and
stiffness. Studying of dynamical problems concerning to stability and
oscillations is very important. This structures often experience a com-
bination of static and dynamic loads, and there are many situations
where the dynamic behavior of the structure depends significantly on
the static stress field.

The problem of elastic stability of thin-walled beams, cross-sections
with two axes of symmetry, subjected to equal and constant end mo-
ments, first was solved by Timoshenko [7].

In the case when thin-walled beam is subjected to an axial load
and end moments, Joshi and Suryanayan [3] obtained solution for the
coupled flexural-torsional vibration.

Dynamic stability of simply supported thin, elastic beam subjected
to stochastic white-noise excitations is considered by Ariaratnam [1].
Applying Galerkin method the problem is reduced to consideration of
parametric oscillations of discrete system.

Tylikowski [8], applied direct Liapunov method to uniform stochas-
tic stability analysis of a thin-walled double-tee beams loaded by equal
end moments. The intention of the present paper is to investigate al-
most sure asymptotic stability of thin-walled beams subjected to time-
dependent stochastic end moments.

2 Problem formulation

Let us consider the flexural-torsional stability of a homogeneous, isotropic,
thin-walled beam with two planes of symmetry. The beam is assumed to
be loaded in the plane of greater bending rigidity by two equal couples
acting at the ends, (Fig. 1).

The governing differential equations for the coupled flexural and tor-
sional motion of the beam can be written as [2], [8]:
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Figure 1: Geometry of thin-walled I-beam subjected to end moments
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where U – flexural displacement in the x-direction, θ - torsional dis-
placement, ρ - mass density, A – area of the cross-section of beam, Ix,
Ip, Is – axial, polar and sectorial moment of inertia, J – Saint-Venant
torsional constant, E – Young modulus of elasticity, G – shear modulus,
αU, αθ - viscous damping coefficients, τ - time and Z – axial coordinate.
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where `- length of the beam, Mcr - critical bending moment for sim-
ply supported beam, S – slenderness parameter, β1 and β2 - reduced
viscous damping coefficients, we get governing equations as:
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Taking free warping displacement and zero angular displacements into
account, boundary conditions for simply supported beam are:
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The purpose of the present paper is the investigation of almost sure
asymptotic stability of the thin-walled beam subjected to stochastic
time-dependent end moments. To estimate perturbed solutions it is nec-
essary to introduce a measure of distance ‖•‖ of solutions of the Eqs.(4)
and (5) with nontrivial initial conditions and the trivial one. The equi-
librium state of Eqs.(4) and (5) is said to be almost sure stochastically
stable, [4] if:

P
{

lim
t→∞

‖w(., t)‖ = 0
}

= 1, (7)

where w = col(u, θ).
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3 Stability analises

With the purpose of applying the Liapunov method, we can construct
the functional by means of the Parks – Pritchard’s method [5]. Thus,
let we write Eqs.(4) and (5) in formal form Lw = 0 where L is matrix:
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and introduce linear operator:
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which is formal derivative of the operator L with respect to
∂

∂t
.

Integrating the scalar product of the vectors Lw and Nw on rect-
angular C = Ω × ∆ = [z : 0 ≤ z ≤ 1] × [τ : 0 ≤ τ ≤ t] with respect to
Eqs.(4) and (5), it is clear:

2
t
∫

0

1
∫

0

{[

∂2u

∂t2
+ 2β1

∂u

∂t
+

∂4u

∂z4
+ π2

√
S (Mo + M(t))

∂2θ

∂z2

]

×

×
(

∂u

∂t
+ β1u

)

+

[

∂2θ

∂t2
+ 2β2

∂θ

∂t
− π2S

∂2θ

∂z2
+

+π2
√

S (Mo + M(t))
∂2u

∂z2
+ e

∂4θ

∂z4

] (

∂θ

∂t
+ β2θ

)

dz dτ = 0.

(10)

After applying the partial integration to Eq.(10) the sum of two
integrals may be obtained as:
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For simplicity, it is taken that β1 = β2 = β.
Functional V will be Liapunov functional if it is positive definite.

Using well known relations:
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Omitting dynamical terms, we can write:
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Hence, the positive definite condition reduces to relation:

M2
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e
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which is equal with Timoshenko’s stability condition for thin-walled
beam subjected to constant end moments M0.

