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Abstract

The problem of predicting the drag coefficient of a growing
bubble at rectilinear accelerated ascension in uniformly super-
heated pure liquids and in binary solutions with a non-volatile
solute at large Reynolds and Peclet numbers is discussed. In
the case of pure liquids, the general solution for the drag coeffi-
cient of an accelerated growing bubble from its inception at the
critical radius and through the surface-tension-, inertia-, and
heat-diffusion-controlled regimes is established, as well as some
necessary adaptations in the case of binary solutions with a
non-volatile solute. Two particular limiting regimes in the case
of pure liquids, inertia-controlled and heat-diffusion-controlled
regimes, respectively, are analyzed in details, with satisfactory
results.
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Nomenclature

R bubble radius [m]
Rc critical bubble radius expressed by equation (6) [m]
R∗ dimensionless bubble radius defined by equation (3)
t time [s]
t∗ dimensionless time defined by equation (2)
td bubble growth delay period [s]
tu upper limit of time during the period concerned [s]
t∗r dimensionless time for estimating Tr

A∗ parameter defined by equation (4)[ms−1]
B∗ parameter defined by equation (5)[ms−1/2]
c1 specific heat of pure liquid or of solvent [Jkg−1K−1]
hfg latent heat of vaporization [Jkg−1]
p vapor pressure of pure liquid or of solution [Pa]
p∞ pressure in pure liquid or solution far from the bubble [Pa]
T temperature [oC]
Te equilibrium temperature of solution corresponding to p∞ [oC]
Ti bubble wall temperature [oC]
Tr reference temperature at which ρv is evaluated [oC]
Ts saturation temperature [oC]
T∞ temperature of pure liquid or of solution far from the bubble

Greek symbols

ρ1 density of pure liquid or of solvent [kgm−3]
ρv density of pure liquid vapor or of solvent vapor [kgm−3]
α1 thermal diffusivity of pure liquid or of solvent [m2s−1]
σ surface tension [Nm−1]
ω mass fraction of solute in solution
ω∞ mass fraction of solute in solution far from the bubble, dimensionless
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1 Introduction

The role of gas bubbles is an important one in many physical opera-
tions and chemical processes involving interaction between liquid and
gaseous systems. In some operations the transfer of mass between
gas bubbles and the continuous liquid phase is the very essence of
the operation. In others the kinematical behavior of gas bubbles is
bound up with secondary aspects of the operation. Examples of the
former include rectification, absorption and stripping in bubble-cap and
perforated-plate contacting devices and chemical reactions between liq-
uid and gaseous reactants. Boiling is an operation in which the forma-
tion and movement of gas bubbles appear as a secondary aspect of the
heat-transfer operation.

A knowledge of the heat and mass transfer associated with a mov-
ing bubble (or droplet) is of importance to a variety of industrial pro-
cesses. Boussinesque [1] has been the first to obtain a solution for the
heat transfer rate from a fluid sphere of uniform and constant surface
temperature, moving at a constant speed in another fluid of infinite
extent. Ruckenstein [2] studied the heat transfer between a vapor bub-
ble in motion and the liquid from which the bubble was generated.
Amongst the relatively small number of papers on deforming bubbles
in movement, the most often is used an impulsively started motion in
a quiescent liquid initially at rest. So in [13] for instance, the simulta-
neous solutions of the unsteady boundary-layer equations for the both
outside and inside flows of a radially deforming bubble in an impulsive
ascension were obtained by using the method of perturbations. Gen-
erally speaking, the viscous effect is small when the Reynolds number
exceeds two or three hundred. It may be of interest to note that if
the hydrodynamic boundary layers are developing simultaneously with
the thermal boundary layer, the inviscid approximation is even better
[3]. On the other hand, under the condition of large Peclet numbers,
the thermal boundary layers are very thin except the region close to
the rear stagnation. As the present paper concerns the unsteady flow
around a deforming bubble with particular emphasis on the drag co-
efficient, we are going to use hereafter the inviscid approximation [15]
for the external fluid flow.
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2 An improved bubble growth equation

for pure liquids

Bubble growth in superheated fluids is of key interest in boiling phe-
nomena in general and in flush evaporation in particular. Most of the
large amont of research on such bubble growth has been conducted
for pure liquids (see reviews in refs [4], [5], [6] for instance). The
past research shows that bubble growth in superheated liquids can be
characterized as progressing in three consecutive regimes: at first, just
when the bubble has nucleated, surface tension is dominant, impeding
significant growth for a certain “delay period”. After the nucleus grew
somewhat, say doubled its diameter, inertia forces become dominant
and the bubble grows primarily due to the difference between the va-
por pressure inside the bubble (pv) and the exterior pressure (p∞). As
the bubble grows further and its wall temperature consequently drops,
causing an increased temperature difference between the surrounding
liquid and the bubble wall, its growth rate becomes dominated by heat
transfer from the surrounding liquid which causes addition of vapor to
the bubble by evaporation at the interface.

In an experimentally-validated numerical study, Miyatake and Tanaka
[7], [8] have developed an improved equation for bubble growth in pure
liquids, which reflects reality more closely, by including the following
effects:

(a) The initial, surface-tension-controlled bubble growth regime,
which occurs immediately after the nucleation of a bubble, and which
causes an initial lag in bubble growth (the “delay period”, td, was
added to the inertia- and heat-transfer-controlled regimes taken into
account in the previous solution by Mikic et al. [9]. Consequently, the
new equation now covers the entire bubble life span.

(b) Consistently with improvement (a) above, growth was consid-
ered to start when the bubble radius was just larger than the critical
radius Rc (at which the bubble nucleus is sustained as a result of equi-
librium between surface tension and the pressure difference across the
bubble wall), specifically here at R(0) = 1, 0001Rc.

(c) The correct, non-linear relationship between the vapor pressure
and temperature, obtained from the steam tables, was used, eliminat-
ing the linear relationship assumption used in [9].
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(d) In addition to these assumptions, we are going to use also the
following one taking into account of the bubble movement: since only
large Reynolds numbers are of interest, the inviscid approximation can
be used. This is particularly true if the internal circulation is vigorous.
Accordingly, the external flow can be considered as irrotational. As it
was said above, the thermal boundary layers are thin for large Peclet
numbers.

The new general equation for bubble growth in pure liquids [7],
between a dimensionless bubble radius (R∗) and dimensionless time
(t∗), which was shown in ref. [10] to represent experimental data very
well, is

R∗ =
2

3

{

1 +
1

3
t∗ exp

[

−(t∗ + 1)1/2
]

}

[

(t∗ + 1)3/2 − (t∗)3/2 − 1
]

(1)

where

t∗ = (A∗/B∗)2
{

t − td

[

1 − e−(t/td)2
]}

(2)

and

R∗ =
A∗

(B∗)2
(R − Rc) (3)

A∗ =

[

2

3

∆p0

(ρl) T∞

]1/2

(4)

B∗ =

(

12

π

)1/2 [
∆Ts

(ρv)Tr

]

(

α
1/2
l clρl

hfg

)

Ts

(5)

where

Rc = 2(σ)T∞
∆p0 (6)

td = 6RcA
∗. (7)
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In the above equations the properties are based on T∞, Ts and Tr

of the liquid. Tr is a reference temperature at which the temperature-
sensitive saturation density (ρv) of the vapor is evaluated, and is defined
as

Tr = Ts + (T∞ − Ts)
{

1 − 2(t∗r)
1/2
[

(t∗r + 1)1/2 − (t∗r)
1/2
]}

(8)

where

t∗r =
1

2
(A∗/B∗)2 (tu − td) (9)

and where tu is the upper limit of the time period during which the
bubble growth is investigated by these equations.

The initial pressure difference between the bubble interior and ex-
terior is expressed by

∆p0 = (∆p)T∞
− p∞ (10)

in which p is the vapor pressure of the liquid, and the subscript is
indicating the temperature T∞ at which the vapor pressure is evaluated.

The agreement between this general bubble growth equation (equa-
tions (1)-(5)) and the experimentally-validated numerical solution of
Miyatake and Tanaka [7], [8] is excellent, and the capability of the
equation to predict bubble growth from its inception at the critical
radius and through the surface-tension-, inertia-, and heat-transfer-
controlled regimes is clearly demonstrated.