Relation (13) can be written in the form:
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where U is an auxiliary functional defined as:
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Now we attempt to construct a bound:

U ≤ λV, (19)

where λ is unknown function.
Proceeding similarly as Kozin [4], we have to solve an additional

variational problem:

δ(U − λV) = 0. (20)
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By using the associated Euler’s equations we obtain:
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After simplifying, we get two equations:
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we obtain only one equation:
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By solving the differential inequality (17), we obtain the following
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Therefore, it can be stated that the trivial solution of equation (??)
is almost sure asymptotically stable if:

lim
t→∞

1

t

t
∫

0

λ(τ)dτ ≤ β, (29)

or, when the process M(t) is ergodic and stationary:

E {λ(t)} ≤ β, (30)

where E denotes the operator of the mathematical expectation, and:

λ(t) = lim
m

λm(t). (31)

Figure 2: Stability regions for I-section as a function of `/h
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4 Numerical results and discussion

The expression (??) calculated form (16) and inequalities (19) and
(20) give us possibility to obtain critical damping coefficient guarantee-
ing the almost sure asymptotic stability of the thin-walled beam as a
function of statistic characteristics of the end moments. A domain where
damping coefficients are greater than the critical damping coefficient is
called the almost sure asymptotic stability region. The stability regions
as functions of loading variance, damping coefficient, ratio of length to
dept of beam cross section, constant component of loading and cross
section characteristic are calculated numerically. That calculation is
performed for I – section and narrow rectangular cross section.

Figure 3: Stability regions for narrow rectangular section as a function
of `/h

With respect to standard I–section we can approximately take h/b ≈
2, b/δ1 ≈ 11, δ/δ1 ≈ 1.5, where h is depth, b – is width, δ - the thickness
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of the flanges and δ1 is thickness of the rib of I – section. These ratios
give us S ≈ 0.01928(`/h)2 and e ≈ 1.276. For narrow rectangular cross
section S ≈ 1.88(`/h)2 and e = 0.

It is well known, if probability density function is given, then greater
stability regions are acquired. In this case numerical calculations are
performed for the Gaussian zero mean process with variance σ2 and for
the harmonic process with an amplitude A. In order to compare both
processes the variance of harmonic process σ2 = A2/2 is used. According
to [6] we take the parameters of Gauss-Hermite quadrature for Gaussian
process, and Gauss-Chebyshev for harmonic process, where the hatched
side of the curves indicates the stable region.

Figure 4: Stability regions for I–section as a function of deterministic
component of end the moment

In Fig. 2 and 3 almost sure asymptotic stability regions as functions
of ratio of length to depth of cross-section beam (`/h = 10, 12 and 20 are
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plotted. The stability regions for I – section, (Fig. 2) are greater then
for narrow rectangular cross section, (Fig. 3). Also, we may conclude
that when ratio `/h grows, stability regions decrease.

In Fig. 4 the stability regions as functions of constant component
of end moments M0 are given for I–section. The approaching of M0

to critical value M0 = 1, leads to decreasing of almost sure stability
regions.

In Fig. 5 stability regions as function of mode number indicate that
higher modes (m = 2, 3) are closed to basic mode (m = 1) for both
processes.

Figure 5: Stability regions for I-section as a function of mode number
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Skoro sigurna stabilnost tankozidne grede izložene
momentima na krajevima

UDK 534.16

U radu se proučava se problem dinamičke stabilnosti tan- kozidne
grede izložene momentima na krajevima. Svaki od momenata se sastoji
od konstantnog dela i vremenski pro- menljivog dela sa stohastičkom
funkcijom koja nije beli šum. Eksplicitna analitička rešenja su dobijena
za slučaj graničnih uslova kada su krajevi prosto oslonjeni. Korǐsćenjem
direktnog metoda Ljapunova dobjen je uslov skoro sigurne asimptotske
stabilnosti kao funkcija varijanse stohastičkog procesa, koeficijenta prigušenja,
geometrijskih i fizičkih para- metara grede.

Oblasti stabilnosti za I-poprečni presek i uski pravougaoni poprečni
presek su prikazani u ravni varijansa – koeficijent prigušenja kada je sto-
hastički deo momenta Gausovski proces sa nultom srednjom vrednošću
i varijansom σ2, a harmonijski proces je sa amplitudom A.