3 Drag coefficient of a growing bubble at

rectilinear accelerated ascension

Consider a spherical bubble of the growing radius R after the relation
(1) at a rectilinear ascension with the constant acceleration z̈0 in an
incompressible fluid initially at rest (figure 1). Let pv and Tv represent
the vapor pressure and the vapor temperature inside a growing bubble,
respectively.
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Figure 1: Growth of a spherical bubble

Due to the instationarity, the total drag force of a growing bubble
at an accelerated ascension is different from zero even in an inviscid
fluid and may be evaluated [15] as

D =
4

3
πρlgR3 −

2

3
πρlR

3z̈0 − 2πρlR
2Ṙż0. (11)

It is customary to introduce the drag coefficient Cz defined by

Cz =
D

1
2
ρlπR2ż2

0

,

i.e. from Eq.(11), one finds:

Cz =
8

3

g

z̈2
0

R

t2
−

4

3z̈0

R

t2
−

4

z̈0

Ṙ

t
. (12)

Hence, inserting R obtained from (3):
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R = Rc +
(B∗)2

A∗

R∗ , (13)

with R∗ given by (1), we obtain:

Cz =
4

3g

g

z̈0

(

2
g

z̈0

− 1

)

1

t2

{

Rc +
2

3

(B∗)2

A∗

[

1 +
1

3
t∗e−(1+t∗)1/2

]

×

×
[

(1 + t∗)3/2 − (t∗)3/2 − 1
]}

−
4

g

g

z̈0

{

2

9

[
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1

2

t∗

(1 + t∗)1/2

]

×

×
[

(1 + t∗)3/2 − (t∗)3/2 − 1
]

e−(1+t∗)1/2

+

[

1 +
1

3
t∗e−(1+t∗)1/2

]

×

×
[

(1 + t∗)1/2 − (t∗)1/2
]}

⊗
A∗

t

[

1 − 2
t

td
e−(t/td)2

]

, (14)

where t = t(t∗) is given implicitly by (2) and has to be determined
numerically in every particular case.

4 Drag coefficient of a growing bubble in

the two limiting cases

Examination of the bubble growth relations by Miyatake and Tanaka
equations (1)-(5), shows that

Rt→0 = A∗t , (15)

where A∗ is the dominant coefficient in the inertia-controlled regime
depending on ∆p0, and

Rt→∞ = B∗t1/2 , (16)

where B∗ depends on ∆Ts = T∞ − Ts and is the dominant coefficient
in the heat-transfer-controlled regime. Let us calculate now the drag
coefficient (12) for these two limiting cases.
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4.1 Inertia-controlled regime

Bubble growth rates controlled by inertia forces are applicable in the
range of a relatively low pressure and high Jakob numbers. The bubble
grows due to the evaporation of the liquid at the vapor-liquid interface.
The heat required for the evaporation is supplied from the superheated
liquid. The driving temperature potential between the liquid and vapor
is presented as (T∞ − Tv). For the cases when the vapor density is
very small, relatively small evaporation will cause substantial bubble
growth. So here very little temperature difference (T∞ − Tv) is needed
and to this limiting case Tv → T∞ corresponds the well known Rayleigh
solution [11] for the bubble growth controlled by the inertia forces, as
(15).

Consequently, after replacing (15) into (12) and some simple trans-
formations, it results that:

(B∗)2g

(A∗)3
Cz =

8

3
(
g

z̈0

− 2)
g

z̈0

1

t∗
. (17)

4.2 Heat-transfer-controlled regime

Growth rates for heat-diffusion-controlled bubble growth, correspond-
ing to (16), was previously studied by Plesset and Zwick [12]. So the
drag coefficient in this case will be calculated by inserting (16) into
(12):

(B∗)2g

(A∗)3
Cz =

2

3
(4

g

z̈0

− 5)
g

z̈0

1

t∗
√

t∗
. (18)

5 Concluding remarks

Figures 2 and 3 show the variation of the drag coefficient with dimen-
sionless time (i.e. t∗) in two limiting cases for some arbitrarily assigned
values of the acceleration parameter (g/z̈0) = =4; 5; 6. Another values
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Figure 2: Evolution of the drag coefficient of a bubble for different
acceleratins in inertia-controlled regime

may be used as well but the main features of the finding here would
not be affected. Besides the hypothesis of the irrotational external fluid
flow, all the results presented in Figures 2 and 3 seem to be acceptable,
the shapes of all curves being compatible to those in refs [11], [12], [14],
[15]. Due to the buoyancy effect, the drag coefficient decreases with
time for all values of the acceleration dimensionless parameter g/z̈0, as
well as with the augmentation of acceleration at each instant of time
t∗. Of course, thermal characteristics of the growing vapor bubble are
implicitly present through different dimensionless parameters such as
t∗ and (B∗)2g/(A∗)3.
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Figure 3: Evolution of the drag coefficient of a bubble for different
accelerations in heat-transfer-controlled regime

6 Perspectives: on the drag of a growing

bubble in a binary solution with a non-

volatile solute

First of all, we will analyze numerically the equation (14) based on
an improved bubble growth equation (1)-(5) which covers the entire
bubble life span and then we will make comparison with results pre-
viously obtained [15] for the analogous problem but using a simplified
bubble growth relation given in ref.[9]. We will try also to include into
the computation of the drag coefficient of a growing vapor bubble the
influence of the fluid viscosity similarly as in [16].

In the contrast to pure liquids where most of the large amount of
research on bubble growth has been conducted, very little is known
about bubble growth in superheated solutions with a non-volatile so-



188 R. Askovic

lute, a topic of both fundamental and practical importance. It has
many interesting applications including a wide variety of separation
processes such as water desalination and energy conversion processes
such as nuclear reactor safety, geothermal power generation or ocean-
thermal energy conversion.

As Miyatake and Tanaka demonstrated [10], the bubble growth
equation for a superheated pure liquid, equation (1)-(5), may also be
applicable for a superheated binary solution containing a non-volatile
solute, after the following adaptations:

- the superheat ∆Ts = T∞ − Ts is replaced by that defined by
equation ∆Ts = T∞ − Te where Te is the equilibrium temperature
satisfying the relation p∞ = (p)Te,ω∞

in which p is the vapor pressure
of the solution, and the subscripts are indicating the temperature T
and mass fraction ω at which the vapor pressure is evaluated;

- the initial pressure difference ∆p0 between the vapor interior and
exterior defined by equation (10) is replaced by that defined by equation
∆p0 = (p)T∞,ω∞

−p∞ where the mass fraction (ω∞) of the solute has, by
definition, no effect on bubble growth in the inertia-controlled regime,
and

- the physical properties of the liquid are taken as those of the
solvent.

Or, in contrast to the above-discussed bubble growth in pure liq-
uids, bubble growth in uniformly superheated binary solutions with a
non-volatile solute is determined not only by the temperature T∞ and
pressure p∞ of the solution, but also by the mass fraction ω∞ of the
solute. It was found that the concentration ω∞ has a significant effect
on the bubble growth rate when the far-field solution pressure p∞ is
held constant, as it is said above.

Taking into account of all these adaptations, we intend to study
numerically the drag coefficient (14) of a growing bubble at ascension in
some binary solutions with a non-volatile solute (uniformly superheated
aqueous NaCl solutions at different solute mass fractions, for instance).
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Koeficijent otpora pri translatornom ubrzanom
kretanju rastućeg parnog mehura u čistoj tecnosti

ili rastvoru

UDK 532.526; 533.15

U ovom radu se analizira problem odredjivanja koeficijenta otpora
pri translatornom ubrzanom usponu rastućeg parnog mehura u uniformno-
pregrejanoj čistoj tecnosti ili u binarnom rastvoru sa neisparljivim
primesama pri velikim brojevima Reynolds-a i Peclet-a. U slucaju čiste
tecnosti, nadjeno je opste rešenje za koeficijent otpora rastućeg sfernog
mehura počev od njegovog nastanka sa kritičnim radijusom preko svih
sledećih faza rasta: faze kontrolisane interfacijalnim naponom, faze
kontrolisane inercijom i, najzad, faze kontrolisane toplotnom difuzijom.
Takodje su definisane neophodne adaptacije predloženog opšteg re-
senja za slučaj kretanja rastućeg mehura kroz binarne rastvore sa neis-
parljivim primesama. Konačno, detaljno su analizirana dva granična
režima rasta mehura: kontrolisanog inercijom i kontrolisanog toplot-
nom difuzijom, sa zadovoljavajućim rezultatima.


